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NON-COERCIVE SOLVABILITY OF SOME BOUNDARY

VALUE PROBLEMS FOR SECOND ORDER ELLIPTIC

DIFFERENTIAL-OPERATOR EQUATIONS WITH QUADRATIC

COMPLEX PARAMETER

BAHRAM A. ALIEV, VUGAR Z. KERIMOV, AND YAKOV S. YAKUBOV

Abstract. In a separable Hilbert spaceH, solvability of boundary value
problems for a second order elliptic differential-operator equation with
quadratic complex parameter is investigated. The complex parameter
enters linearly into a boundary condition and the boundary conditions
are non-separable. An application of the obtained abstract results to
elliptic boundary value problems is given.

1. Introduction

In the monograph by S.Yakubov and Ya.Yakubov [14, chapter 5, section 5.4]
(see also S.Yakubov [13], [15]), in a separable Hilbert space H, solvability of the
following boundary value problem for second order elliptic differential-operator
equations was investigated:

L(λ)u := λu(x)− u′′(x) +Au(x) = f(x), x ∈ (0, 1) , (1.1)

Lku := αku
(mk)(0) + βku

(mk)(1) = fk, k = 1, 2, (1.2)

where λ is a complex parameter; A is a linear closed operator with dense do-
main D(A) in H and with resolvent decreasing as |λ|−1 for large enough λ from
some angles containing the negative semiaxis; mk ∈ {0, 1} ; αk, βk are complex
numbers which satisfy (−1)m1 α1β2 − (−1)m2 α2 β1 ̸= 0. It was proved that for
large enough λ from the angles |arg λ | ≤ φ < π, an isomorphism theorem for
the problem (1.1), (1.2) takes place between the solution of the problem, belong-
ing to W 2

p ((0, 1) ; H(A), H), and the right-hand side of the problem, belonging
to Lp(0, 1);H) ∔ (H(A), H)θ1,p ∔ (H(A), H)θ2,p, where θk = (H(A), H)mk

2
+ 1

2
,p ,

k = 1, 2, p ∈ (1,∞). It was also established some estimate for the solution of the
problem (1.1), (1.2) (with respect to u and λ) in the space Lp ((0, 1) ;H) , 1 <
p < ∞. In this case, we say that the problem (1.1), (1.2) is coercive solvable in
the space Lp ((0, 1) ;H) with respect to u. In fact, it is maximal Lp-regularity.
The corresponding established estimate is called the coercive estimate.
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Further, solvability of boundary value problems for second order elliptic dif-
ferential - operator equations with a complex parameter has been investigated in
[1-9][11], [16] and others in various cases:
a) boundary conditions may contain linear unbounded operators;
b) the complex parameter, entering into the equation (1.1), may appear in the
boundary conditions, as well;
c) boundary conditions may contain, in addition to the complex parameter, linear
bounded (or unbounded) operators.

Let us mention some works related to our this paper by problem’s formulation.
In [4], in a separable Hilbert space H, solbability of the following problem with

separated boundary conditions was studied

L (λ)u := λ2u(x)− u′′(x) +Au(x) = f(x), x ∈ (0, 1) , (1.3)

L1(λ)u := u′(1) + λu(1) = f1,

L2u := u(0) = f2,
(1.4)

where λ is a complex parameter; A is a linear unbounded selfadjoint, positive-
definite operator in H. It was proved that for large enough λ from some angle
|arg λ| ≤ φ < π

2 , the problem (1.3), (1.4) is coercive solvable (i.e., there is maximal
Lp-regularity) in the space Lp ((0, 1) ;H) , p ∈ (1,+∞). Note that the coercive
solvability of (1.3), (1.4) takes place also if the operator A in (1.3) is taken from
a more wide class of operators in H, so-called, φ -positive operators in H (the
definition of φ-positive operators is given below).

In [7], solvability of the following boundary value problem in H was studied

L (λ)u := λ2u(x)− u′′(x) +Au(x) = f(x), x ∈ (0, 1) , (1.5)

L1 (λ)u := u′ (1) + λBu (0) = f1,
L2u := u′ (0) = f2,

(1.6)

where A is a φ-positive operator in H; B is a linear bounded or unbounded
operator in H. It was proved that if in (1.6) the operator B is linear bounded
in the spaces H and H(A) (in particular, B can be the identical operator), then
for large enough λ from some angle |arg λ| ≤ φ < π

2 the problem (1.5), (1.6) is
coercive solvable (i.e., there is maximal Lp-regularity) with respect to u in the
space Lp ((0, 1) ;H), p ∈ (1,+∞).

Let us also mention [5], where solvability of boundary value problems for the
equation (1.5) with the following non-separated boundary conditions was studied:

L1 (λ)u := u′ (0) + λu (1) = f1, L2 (λ)u := u′ (1) + λu (0) = f2. (1.7)

It was proved that for large enough λ from some angle |arg λ| ≤ φ < π
2 , the

coercive solvability in the space Lp ((0, 1) ;H), p ∈ (1,∞) holds for the problem
(1.5), (1.7) (again, we have maximal Lp-regularity).

In this paper, in a separable Hilbert space H, solvability of a boundary value
problem for the equation (1.5) with the following non-separated boundary con-
ditions is treated:

L1 (λ)u := u′ (1) + λu (0) = f1, L2u := u (1) = f2, (1.8)

where λ is a complex parameter; A is a φ–positive operator in H. Very small
modifications in (1.4) or (1.6) and so ”dramatical” changes in results! It is proved
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that for large enough λ from some angle |arg λ| ≤ φ < π
2 , the problem (1.5), (1.8)

is non-coercive solvable with respect to u in the space Lp ((0, 1) ;H) (i.e., there is
no maximal Lp-regularity!. Non-coercivity of the problem (1.5), (1.8) is charac-
terized by the following fact. When we look for a solution of the problem (1.5),
(1.8), belonging to W 2

p ((0, 1) ; H(A), H), the elements f1 and f2 cannot be taken
from the natural interpolation spaces (H(A), H) 1

2
+ 1

2p
,p and (H(A), H) 1

2p
,p , re-

spectively, that follows from the trace theorem. The elements are taken from
more narrow interpolation spaces

(
H(A2), H

)
1
4
+ 1

4p
,p

and
(
H(A2), H

)
1
4p

,p
, re-

spectively. By this reason, one cannot take the function f(x) from the space
Lp ((0, 1); H). It is needed to take the function from a more narrow space, namely,
from Lp ((0, 1);H (A)) , p ∈ (1,∞). As a result, there is no an isomoprhism be-

tween the solution, belonging to W 2
p ((0, 1); H(A), H), and the right-hand side of

the problem (1.5) , (1.8). So, for the solution of the problem (1.5), (1.8), some
non-coercive estimate in the space Lp ((0, 1); H) , p ∈ (1,∞) is established.

Non-coercive phenomena was previously discovered for some problems (see [11],
[7]). In [11], the reason of that was in irregular boundary conditions. In [7], if the
operator B in the problem (1.5), (1.6) is linear unbounded and subordinate to the

operator A1/2 in some sense, then the problem (1.5), (1.6) becomes non-coercive
solvable in the space Lp ((0, 1) ;H), p ∈ (1,∞). In [11] it was also constructed
an example showing that a boundary value problem for the equation (1.1) with
irregular boundary conditions does not have a solution from W 2

p ((0, 1); H(A), H)
for some concrete f ∈ Lp ((0, 1) ;H).

The abstract results, obtained in the present paper, allow us to investigate
non-coercive solvability for a new class of boundary value problems for second
order elliptic partial differential equations in non-smooth domains. At the end of
the paper, one such application is shown for elliptic equations in a square.

Let us introduce definitions and notions used in the paper.
Let E1 and E2 be Banach spaces. The set E1+̇E2 of all vectors of the form

(u, v) , where u ∈ E1, v ∈ E2 with ordinary coordinate-linear operations and
with the norm

∥(u, v)∥E1+̇E2
:= ∥u∥E1

+ ∥v∥E2

is a Banach space and is called the direct sum of Banach spaces E1 and E2.
By B (E1, E2) we denote a Banach space of all linear bounded operators acting

from E1 into E2 with standard operator norm. In particular B(E1) := B(E1, E1).

Definition 1.1. A linear closed operator A in a Hilbert space H is called φ-
positive if its domain D (A) is dense in H and for some φ ∈ [0, π), for all points

from the angle |argµ| ≤ φ (including µ = 0), there exist the operators (A+ µI)−1

for which the estimate takes place∥∥∥(A+ µI)−1
∥∥∥
B(H)

≤ C (1 + |µ|)−1 , | argµ| ≤ φ,

where I is the identity operator in H, C = const > 0. If φ = 0 then the operator
A is called positive.

Note that if A is φ-positive then Aα, α ∈ (0, 1) is also φ-positive. A simple
example of a φ-positive operator is a selfadjoint, positive-definite operator in a
Hilbert space.
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Let A be φ-positive operator in H. Since the inverse operator A−1 is bounded
in H, then

H (An) :=
{
u : u ∈ D (An) , ∥u∥H(An) = ∥Anu∥H

}
, n ∈ N

is a Hilbert space the norm of which is equivalent to the graph norm of An.
It is also known that −A is a generator of an analytic for t > 0 semigroup

e−tA, which exponentially decreasing, i.e., there exist C > 0, δ0 > 0 such that∥∥e−tA
∥∥ ≤ Ce−δ0t, 0 ≤ t < +∞.

As it was shown in the monograph by H. Triebel [15], there are different but
equivalent definitions of interpolation spaces. One of definitions of interpolation
spaces of two Banach spaces is given using the theory of analytic semigroups
which is useful in the theory of differential-operators equations

Let E0 and E1 be two Banach spaces continuously embedded into a Banach
space E : E0 ⊂ E,E1 ⊂ E. Two such spaces are called an interpolation pair and
it is denoted by {E0, E}.

Definition 1.2. (see [12, theorem 1.14.5]). Let A be φ-positive operator in H.
Then interpolation spaces (H (An) , H)θ,p of Hilbert spaces H (An) and H are
defined by the equality

(H(An), H)θ,p :=
{
u : u ∈ H, ∥u∥(H(An),H)θ,p

:=

=

 +∞∫
0

t−1+nθp
∥∥Ane−tAu

∥∥p
H
dt


1
p

< ∞,

 , θ ∈ (0, 1) , p > 1, n ∈ N.

Define also (H(An), H)0,p := H(An) and (H(An), H)1,p := H.

By Lp ((0, 1) ;H) 1 < p < ∞, denote a Banach space (for p = 2, a Hilbert
space) of vector-functions x → u (x) : [0, 1] → H, strongly measurable and sum-
mable in p-th power with the norm

∥u∥Lp((0,1);H) :=

(∫ 1

0
∥u (x)∥pH dx

)1/p

< ∞.

In accordance, by W 2n
p ((0, 1) ;H (An) , H) :=

{
u : Anu, u(2n) ∈ Lp ((0, 1) ;H)

}
denote a Banach space (for p = 2, a Hilbert space) of vector-functions with norm

∥u∥W 2n
p ((0,1);H(An),H) := ∥Anu∥Lp((0,1);H) +

∥∥∥u(2n)∥∥∥
Lp((0,1);H)

< ∞.

By Ff and F−1f denote the Fourier transform and the inverse Fourier transform,
respectively, of the function f from Lp (R;H), R = (−∞,+∞):

Ff := (Ff) (σ) :=
1√
2π

+∞∫
−∞

e−iσxf(x)dx,

F−1f :=
(
F−1f

)
(x) :=

1√
2π

+∞∫
−∞

eiσxf(σ)dσ .
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Definition 1.3. The mapping σ → T (σ) : R → B(H) is called a Fourier multi-
plier in the space Lp (R;H) if ∃C > 0 such that∥∥F−1TFf

∥∥
Lp(R;H)

≤ C ∥f∥Lp(R;H) , ∀f ∈ Lp (R;H) .

2. Non-coercive solvability in the case when a non-separated
boundary condition contains the spectral parameter.

First, consider in a separable Hilbert space H the following boundary
value problem:

L (λ)u := λ2u (x)− u′′ (x) +Au (x) = 0, x ∈ (0, 1) , (2.1)

L1 (λ)u := u′ (1) + λu (0) = f1 ,
L2u := u (1) = f2,

(2.2)

where λ is a complex parameter; A is a φ−positive operator in H.

Theorem 2.1. Let A be φ-positive operator in H with φ ∈ [0, π2 ).

Then, for fk ∈
(
H(A2), H

)
1
2
− k

4
+ 1

4p
,p
, p ∈ (1, +∞) , k = 1, 2 and for large

enough λ from the angle |arg λ| ≤ φ < π
2 , the problem (2.1), (2.2) has a unique

solution u ∈ W 2
p ((0, 1) ;H (A) , H) and for the solution the following non-coercive

estimate is satisfied

|λ|2 ∥u∥Lp((0,1);H) +
∥∥u′′∥∥

Lp((0,1);H)
+ ∥Au∥Lp((0,1);H) ≤

≤ C
2∑

k=1

(
∥fk∥(H(A2),H) 1

2− k
4 + 1

4p ,p
+ |λ|2+k− 1

p ∥fk∥H
)
,

where C > 0 is a constant which does not depend on λ.

Proof. By virtue of [14, lemma 5.4.2/6], under |arg λ| ≤ φ < π
2 , there exists an

analytic for x > 0 and strongly continuous for x ≥ 0 semigroup e−x(A+λ2I)1/2 .
By virtue of [14, lemma 5.3.2/1], for u (x) to be a solution of the equation (2.1),
belonging to W 2

p ((0, 1) ;H(A), H), p ∈ (1,∞), it is necessary and sufficient that,
under |arg λ| ≤ φ < π

2 ,

u(x) = e−x(A+λ2I)1/2g1 + e−(1−x)(A+λ2I)1/2g2, (2.3)

where g1, g2 ∈ (H(A), H) 1
2p

,p.

Claim that a function of the form (2.3) satisfies the boundary conditions in
(2.2). Then, for g1 and g2, one gets the following system[
−(A+ λ2I)1/2e−(A+λ2I)1/2 + λI

]
g1 +

[
(A+ λ2I)1/2 + λe−(A+λ2I)1/2

]
g2 = f1,

e−(A+λ2I)1/2g1 + g2 = f2.
(2.4)

Define ϑ1 := (A+ λ2I)1/2g1, ϑ2 := (A+ λ2I)1/2g2. Then, from (2.4), we have[
−e−(A+λ2I)1/2 + λ(A+ λ2I)−1/2

]
ϑ1+

[
I + λ(A+ λ2I)−1/2e−(A+λ2I)1/2

]
ϑ2 = f1,

(A+ λ2I)−1/2e−(A+λ2I)1/2ϑ1 + (A+ λ2I)−1/2ϑ2 = f2. (2.5)
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The coefficients of the system (2.5) are linear combinations of bounded op-

erators which commute each of other I, (A + λ2I)−1/2 , e−(A+λ2I)
1/2

, (A +

λ2I)−1/2e−(A+λ2I)1/2 . Therefore, the system (2.5) one can solve like in a scalar
case. The ”determinant” of the system (2.5) has the form

D(λ) = λ(A+ λ2I)−1
[
I − λ−1(A+ λ2I)R(λ)

]
,

where

R(λ) := λ(A+ λ2I)−1e−2(A+λ2I)1/2 + 2(A+ λ2I)−1/2e−(A+λ2I)1/2 .

By virtue of [14, lemma 5.4.2/6],
∥∥λ−1(A+ λ2I)R(λ)

∥∥
B(H)

→ 0 for |arg λ| ≤ φ <
π
2 , |λ| → ∞. Hence, for large enough λ from the angle |arg λ| ≤ φ < π

2 , the
system (2.5) has a unique solution with respect to ϑk, k = 1, 2, and

ϑ1 =
[
λ−1(A+ λ2I)1/2 +R11 (λ)

]
f1 +

[
−λ−1(A+ λ2I) +R21 (λ)

]
f2,

ϑ2 = R12 (λ) f1 +
[
(A+ λ2I)1/2 +R22 (λ)

]
f2,

where ∥Rjk (λ)∥B(H) → 0, j, k = 1, 2, under |arg λ| ≤ φ, |λ| → ∞.

Hence,

g1 =
[
λ−1I + (A+ λ2I)−1/2R11 (λ)

]
f1+

+
[
−λ−1(A+ λ2I)1/2 + (A+ λ2I)−1/2R21 (λ)

]
f2, (2.6)

g2 = (A+ λ2I)−1/2R12 (λ) f1 +
[
I + (A+ λ2I)−1/2R22 (λ)

]
f2.

Substituting (2.6) into (2.3), we have

u(x) = e−x(A+λ2I)1/2
[(

λ−1I + (A+ λ2I)−1/2R11 (λ)
)
f1+

+
(
−λ−1(A+ λ2I)1/2 + (A+ λ2I)−1/2R21 (λ)

)
f2

]
+

+e−(1−x)(A+λ2I)1/2
[
(A+ λ2I)−1/2R12 (λ) f1 +

(
I + (A+ λ2I)−1/2R22 (λ)

)
f2

]
.

Then, using the Minkovskii inequality for large enough λ from the angle
|arg λ| ≤ φ < π

2 , we have

|λ|2 ∥u∥Lp((0,1);H) +
∥∥u′′∥∥

Lp((0,1);H)
+ ∥Au∥Lp((0,1);H) ≤

≤ |λ|2


 1∫

0

∥∥∥e−x(A+λ2I)1/2λ−1f1

∥∥∥p
H
dx

1/p

+

+ ∥R11 (λ)∥

 1∫
0

∥∥∥e−x(A+λ2I)1/2(A+ λ2I)−1/2f1

∥∥∥p
H
dx

1/p

+

+

 1∫
0

∥∥∥e−x(A+λ2I)1/2λ−1(A+ λ2I)1/2f2

∥∥∥p
H
dx

1/p

+
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+ ∥R21 (λ)∥

 1∫
0

∥∥∥e−x(A+λ2I)1/2(A+ λ2I)−1/2f2

∥∥∥p
H
dx

1/p

+

+ ∥R12 (λ)∥

 1∫
0

∥∥∥e−(1−x)(A+λ2I)1/2(A+ λ2I)−1/2f1

∥∥∥p
H
dx

1/p

+

+

 1∫
0

∥∥∥e−(1−x)(A+λ2I)1/2f2

∥∥∥p
H
dx

1/p

+

+ ∥R22 (λ)∥

 1∫
0

∥∥∥e−(1−x)(A+λ2I)1/2(A+ λ2I)−1/2f2

∥∥∥p
H
dx

1/p
+

+
(
1 +

∥∥A(A+ λ2I)−1
∥∥)

 1∫

0

∥∥∥(A+ λ2I)e−x(A+λ2I)1/2λ−1f1

∥∥∥p
H
dx

1/p

+

+ ∥R11 (λ)∥

 1∫
0

∥∥∥(A+ λ2I)1/2e−x(A+λ2I)1/2f1

∥∥∥p
H
dx

1/2

+

+

 1∫
0

∥∥∥(A+ λ2I)e−x(A+λ2I)1/2λ−1(A+ λ2I)
1/2

f2

∥∥∥p
H
dx

1/p

+

+ ∥R21 (λ)∥

 1∫
0

∥∥∥(A+ λ2I)1/2e−x(A+λ2I)1/2f2

∥∥∥p
H
dx

1/p

+

+∥R12(λ)∥

 1∫
0

∥∥∥(A+ λ2I)1/2e−(1−x)(A+λ2I)1/2f1

∥∥∥p
H
dx

1/p

+

+

 1∫
0

∥∥∥(A+ λ2I)e−(1−x)(A+λ2I)1/2f2

∥∥∥p
H
dx

1/p

+

+ ∥R22 (λ)∥

 1∫
0

∥∥∥(A+ λ2I)1/2e−(1−x)(A+λ2I)1/2f2

∥∥∥p
H
dx

1/p
 . (2.7)

In order to get the estimate (2.7)(and further continuation), we have used the
following calculation which is true in view of [14, lemma 5.4.2./6] for large enough
λ from the angle | arg λ| ≤ φ < π

2 :

∥Au∥Lp((0,1);H) =
∥∥A(A+ λ2I)−1(A+ λ2I)u

∥∥
Lp((0,1);H)

≤
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≤
∥∥A(A+ λ2I)−1

∥∥
B(H)

∥∥(A+ λ2I)u
∥∥
Lp((0,1);H)

≤ C
∥∥(A+ λ2I)u

∥∥
Lp((0,1);H)

.

Estimate the integrals in the right-hand side of the inequality (2.7). It is
enough to illustrate the estimation of the integrals

J1 :=

 1∫
0

∥∥∥(A+ λ2I)e−x(A+λ2I)1/2λ−1(A+ λ2I)1/2f2

∥∥∥p
H
dx

1/p

and

J2 :=

 1∫
0

∥∥∥(A+ λ2I)e−x(A+λ2I)1/2λ−1f1

∥∥∥p
H
dx

1/p

.

From the representation

1

λ2

(
A+ λ2I

)1/2
A−1/2 = A1/2

(
A+ λ2I

)−1/2 1

λ2

(
A+ λ2I

)
A−1,

by virtue of [14, lemma 5.4.2/6], for large enough λ from the angle | arg λ| ≤ φ <
π
2 , it follows that the operator 1

λ2

(
A+ λ2I

)1/2
A−1/2 is bounded from H into H

and the estimate holds∥∥∥∥ 1

λ2

(
A+ λ2I

)1/2
A−1/2

∥∥∥∥
B(H)

≤
∥∥∥A1/2

(
A+ λ2I

)−1/2
∥∥∥
B(H)

∥∥∥∥ 1

λ2
I +A−1

∥∥∥∥
B(H)

≤

≤ C

(
1

|λ|2
+ ∥A−1∥

)
≤ C, ∃C > 0. (2.8)

By (2.8), for large enough λ from the angle | arg λ| ≤ φ < π
2 , the operator

1
λ2

(
A+ λ2I

)1/2
A−1/2 is bounded from H(A2) into H(A2) and the estimate takes

place∥∥∥∥ 1

λ2

(
A+ λ2I

)1/2
A−1/2

∥∥∥∥
B(H(A2))

=

∥∥∥∥ 1

λ2

(
A+ λ2I

)−1/2
A−1/2

∥∥∥∥
B(H)

≤ C, ∃C > 0.

(2.9)
From (2.8) and (2.9), by virtue of [12, theorem 1.3.3/(a)] (see also [14, section
1.7.9]), it follows that for large enough λ from the angle | arg λ| ≤ φ < π

2 , the oper-

ator 1
λ2

(
A+ λ2I

)1/2
A−1/2 is bounded from

(
H
(
A2
)
, H
)
θ,p

into
(
H
(
A2
)
, H
)
θ,p

for any θ ∈ (0, 1) and the estimate holds∥∥∥∥ 1

λ2

(
A+ λ2I

)1/2
A−1/2

∥∥∥∥
B((H(A2),H)θ,p)

≤ C, ∃C > 0. (2.10)

Then, by [14, lemma 5.4.2/6], [14, theorem 5.4.2/1] and estimates (2.8), (2.10),
for large enough λ from the angle | arg λ| ≤ φ < π

2 , we have

J1 ≤ |λ|
∥∥∥(A+ λ2I)−1/2

∥∥∥
B(H)

∥∥∥A1/2(A+ λ2I)−1/2
∥∥∥
B(H)

×

×

 1∫
0

∥∥∥∥(A+ λ2I)2e−x(A+λ2I)1/2 1

λ2
(A+ λ2I)1/2A−1/2f2

∥∥∥∥p
H

dx

1/p

≤
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≤ C

∥∥∥∥ 1

λ2
(A+ λ2I)1/2A−1/2f2

∥∥∥∥
(H(A2),H) 1

4p
,p

+ |λ|4−
1
p

∥∥∥∥ 1

λ2
(A+ λ2I)1/2A−1/2f2

∥∥∥∥
H

 ≤

≤ C

(
∥f2∥(H(A2),H) 1

4p ,p
+ |λ|4−

1
p ∥f2∥H

)
;

J2 ≤ |λ|
∥∥∥(A+ λ2I)−1/2

∥∥∥
B(H)

∥∥∥A1/2(A+ λ2I)−1/2
∥∥∥
B(H)

×

×

 1∫
0

∥∥∥∥(A+ λ2I)3/2e−x(A+λ2I)1/2 1

λ2
(A+ λ2I)1/2A−1/2f1

∥∥∥∥p
H

dx

1/p

≤

≤ C

(
∥f1∥(H(A2),H) 1

4+ 1
4p ,p

+ |λ|3−
1
p ∥f1∥H

)
.

Similarly, one can estimate the rest part of the right-hand side of the inequality
(2.7). Theorem 2.1 is proved. □

Consider now a boundary value problem for a non-homogeneous equation with
a quadratic complex parameter in H, i.e., the problem

L (λ)u := λ2u(x)− u′′(x) +Au(x) = f(x) , x ∈ (0, 1) , (2.11)

L1 (λ)u := u′(1) + λu(0) = f1, L2u := u(1) = f2 . (2.12)

Theorem 2.2. Let A be φ-positive operator in H, where φ ∈ [0, π2 ).

Then, for f ∈ Lp ((0, 1);H (A)) , fk ∈
(
H
(
A2
)
, H
)

1
2
− k

4
+ 1

4p
,p
, k = 1, 2, p ∈

(1,+∞), and for large enough λ from the angle |arg λ| ≤ φ < π
2 , the problem

(2.11), (2.12) has a unique solution u ∈ W 2
p ((0, 1) ;H (A) , H) and for the solution

the following non-coercive estimate holds

|λ|2 ∥u∥Lp((0,1);H) +
∥∥u′′∥∥

Lp((0,1);H)
+ ∥Au∥Lp((0,1);H) ≤

≤ C

[
|λ|2 ∥f∥Lp((0,1);H(A)) +

2∑
k=1

(
∥fk∥(H(A2),H) 1

2
− k

4
+ 1

4p
,p
+ |λ|2+k− 1

p ∥fk∥H

)]
. (2.13)

Proof. Uniqueness follows from theorem 2.1. Represent a solution of the problem
(2.11), (2.12), belonging toW 2

p ((0, 1) ;H (A) , H), as a sum u (x) = u1 (x)+u2 (x),
where u1 (x) is the restriction on [0, 1] of the solution of the equation

L (λ) ũ1 (x) := λ2ũ1 (x)− ũ′′1 (x)+Aũ1 (x) = f̃ (x) , x ∈ R = (−∞, +∞) , (2.14)

where f̃ (x) := f (x) if x ∈ [0, 1] and f̃ (x) = 0 if x /∈ [0, 1], and u2 (x) is the
solution of the problem

L (λ)u2 = 0, x ∈ (0, 1) ,
L1 (λ)u2 = f1 − L1 (λ)u1, L2u2 = f2 − L2u1.

(2.15)

As it was shown in the proof of theorem 5.4.4 in [14], a solution of the equation
(2.14) is given by the formula

ũ1 (x) =
1√
2π

∫
R

eiµxL (λ, iµ)−1 F f̃ (µ) dµ, (2.16)
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where F f̃ is the Fourier transform of the function f̃(x), and L (λ, σ) is a charac-
teristic operator pencil of the equation (2.14), i.e.,

L (λ, σ) = −σ2I +A+ λ2I, |arg λ| ≤ φ <
π

2
.

From (2.16) it follows that

∥ũ1∥W 2
p (R;H(A2),H(A)) = ∥ũ1∥Lp(R;H(A2)) +

∥∥∥ũ′′
1

∥∥∥
Lp(R;H(A))

=

=
∥∥∥(F−1L (λ, iµ)−1 F f̃ (µ)

)
(·)
∥∥∥
Lp(R;H(A2))

+

+
∥∥∥(F−1 (iµ)2 L (λ, iµ)−1 F f̃ (µ)

)
(·)
∥∥∥
Lp(R;H(A))

≤

≤
∥∥∥(F−1AL (λ, iµ)−1 F f̃ (µ)

)
(·)
∥∥∥
Lp(R;H(A))

+

+
∥∥∥(F−1 (iµ)2 L (λ, iµ)−1 F f̃ (µ)

)
(·)
∥∥∥
Lp(R;H(A))

. (2.17)

Show that the operator-functions (with respect to µ)

Tk+1(λ, µ) := (iµ)2kA1−kL(λ, iµ)−1, k = 0, 1, (2.18)

are the Fourier multipliers in the space Lp(R;H(A)). For that, it is enough to
check conditions of a theorem in [10, ch. XI, §§11.28,11.29] (see also [14, theorem
1.3.7/1]) for the operator-functions µ → Tk(λ, µ) : R → B(H(A)), k = 1, 2.
Obviously, for | arg λ| ≤ φ < π

2 and µ ∈ R, one has | arg(λ2 + µ2)| ≤ 2φ < π.
Since A is φ-positive in H then, for | arg λ| ≤ φ < π

2 and µ ∈ R, the estimates
take place∥∥L(λ, iµ)−1

∥∥
B(H)

=
∥∥∥(A+

(
λ2 + µ2

)
I
)−1
∥∥∥
B(H)

≤ C

1 + |λ2 + µ2|
≤ C

µ2
; (2.19)

∥∥AL(λ, iµ)−1
∥∥
B(H)

=
∥∥∥A (A+

(
λ2 + µ2

)
I
)−1
∥∥∥
B(H)

=

=
∥∥∥I − (λ2 + µ2

) (
A+

(
λ2 + µ2

)
I
)−1
∥∥∥
B(H)

≤ 1 +
∣∣λ2 + µ2

∣∣ C

1 + |λ2 + µ2|
≤ C, (2.20)

uniformly on λ in the angle | arg λ| ≤ φ < π
2 . From the estimates (2.19), (2.20),

for | arg λ| ≤ φ < π
2 and µ ∈ R, we have

∥T1 (λ, µ)∥B(H(A)) =
∥∥∥AL (λ, iµ)−1

∥∥∥
B(H(A))

=
∥∥∥AL (λ, iµ)−1

∥∥∥
B(H)

≤ C; (2.21)

∥T2 (λ, µ)∥B(H(A)) =
∥∥∥(iµ)2 L (λ, iµ)−1

∥∥∥
B(H(A))

=
∥∥∥(iµ)2 L (λ, iµ)−1

∥∥∥
B(H)

=

= |µ|2
∥∥∥L (λ, iµ)−1

∥∥∥
B(H)

≤ C, (2.22)

uniformly on λ in the angle | arg λ| ≤ φ < π
2 .

Since

∂

∂µ
T1 (λ, µ) = A

∂

∂µ
L (λ, iµ)−1 = −AL (λ, iµ)−1 · 2µL (λ, iµ)−1 ;

∂

∂µ
T2 (λ, µ) = −2µL (λ, iµ)−1 + µ2 L (λ, iµ)−1 2µL (λ, iµ)−1 ,
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then, by (2.19) , (2.20), we have∥∥∥∥ ∂

∂µ
T1 (λ, µ)

∥∥∥∥
B(H(A))

=
∥∥∥AL (λ, iµ)−1 2µL (λ, iµ)−1

∥∥∥
B(H(A))

=

=
∥∥∥AL (λ, iµ)−1 2µL (λ, iµ)−1

∥∥∥
B(H)

≤ C

|µ|
; (2.23)∥∥∥∥ ∂

∂µ
T2 (λ, µ)

∥∥∥∥
B(H(A))

≤ 2 |µ|
∥∥∥L (λ, iµ)−1

∥∥∥
B(H(A))

+

+ |µ|2
∥∥∥L (λ, iµ)−1

∥∥∥
B(H(A))

2 |µ|
∥∥∥L (λ, iµ)−1

∥∥∥
B(H(A))

=

= 2 |µ|
∥∥∥L (λ, iµ)

−1
∥∥∥
B(H)

+ |µ|2
∥∥∥L (λ, iµ)

−1
∥∥∥
B(H)

2 |µ|
∥∥∥L (λ, iµ)

−1
∥∥∥
B(H)

≤ C

|µ|
. (2.24)

By [10, ch. XI, §§11.28, 11.29] (see also [14, theorem 1.3.7/1]), from estimates
(2.21)-(2.24), it follows that the operator-functions µ → Tk+1 (λ, µ) , k = 0, 1,
which are defined by (2.18), are the Fourier multipliers in Lp ((0, 1);H(A)). Then,
from (2.17), it follows that

∥ũ1∥W 2
p (R;H(A2),H(A)) ≤ C

∥∥∥f̃∥∥∥
Lp(R;H(A))

, (2.25)

uniformly on λ.
From (2.25) it follows that u1 ∈ W 2

p

(
(0, 1) ;H

(
A2
)
, H (A)

)
and the estimate

takes place

∥u1∥W 2
p ((0,1);H(A2),H(A)) ≤ C ∥f∥Lp((0,1);H(A)) . (2.26)

From (2.26), by the continuous embedding

W 2
p

(
(0, 1) ;H

(
A2
)
, H(A)

)
⊂ W 2

p ((0, 1) ;H (A) , H) ,

one has

∥u1∥W 2
p ((0,1);H(A),H) ≤ C ∥f∥Lp((0,1);H(A)) . (2.27)

Then, from (2.14) and (2.27), for λ from the angle |arg λ| ≤ φ < π
2 , we have

|λ|2 ∥u1∥Lp((0,1);H) +
∥∥u′′1∥∥Lp((0,1);H)

+ ∥Au1∥Lp((0,1);H) ≤

≤ C ∥f∥Lp((0,1);H(A)) . (2.28)

Indeed, from (2.14) for u1(x) we have

λ2u1(x) = f(x) + u′′1(x)−Au1(x), x ∈ (0, 1) .

Hence, by (2.27),

|λ|2 ∥u1∥Lp((0,1);H) ≤ ∥f∥Lp((0,1);H) +
∥∥∥u′′

1

∥∥∥
Lp((0,1);H)

+ ∥Au1∥Lp((0,1);H) ≤

≤ ∥f∥Lp((0,1);H) + C ∥f∥Lp((0,1);H(A)) ≤ C ∥f∥Lp((0,1);H(A)) . (2.29)

So, (2.27) and (2.29) imply (2.28).
By the trace theorem [12, theorem 1.8.2] (see also [14, theorem 1.7.7/1]), for

any fixed x0 ∈ [0, 1] and s = 0, 1,

u
(s)
1 (x0) ∈

(
H
(
A2
)
, H(A)

)
s
2
+ 1

2p
,p
.
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By virtue of [12, theorem 1.3.3] and [12, formula 1.15.4/2] one gets(
H
(
A2
)
, H(A)

)
1+sp
2p

,p
=
(
H
(
A2
)
, H
)

1+sp
4p

,p
. (2.30)

Hence, for any fixed x0 ∈ [0, 1],

u
′
1 (x0) ∈

(
H
(
A2
)
, H
)

1
4
+ 1

4p
,p
, u1 (x0) ∈

(
H
(
A2
)
, H
)

1
4p

,p
.

Since the embedding
(
H
(
A2
)
, H
)

1
4p

,p
⊂
(
H
(
A2
)
, H
)

1
4
+ 1

4p
,p
is continuous, then

L1 (λ)u1 ∈
(
H
(
A2
)
, H
)

1
4
+ 1

4p
,p
, L2u1 ∈

(
H
(
A2
)
, H
)

1
4p

,p
.

Therefore, by virtue of theorem 2.1, for large enough λ from the angle |arg λ| ≤
φ < π

2 , for the solution of the problem (2.15) one has

|λ|2 ∥u2∥Lp((0,1);H) +
∥∥∥u′′

2

∥∥∥
Lp((0,1);H)

+ ∥Au2∥Lp((0,1);H) ≤

≤ C

(
∥f1∥(H(A2),H) 1

4+ 1
4p ,p

+ ∥f2∥(H(A2),H) 1
4p ,p

+ |λ|3−
1
p ∥f1∥H +

+ |λ|4−
1
p ∥f2∥H +

∥∥∥u′
1(1)

∥∥∥
(H(A2),H) 1

4+ 1
4p ,p

+ |λ| ∥u1(0)∥(H(A2),H) 1
4+ 1

4p ,p
+

+ ∥u1(1)∥(H(A2),H) 1
4p ,p

+ |λ|3−
1
p
∥∥u′1(1)∥∥H + |λ|4−

1
p (∥u1(0)∥H + ∥u1(1)∥H)

)
.

(2.31)
Estimate the norm |λ| ∥u1(0)∥(H(A2),H) 1

4+ 1
4p ,p

. Taking into account the conti-

nuity of the embedding
(
H
(
A2
)
, H
)

1
4p

,p
⊂
(
H
(
A2
)
, H
)

1
4
+ 1

4p
,p
, by virtue of [12,

theorem 1.8.2] (see also [14, theorem 1.7.7/1]), (2.26), and (2.30), for λ from the
angle |arg λ| ≤ φ < π

2 , we have

|λ| ∥u1(0)∥(H(A2),H) 1
4+ 1

4p ,p
≤ C |λ| ∥u1(0)∥(H(A2),H) 1

4p ,p
≤

≤ C |λ| ∥u1∥W 2
p ((0,1);H(A2),H(A)) ≤ C |λ| ∥f∥Lp((0,1);H(A)) .

(2.32)

Moreover, by the same considerations, the following estimates hold∥∥∥u′
1(1)

∥∥∥
(H(A2),H) 1

4+ 1
4p ,p

≤ C ∥u1∥W 2
p ((0,1);H(A2),H(A)) ≤ C ∥f∥Lp((0,1);H(A)) ;

(2.33)

∥u1(1)∥(H(A2),H) 1
4p ,p

≤ C ∥u1∥W 2
p ((0,1);H(A2),H(A)) ≤ C ∥f∥Lp((0,1);H(A)) . (2.34)

By [14, theorem 1.7.7/2], for λ ∈ C and u1 ∈ W 2
p ((0, 1) ;H), the following in-

equality holds

|λ|2−s
∥∥∥u(s)1 (x0)

∥∥∥
H

≤ C
(
|λ|

1
p ∥u1∥W 2

p ((0,1);H) + |λ|2+
1
p ∥u1∥Lp((0,1);H)

)
, (2.35)

where x0 ∈ [0, 1], s = {0, 1}, p ∈ (1,+∞).

Dividing (2.35) by |λ|
1
p , for λ ∈ C, u1 ∈ W 2

p ((0, 1) ;H), one has

|λ|2−s− 1
p

∥∥∥u(s)1 (x0)
∥∥∥
H

≤ C
(
∥u1∥W 2

p ((0,1);H) + |λ|2 ∥u1∥Lp((0,1);H)

)
. (2.36)
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Take in (2.36) s = 1, x0 = 1 and multiply the obtained inequality by |λ|2. Then,
in view of (2.28), for λ from the angle |arg λ| ≤ φ < π

2 , we have

|λ|3−
1
p

∥∥∥u′
1 (1)

∥∥∥
H

≤ C |λ|2
(
∥u1∥W 2

p ((0,1);H) + |λ|2 ∥u1∥Lp((0,1);H)

)
≤

≤ C |λ|2
(
∥u1∥W 2

p ((0,1);H(A),H) + |λ|2 ∥u1∥Lp((0,1);H)

)
≤ C |λ|2 ∥f∥Lp((0,1);H(A)) .

(2.37)
Take now in (2.36) s = 0 and x0 = 0, x0 = 1, consequently. Multiply the

obtained inequalities by |λ|2 and sum them. Then, by (2.28), for λ from the
angle |arg λ| ≤ φ < π

2 , one gets

|λ|4−
1
p (∥u1 (0)∥H + ∥u1 (1)∥H) ≤ C |λ|2

(
∥u1∥W 2

p ((0,1);H) + |λ|2 ∥u1∥Lp((0,1);H)

)
≤

≤ C |λ|2 ∥f∥Lp((0,1);H(A)) . (2.38)

Taking into account the estimates (2.32), (2.33), (2.34), (2.37) and (2.38) in
(2.31), for large enough λ from the angle |arg λ| ≤ φ < π

2 , we have

|λ|2 ∥u2∥Lp((0,1);H) +
∥∥∥u′′

2

∥∥∥
Lp((0,1);H)

+ ∥Au2∥Lp((0,1);H) ≤

≤ C

[
|λ|2 ∥f∥Lp((0,1);H(A)) +

2∑
k=1

(
∥fk∥(H(A2),H) 1

2
− k

4
+ 1

4p
,p
+ |λ|2+k− 1

p ∥fk∥H

)]
. (2.39)

From (2.28) and (2.39) the estimate (2.13) follows. Theorem 2.2 is proved. □

3. Application of the obtained abstract results to partial
differential equations.

In the square Ω = [0, 1]× [0, 1], consider a boundary value problem for a
second order elliptic differential equation with a quadratic complex parameter

L (λ)u := λ2u(x, y)−D2
xu(x, y)−Dy (a(y)Dyu(x, y)) = f(x, y), (x, y) ∈ Ω ,

(3.1)

L1 (λ)u := Dxu(1, y) + λu(0, y) = f1(y), y ∈ [0, 1] ,

L2u := u(1, y) = f2(y), y ∈ [0, 1] ,
(3.2)

L3u := u(x, 0) = 0, L4u := u(x, 1) = 0, x ∈ [0, 1] , (3.3)

where λ is the parameter; a(y) is a continuously differentiable function on [0, 1] ;
Dx := ∂

∂x , Dy := ∂
∂y .

Denote the interpolation space of Sobolev spaces by Bs
p,q (0, 1) :=

=
(
W s0

p (0, 1) ,W s1
p (0, 1)

)
θ,q

, where s0, s1 ≥ 0 are integers 0 < θ < 1, 1 <

q < ∞, 1 < p < ∞ and s = (1− θ) s0 + θs1. In particular, W s
p (0, 1) :=

Bs
p,p(0, 1) :=

(
W s0

p (0, 1) ,W s1
p (0, 1)

)
θ,p

, if s > 0 is not integer. Denote also

W ℓ,s
p,q (Ω) := W ℓ

p

(
(0, 1);W s

q (0, 1), Lq (0, 1)
)
, where 0 ≤ l, s are integres, 1 < p <

∞, 1 < q < ∞. If p = q and l = s then W ℓ, s
p,q (Ω) = W ℓ

p (Ω). Finally, denote
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Lp,q (Ω) := W 0,0
p,q (Ω) = Lp ((0, 1); Lq (0, 1)) . We have that Lp,q (Ω) is a Banach

space of measurable on (0, 1)× (0, 1) functions u (x, y) such that

∥u∥Lp,q(Ω) =

(∫ 1

0

(∫ 1

0
|u(x, y)|q dy

)p/q

dx

)1/p

< ∞,

and W ℓ,s
p,q (Ω) is a Banach space of measurable on (0, 1)× (0, 1) functions u (x, y)

which have generalized derivatives ∂ℓu(x,y)
∂xℓ , ∂su(x,y)

∂ys on (0, 1)× (0, 1) and

∥u∥
W ℓ,s

p,q (Ω)
= ∥u∥Lp,q(Ω) +

∥∥∥Dℓ
xu
∥∥∥
Lp,q(Ω)

+
∥∥Ds

yu
∥∥
Lp,q(Ω)

< ∞.

Theorem 3.1. Let a(y) ∈ C3 [0, 1] , a(y) > 0 for y ∈ [0, 1] and a′ (0) = a′ (1) = 0.
Then, for f(x, y) ∈ Lp((0, 1);W

2
2 ((0, 1) ; Lνf = 0, ν = 3, 4)), p ∈ (1,∞) ,

fk (y) ∈ B
2+k− 1

p

2,p, ∗ (0, 1) (these spaces are defined in the proof) and for large enough

λ from the angle |arg λ| ≤ φ < π
2 , the problem (3.1)-(3.3) has a unique solution

u from

W 2
p

(
(0, 1); W 2

2 ((0, 1) ;u(0) = u(1) = 0) , L2 (0, 1)
)

and for the solution the following estimate takes place

|λ|2 ∥u(x, y)∥Lp((0,1);L2(0,1))
+
∥∥D2

xu(x, y)
∥∥
Lp((0,1);L2(0,1))

+

+
∥∥Dy (a(y)Dyu(x, y))

∥∥
Lp((0,1);L2(0,1))

≤ C
[
|λ|2 ∥f(x, y)∥Lp((0,1);W 2

2 (0,1))
+

+
2∑

k=1

(
∥fk∥

B
2+k− 1

p
2,p (0,1)

+ |λ|2+k− 1
p ∥fk∥L2(0,1)

)]
.

Proof. In the space H := L2 (0, 1), consider an operator A, defined by the equal-
ities

D (A) := W 2
2 ((0, 1) ;u (0) = u (1) = 0) , Au := −

(
a (y)u′ (y)

)′
. (3.4)

Rewrite the problem (3.1)-(3.3) in the operator form

λ2u(x)− u′′(x) +Au(x) = f(x), x ∈ (0, 1) , (3.5)

u′(1) + λu(0) = f1, u(1) = f2, (3.6)

where u (x) := u (x, ·) , f (x) := f (x, ·) are vector-functions with values from
the Hilbert space L2 (0, 1) and fk := fk (·). Obviously, the proof of theorem
3.1 is reduced to the checking of the conditions of theorem 2.2 for the problem
(3.5), (3.6). It follows from the conditions of theorem 3.1 that the operator
A, defined by (3.4), is selfadjoint, positive-definite in L2 (0, 1). Therefore, the
condition of theorem 2.2 is satisfied for any fixed 0 ≤ φ < π/2. Obviously,

A2u = (a(y)(a(y)u′(y))
′′
)
′
, D(A2) = W 4

2 ((0, 1); Lνu = 0, LνAu = 0, ν = 3, 4).
It is also clear that LνAu = 0, ν = 3, 4, coincide with boundary conditions
u′′(0) = u′′(1) = 0. Since the order of boundary conditions Lνu = 0, ν = 3, 4, is
equal to 0 and the order of boundary conditions LνAu = 0, ν = 3, 4, is equal to
two then, by [12, theorem 4.3.3], we have(
H
(
A2
)
, H
)
θ,p

=
(
W 4

2

(
(0, 1) ; u(j)(0) = u(j)(1) = 0, j = 0, 2

)
, L2 (0, 1)

)
θ,p

=
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= B
4(1−θ)
2,p

(
(0, 1) ; u(0) = u(1) = 0 if 0 < 4(1− θ)− 1

2
< 2; u (0) = u (1) =

= u′′(0) = u′′(1) = 0 if 2 < 4(1− θ)− 1

2
; u (0) = u (1) = 0,

1∫
0

(min {x, 1− x})−1
∣∣u′′ (x)∣∣2 dx < ∞ if 4 (1− θ)− 1

2
= 2

 .

Hence, for θ = 1
4 + 1

4p and θ = 1
4p , we get implicit forms of the interpolation

spaces
(
H
(
A2
)
, H
)

1
4
+ 1

4p
, p

and
(
H
(
A2
)
, H
)

1
4p

, p
:

(
H
(
A2
)
, H
)

1
4
+ 1

4p
,p
= B

3− 1
p

2,p, ∗(0, 1) =

=


B

3− 1
p

2,p ((0, 1) ;u (0) = u (1) = 0) , 1 < p < 2,

W
5
2
2

(
(0, 1) ; u (0) = u (1) = 0,

1∫
0

(min {x, 1− x})−1 |u′′ (x)|2 dx < ∞
)
, p = 2,

B
3− 1

p

2,p

(
(0, 1) ; u(j) (0) = u(j) (1) = 0, j = 0, 2

)
, p > 2;(

H
(
A2
)
, H
)

1
4p

,p
= B

4− 1
p

2,p

(
(0, 1) ; u(j)(0) = u(j)(1) = 0, j = 0, 2

)
=

= B
4− 1

p

2,p, ∗(0, 1), p > 1.

□

Theorem 3.1. is proved.
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