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k-ALMOST NEWTON-EINSTEIN SOLITONS ON

HYPERSURFACES IN GENERALIZED SASAKIAN SPACE

FORMS

MOHD. DANISH SIDDIQI, ANTONIO WILSON CUNHA, AND SHAH ALAM SIDDIQUI

Abstract. This research article is based on the study of k-Almost Newton-
Einstein solitons (k-ANES) immersed into a generalized Sasakian space
forms (GSS-forms). We obtain the minimal and totally geodesic condi-
tion for the hypersurface of generalized Sasakian space forms in terms
of k-ANES. Besides, we show that a hypersurface Mn of generalized
Sasakian space forms admits the steady k-Almost Newton-Einstein soli-
tons. A few applications of generalized Sasakian space forms that al-
low k-Almost Newton-Einstein soliton are also explained. We explore
the triviality of the Schur’s type inequality and show that the gradient
Newton-Einstein soliton on GSS-manifold is compact.

1. Introduction

In 2011, Barros et al. studied the immersed almost Ricci soliton on the Rie-
mannian manifold [7]. In particular, ifMn+p has non-positive sectional curvature,
an almost Ricci soliton is a Ricci soliton and the vector field V has integrable
norm onMn, thenMn can not be minimal. Wylie [34] explained that a complete
Riemannian manifold with a shrinking soliton must be compact. If Mn+p is a
space form of non-positive sectional curvature, then such immersions can not be
minimal. Cunha et al.[11] introduced the notion of r-almost Newton-Ricci soli-
ton in Riemannian manifolds by using Newton transformation Pk with second
order differential operator Lk for 0 ≤ k ≤ n, (briefly k-ANRS). Siddiqi et al. also
discussed about this notion named Newton-Ricci-Bourguignon almost solitons on
Lagraigian submanifolds in complex space form ( for more details see [33, 23]).

In recent years much effort has been devoted to the classification of self-similar
solutions of geometric flows. In 2016, Catino and Mazzieri introduced the notion
of Einstein solitons [16], which generate self-similar solutions to Einstein flow

∂g

∂t
= −2

(
Ric− ρ

2
d
)
, (1.1)

where ρ is the scalar curvature of the Riemannian metric d. The interest in
studying this equation from different points of view arises from concrete physical
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problems. On the other hand, gradient vector fields play a central role in Morse-
Smale theory.

Motivated by the notion of Ricci soliton, Catino and Mazzieri [16] developed
the notions of Einstein solitons (for more details see [15] [16]), which satisfies

LV d+ 2Ric+ (2Λ− ρ)d = 0, (1.2)

where LV is the Lie derivative along the vector field V on M and Λ is a real
scalar. An Einstein soliton on (M,d) is said to be shrinking, steady or expanding
according as Λ is negative, zero, and positive, respectively.

If the vector field V is the gradient of a potential function −ψ , where ψ is
some smooth function ψ : M → R, then d is called a gradient Einstein soliton
and equation (1.2) assumes the form

∇2ψ +Ric = (Λ− 1

2
ρ)d, (1.3)

where ∇2ψ is the Hessian of ψ and ∇ is the covariant derivative operator. Ac-
cording to Pigola et al. [29], if we replace the constant λ in (1.2) with a smooth
function λ ∈ C∞(M), called soliton function, then we can say that (g, V, λ) on
(M, g) is an almost Einstein soliton. Others geometers have extensively discussed
the Einstein solitons. For instance, we refer ( [15], [20]-[22], [18], [32]) and the
references therein.

On other hand, a Riemannian manifold with constant sectional curvature c is
known as a real space-form and its curvature tensor is given by

R(U, V )W = c {d(V,W )U − d(U,W )V } .

A Sasakian manifold with constant ϕ-sectional curvature is a Sasakian space-form
and it has a specific form of its curvature tensor. Similar notion also holds for Ken-
motsu and cosymplectic space-forms. In order to generalized such space-forms in
common frame Alegre et al.[2] developed and studied generalized Sasakian space-
forms ( briefly GSS). Many geometers have studied generalized Sasakian space
forms in the papers (for more details see [3, 4, 5, 6]).

The present article is inspired with the above literature. In this frame work,
we explore the study of k-almost Newton-Einstein solitons on hypersurface of
generalized Sasakian space forms.

2. Generalized Sasakian space forms

A (2n + 1)-dimensional differentiable manifold M is said to have an almost
contact structure (ϕ, ξ, η, d) if there exists on M a tensor field ϕ of type (1, 1), a
vector field ξ, a 1-form η and a Riemannian metric d such that [2]

ϕ2 = −I + η ⊗ ξ, ϕξ = 0, η(ξ) = 1, η(ϕ) = 0, η(U) = d(U, ξ) (2.1)

d(ϕU, ϕV ) = d(U, V )− η(U)η(V ), d(ϕU, V ) + d(U, ϕV ) = 0 (2.2)

Here U, V,W denote arbitrary vector fields on M. The fundamental 2-form φ on
M is defined by

φ(U, V ) = d(ϕU, V )
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An almost contact metric manifold (M, ϕ, ξ, η, d) is said to be a generalized
Sasakian space form (GSS-forms) if there exist differentiable functions f1, f2, f3
such that curvature tensor R of M is given by

R(U, V )W = f1
[
d(V,W )U − d(U,W )V

]
+ f2

[
d(U, ϕW )ϕV − d(V, ϕW )ϕU

+2d(U, ϕV )ϕW
]
+ f3

[
η(U)η(W )V − η(V )η(W )U + d(U,W )η(Y )ξ

−d(V,W )η(U)ξ
]

(2.3)

for all vector fields U, V,W ∈ TM.
TheGSS-form generalizes the concept of Sasakian space form, Kenmotsu space

form and cosymplectic space form as follows:

(i) A Sasakian space form is the generalized Sasakian space form with f1 =
c+3
4 and f2 = f3 =

c−1
4 .

(ii) A Kenmotsu space form is the generalized Sasakian space form with
f1 =

c−3
4 and f2 = f3 =

c+1
4 .

(iii) A cosymplectic space form is the generalized Sasakian space form with
f1 = f2 = f3 =

c
4 .

In the following we considerM as a generalized Sasakian space formM(f1, f2, f3)
of dimension (2n+1) and let M be an ndimensional submanifold of M(f1, f2, f3).
Let TM and T⊥M denote the Lie algebra of vector fields and set of all normal
vector fields on M respectively. The operator of covariant differentiation with
respect to the Levi-Civita connection in M and M is denoted by ∇ and ∇,
respectively. Let R and R be the curvature tensor of M(f1, f2, f3) and M, re-
spectively.

3. k-almost Newton-Einstein soliton

We recall that an oriented and connected hypersurface f : Mn −→ M2n+1
is

to be immersed into an (2n+1)-GSS-forms manifold Mn+1
. Then Mn is called

an k-ANES, for some 0 ≤ k ≤ m, if there exists a function ψ : Mn −→ R such
that ([16], [11])

Ric+ Pk ◦Hessψ =
(
Λ− ρ

2

)
d, (3.1)

where ψ and Λ both are smooth functions on Mn and Pk ◦ Hessψ stands for
tensor given by

Pk ◦Hessψ(U,W ) = d(Pk∇U∇ψ,W ), (3.2)

U,W ∈ X (M). For k = 0, equation (3.1) reduces to a gradient almost Einstein
soliton. Here Pk denotes the k-th Newton transformation Pk : X (M) −→ X (M)
such that P0 = I (identity operator).

Example 3.1. Let us consider the standard immersion of Mn in S2n+1(1), which
we know that its is totally geodesic. In particular, Pr = 0 for all 1 ≤ r ≤ n, and

choosing Λ = (n−1)

n− 1
2

, we obtain that the immersion satisfies equation (3.1).
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Also we can see that if M is constant scalar curvature then the equation (3.1)
become

Ric + Pr ◦Hessf = µg,

where µ = Λ− 1
2ρ. So, we can recall to the Example 2 of [11] to another example

of gradient r-almost-Newton-Einstein soliton.

The Gauss equation implies that

R(U,W )Z = (R̄(U,W )Z)T + d(BU,Z)BW − d(BW,Z)BU (3.3)

for every tangent vector fields U,W,Z ∈ X (Mn), where ()T denotes the tan-
gential components of a vector field in X (Mn) along Mn. Here the second

fundamental form (or shape operator) B of Mn in M2n+1
is related with the

second fundamental form h by the relation

d(h(U,W ), α) = d(BαU,W ) (3.4)

for a normal vector field α on Mn.
Let R̄ and R represent the Riemannian curvature tensors of M2n+1

and Mn,
respectively.
The scalar curvature ρ of the of the hypersurface Mn satisfies

ρ =
m∑
i,j

d(R̄(Ei, Ej)Ej , Ei) + n2H2 − ∥B∥2 , (3.5)

where {E1, . . . , Em} is an orthonormal frame on T (M) and ∥B∥ indicates the

Hilbert-Schmidt norm. If M2n+1
is a GSS-forms with functions f1, f2, f3, then

the scalar curvature ρ is given by

ρ = 2n(2n+ 1)f1 + 6nf2 − 4nf3 + n2H2 − ∥B∥2 . (3.6)

There exist n algebraic invariants corresponding to the second fundamental form
B of the hypersurface Mn , which are the elementary symmetric functions ρk of
its principal curvatures r1, . . . , rm, and are given by

ρ0 = 1, ρk =
∑

i1<...<ik

r1 . . . rn. (3.7)

The k-th mean curvature Hk of the immersion is defined by (nk)Hk = ρk. If

k = 0, we have H1 = 1
nTr(A) = H, the mean curvature of Mn. Here Tr

stands for trace. For each 0 ≤ k ≤ m, we define the Newton transformation
Pk : X (Mn) −→ X (Mn) of the hypersurface Mn by setting P0 = I and for
0 ≤ k ≤ m, by the recurrence relation

Pk =

k∑
j=0

(−1)k−j(mj )HjA
k−j , (3.8)

where Bj represents the composition of B with itself j times (B0 = I). The
second order linear differential operator Lk : C∞(Mn) −→ C∞(Mn) is defined
by

Lku = Tr(Pk ◦Hessu). (3.9)
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If we take k = 0, then we have the Laplacian operator L0. Also, we have

divM(Pk∇u) =
m∑
i=1

d((∇EiPk)∇u, Ei) +
m∑
i=1

d(Pk(∇Ei∇u), Ei) (3.10)

= d(divMPk,∇u) + Lku,
where

divMPk = Tr(∇Pk) =
m∑
i=1

(∇EiPk)Ei. (3.11)

If the ambient space possesses the constant sectional curvatures, then equation
(3.10) takes the form

Lku = divM(Pk∇u) (3.12)

because divMPk = 0 (see [28] for more details).
The trace-less second fundamental form of the hypersurface is given by

Φ = BHI, Tr(Φ) = 0 (3.13)

and

|Φ|2 = Tr(Φ2) = ∥B∥2 − nH2 ≥ 0. (3.14)

The manifold Mn is totally umbilical if and only |Φ|2 = 0.
To establish our results let us adopt the following maximum principle (for more

details see [10]). We follows that, for all s ≥ 1, adopt the notation

Ls(L) =
{
u : Mn −→ R;

∫
M

|u|s dL < +∞
}
. (3.15)

Also, we have the following lemma:

Lemma 3.1. Let Mn be an n-dimensional, complete, non-compact, oriented
Riemannian manifold and divMU does not alter the sign on Mn for a smooth
vector field U . If |U | ∈ L1(M), then divMU = 0.

The following results further generalize Theorem 1.2 of [8].

Theorem 3.1. Let (d, ψ,Λ, k) denote a complete k-ANES on hypersurface Mn of

GSS-forms M2n+1
of functions f1, f2, f3 with bounded B and potential function

ψ : Mn −→ R such that |∇ψ| ∈ L1(M). If

(1) f1, f2, f3 ≤ 0, and Λ > 0, then Mn can not be minimal,
(2) f1, f2, f3 < 0, and Λ ≥ 0, then Mn can not be minimal.
(3) f1, f2, f3 = 0, Λ ≥ 0 and Mn is minimal, then Mn is isometric to the

Rn.

Proof. Since f1, f2 and f3 are functions in terms of the the constant sectional
curvature c on the ambient space, then from (3.12) we notice that the operator
Lk is divergent type operator. Also, the second fundamental form is bounded
on Mn and thus from (3.8) we notice that the Newton transformation Pk has
bounded norm, that is,

|Pk∇ψ| ≤ |Pk| |∇ψ| ∈ L1(M). (3.16)
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To prove (1) and (2), let us consider by contradiction that Mn is minimal. Then,
equation (3.6) together with the consideration f1, f2, f3 ≤ 0 and f1, f2, f3 <
0 imply that the scalar curvature of Mn satisfies ρ ≤ 0 (ρ < 0). Hence, by

contracting (3.1) we have Lrψ = nΛ− (n+2)ρ
2 > 0 in both cases, which contradicts

Lemma 3.1. This completes the proof of the assertions (1) and (2).
For the (3) assertion, Since c1 and c2 are the the constant sectional curvatures

of the ambient space and Mn is minimal, then equation (3.6) becomes

ρ = −2 ∥ B∥2

(n+ 2)
≤ 0. (3.17)

Since Λ ≥ 0 therefore we have Lr(ψ) = nΛ− (n+2)ρ
2 ≥ 0. Now, using the fact that

Lru = divM(Pk∇u) and |Pk∇ψ| ∈ L1(M), we have again from Lemma (3.1) that

Lrψ = 0 on Mn. Thus, we observe that 0 ≥ (n+2)ρ
2 = nΛ ≥ 0, that is, ρ = λ = 0.

This shows that ∥B∥2 = 0 and therefore the k-ANES Mn is geodesic and flat. □

To prove our next theorems we need the following lemma, which corresponds
to Theorem 3 of [37].

Lemma 3.2. Let a complete Riemannian manifold Mn admits a non-negative
smooth subharmonic function u. If u ∈ Ls(M), then u is constant for some
s > 1.

Further, we state the following:

Theorem 3.2. Let (d, ψ,Λ, k) denote a complete k-ANES on hypersurface Mn

of GSS-forms M2n+1
of functions f1, f2, f3 with sectional curvature KM, Pk

is bounded from above (in the sense of quadratic forms) and potential function
ψ : Mn −→ R is non-negative such that ψ ∈ Ls(M) for some s > 1. If

(1) KM ≤ 0 and Λ > 0, then Mn can not be minimal,
(2) KM < 0 and Λ ≥ 0, then Mn can not be minimal,
(3) KM ≤ 0, Λ ≥ 0 and Mn is minimal, then Mn is flat and totally geodesic.

Proof. For proving (1), we begin with a contradiction that Mn is minimal. By
the hypothesis and equation (3.5) we have ρ ≤ 0. The contraction of equation
(3.1) gives

Lkψ = nΛ− (n+ 2)ρ

2
> 0. (3.18)

Since we considered that Pk is bounded from above, therefore there exists a
positive constant ω such that

ω∆ψ ≥ Lkψ > 0. (3.19)

Thus, from Lemma 3.2 we conclude that ψ is constant, which is inadmissible. By
using the similar process of the proof of Theorem 3.1, we can easily obtain (2)
and (3). □

In our next theorem, we generalize the Theorem 1.5 of [7] for U = ∇ψ. We also
give the conditions for an k-ANES on hypersurface of GSS-forms to be totally
umbilical, provided Mn has bounded second fundamental form. Thus we state
the following:
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Theorem 3.3. If the data (d, ψ,Λ, k) be a complete k-ANES on hypersurface Mn

of GSS-forms M2n+1
of functions f1, f2, f3 with bounded second fundamental

form and the potential function ψ : Mn −→ R such that |∇ψ| ∈ L1(M). Then
for

(1) Λ ≥ (2n+ 1)(n+ 2)f1 − 3(n+ 2)f2 + 2(n+ 2)f3 +
n(n+2)

2 H2 is totally ge-
odesic with Λ = (2n+ 1)(n+ 2)f1 − 3(n+ 2)f2 + 2(n+ 2)f3, and the scalar
curvature ρ = 2n(2n+ 1)f1 + 6n(n+ 2)f2 − 4n(n+ 2)f3,

(2) Mn is compact and Λ ≥ (2n + 1)(n + 2)f1 + 3(n + 2)f2 − 2(n + 2)f3 −
n(n+2)

2 H2, Mn is isometric to a Euclidean sphere,

(3) Λ ≥ (n+2)
{
(2n+ 1)f1 − 3f2 + f3 +

n
2H

2
}
, Mn is totally umbilical. Par-

ticularly, the scalar curvature ρ = n(n + 2) {(2n+ 1)f1 − 3f2 + f3}KM
is constant, where KM = 2Λ

(n+2) is the sectional curvature of Mn.

Proof. Using the equations (3.1) and (3.6), we obtain

Lrψ = n

[
Λ− (2n+ 1)(n+ 2)f1 + 3(n+ 2)f2 − 2(n+ 2)f3 −

n(n+ 2)

2
H2

]
+

∥B∥2

2
, (3.20)

For our consideration on λ, we can easily get that Lrψ is non-negative function
on Mn. By Lemma 3.1 we find that Lkψ vanishes identically. Thus, from (3.20)
we arrive that Mn is totally geodesic and we turn up

Λ = (2n+ 1)(n+ 2)f1 + 3(n+ 2)f2 − 2(n+ 2)f3. (3.21)

Moreover, it is clear form (3.6) that ρ = 2n(2n + 1)f1 + 6nf2 − 4nf3, which
complete the proof of (1).

If Mn is compact, since it is totally geodesic, then the ambient space must be

a sphere S2n+1 and M2n+1
is isometric to the Euclidean sphere S2n+1, proving

(2). From equation (3.20), we have

Lkψ = n[Λ− (n+ 2)
{
(2n+ 1)f1 − 3f2 + f3 +

n

2
H2

}
] + |Φ|2 . (3.22)

Therefore, our assumption on Λ gives Lkψ ≥ 0. From Lemma (3.1) we have
Lkψ = 0. This shows that Mn is a totally umbilical. In particular, the principal
curvature κ of Mn is constant and hence Mn possesses a constant sectional
curvature
KM = (n+2)

{
(2n+ 1)f1 − 3f2 + f3 +

n
2κ

2
}
. This relation together with (3.22)

give

Λ = (n+ 2)
{
(2n+ 1)f1 − 3f2 + f3 + (n+ 2)H2

}
(3.23)

= (n+ 2)
{
(2n+ 1)f1 − 3f2 + f3 + (n+ 2)κ2

}
= (n+ 2)KM,

which implies that ρ = n(n+ 2)KM, as desired. □
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Theorem 1.6 of [7] state that an minimal immersed nontrivial almost Ricci
soliton Mn in Sn+1 with ρ ≥ n(n ≥ 2) and the norm of the second fundamental
form obtain its maximum, then Sn must be isometric. Now, with help of Theorem
3.3, we can state a generalization of in the following.

Corollary 3.1. Let the data (d, ψ,Λ, k) be a complete k-ANES on hypersurface

Mn of GSS-forms M2n+1
with functions f1, f2, f3 . If λ ≥ (n+2)H2, then Mn

is isometric to Sn.

From Theorem (3.3) (1) which entails the following corollary.

Corollary 3.2. If the data (d, ψ, λ, k) be a complete k-ANES on hypersurface

Mn of GSS-forms M2n+1
with functions f1, f2, f3, then Mn admits the steady

k-ANES.

Corollary 3.3. Let (d, ψ,Λ, k) be a complete k-ANES on hypersurface Mn of

GSS-forms M2n+1
of functions f1, f2, f3. Consider that ρ ≥ n(n+ 2), the norm

of the second fundamental form obtain its maximum and λ ≥ (n+ 2)H2. Then
Mn is isometric to Sn.

Proof. From Simon’s formula [31], we obtain

∆ ∥B∥2 = ∥∇B∥2 + (2n− ∥B∥2)∥B∥2 ≥ 0. (3.24)

Also, the immersion is minimal with ρ ≥ m(m−2), therefore from (3.6) we arrive
at

2
∥B∥2

(n+ 2)
= n− (n+ 2)

2
ρ ≤ 2n+ 1.

From Hopf’s strong maximum principle and equation (3.24), we find that ∇B = 0

on Mn+1
. Thus from Proposition 1 of [27] we conclude that Mn is compact and

from Theorem 3.3 the result follows. □

Theorem 3.4. Let the data (d, ψ,Λ, k) be a complete k-ANES on hypersurface

Mn of GSS-forms M2n+1
with functions f1, f2, f3 is bounded from above and its

potential function ψ : Mn −→ R is non-negative and ψ ∈ Ls(M) for some s > 1.
If

(1) Λ ≥ (2n+ 1)(n+ 2)f1 − 3(n+ 2)f2 + 2(n+ 2)f3 +
n(n+2)

2 H2 is totally ge-
odesic with Λ = (2n+ 1)(n+ 2)f1 − 3(n+ 2)f2 + 2(n+ 2)f3, and the scalar
curvature ρ = 2n(2n+ 1)f1 + 6n(n+ 2)f2 − 4n(n+ 2)f3.

(2) Λ ≥ (n+2)
{
(2n+ 1)f1 − 3f2 + f3 +

n
2H

2
}
, Mn is totally umbilical. Par-

ticularly, the scalar curvature ρ = n(n + 2) {(2n+ 1)f1 − 3f2 + f3}KM
is constant, where KM = 2Λ

(n+2) is the sectional curvature of Mn.

Proof. The hypothesis on Λ and equation (3.20) give

Lrψ = n[Λ− (2n+ 1)(n+ 2)f1 − 3(n+ 2)f2 + 2(n+ 2)f3 +
n(n+ 2)

2
H2]∥B∥2

≥ 0. (3.25)
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As Pk is bounded from above, therefore ω∆ψ ≥ Lkψ ≥ 0 for a positive constant
ω. Using Lemma 3.2, we conclude that ψ is constant. Therefore Lnψ = 0, and
equation (3.25) shows that Mn is totally geodesic,

Λ = (2n+ 1)(n+ 2)f1 − 3(n+ 2)f2 + 2(n+ 2)f3

and the scalar curvature

ρ = (2n+ 1)(n+ 2)f1 − 3(n+ 2)f2 + 2(n+ 2)f3

proving assertion (1). Assertion (2) can be obtained by following process of the
proof of Theorem 3.3. □

4. Some Applications

As an application of Theorem (3.1), we obtain the following results for the
Sasakian space form, Kenmotsu space form and cosymplectic space form the
following values of f1, f2, f3

(i) A Sasakian space form is the generalized Sasakian space form with f1 =
c+3
4 and f2 = f3 =

c−1
4 .

(ii) A Kenmotsu space form is the generalized Sasakian space form with
f1 =

c−3
4 and f2 = f3 =

c+1
4 .

(iii) A cosymplectic space form is the generalized Sasakian space form with
f1 = f2 = f3 =

c
4 .

Theorem 4.1. Let (d, ψ,Λ, k) denote a complete k-ANES on hypersurface Mn

of Sasakian space forms M2n+1
with constant sectional curvature c with bounded

B and potential function ψ : Mn −→ R such that |∇ψ| ∈ L1(M). If

(1) c+3
4 ≤ 0, c−1

4 ≤ 0 and Λ > 0, then Mn can not be minimal,

(2) c+3
4 < 0, c−1

4 < 0 and λ ≥ 0, then Mn can not be minimal.

(3) c+3
4 = 0, c−1

4 = 0, λ ≥ 0 and Mn is minimal, then Mn is isometric to
the Rn.

Theorem 4.2. Let (d, ψ,Λ, k) denote a complete k-ANES on hypersurface Mn

of Kenmotsu space forms M2n+1
with constant sectional curvature c with bounded

B and potential function ψ : Mn −→ R such that |∇ψ| ∈ L1(M). If

(1) c−3
4 ≤ 0, c+1

4 ≤ 0 and Λ > 0, then Mn can not be minimal,

(2) c−3
4 < 0, c+1

4 < 0 and λ ≥ 0, then Mn can not be minimal.

(3) c−3
4 = 0, c+1

4 = 0, λ ≥ 0 and Mn is minimal, then Mn is isometric to
the Rn.

Theorem 4.3. Let (d, ψ,Λ, k) denote a complete k-ANES on hypersurface Mn of

cosymplectic space form M2n+1
with constant sectional curvature c with bounded

B and potential function ψ : Mn −→ R such that |∇ψ| ∈ L1(M). If

(1) c
4 ≤ 0 and Λ > 0, then Mn can not be minimal,

(2) c
4 < 0 and λ ≥ 0, then Mn can not be minimal.

(3) c
4 = 0 and λ ≥ 0 and Mn is minimal, then Mn is isometric to the Rn.

This also generalizes Theorem 3.2 for others spaces as follows: Next, we have:
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Theorem 4.4. Let (d, ψ, λ, k) denote a complete k-ANES on hypersurface Mn

of Sasakian space forms M2n+1
of sectional curvature KM, Pk is bounded from

above (in the sense of quadratic forms) and potential function ψ : Mn −→ R is
non-negative such that ψ ∈ Ls(M) for some s > 1. If

(1) KM ≤ 0 and Λ > 0, then Mn can not be minimal,
(2) KM < 0 and Λ ≥ 0, then Mn can not be minimal,
(3) KM ≤ 0, Λ ≥ 0 and Mn is minimal, then Mn is flat and totally geodesic.

Theorem 4.5. Let (d, ψ, λ, k) denote a complete k-ANES on hypersurface Mn

of Kenmotsu space forms M2n+1
of sectional curvature KM, Pk is bounded from

above (in the sense of quadratic forms) and potential function ψ : Mn −→ R is
non-negative such that ψ ∈ Ls(M) for some s > 1. If

(1) KM ≤ 0 and Λ > 0, then Mn can not be minimal,
(2) KM < 0 and Λ ≥ 0, then Mn can not be minimal,
(3) KM ≤ 0, Λ ≥ 0 and Mn is minimal, then Mn is flat and totally geodesic.

Theorem 4.6. Let (d, ψ, λ, k) denote a complete k-ANES on hypersurface Mn

of cosymplectic space form M2n+1
of sectional curvature KM, Pk is bounded from

above (in the sense of quadratic forms) and potential function ψ : Mn −→ R is
non-negative such that ψ ∈ Ls(M) for some s > 1. If

(1) KM ≤ 0 and Λ > 0, then Mn can not be minimal,
(2) KM < 0 and Λ ≥ 0, then Mn can not be minimal,
(3) KM ≤ 0, Λ ≥ 0 and Mn is minimal, then Mn is flat and totally geodesic.

5. Compact gradient r-Newton-Einstein soliton

In this segment, our main results based on some triviality results when the

gradient r-Newton-Einstein soliton on GSS-forms M2n+1
is compact and Λ is a

constant. In addition useful consequences are given in the following lemmas.

Lemma 5.1 ([30]). If M is compact without boundary or if M is non compact
and ψ has compact support then

(i)

∫
M
Lr(ψ)dM = 0,

(ii)

∫
M
ψLr(ψ)dM = −

∫
M
⟨Pr∇ψ,∇ψ⟩.

For our purpose, it also will be appropriate to deal with the so-called traceless

second fundamental form of the hypersurface of GSS-forms M2n+1
, which is

given by Φ = A−HI. Observe that tr Φ = 0 and |Φ|2 = tr(Φ2) = |A|2−nH2 ≥ 0,

with equality if and only if M2n+1
is totally umbilical.

To conclude this section we recall the following Lemma due to Yau and corre-
sponds to Theorem 3 of [37].

Lemma 5.2. Let u be a non-negative smooth subharmonic function on a complete
Riemannian manifold Mn. If u ∈ Lp(M), for some p > 1, then u is constant.

Here we use the notation Lp(M) = {u : Mn → R ;
∫
M |u|pdM < +∞} for

each p ≥ 1.
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Theorem 5.1. Let Mn be a compact gradient r-Newton-Einstein soliton im-

mersed into a GSS-forms M2n+1
of functions f1, f2, f3 with constant sectional

curvature c, such that Pr is bounded from above or from below (in the sense of
quadratic forms). If holds any one of the following

i) either n
2 > −1 and the scalar curvature is ρ ≥ 0 and Λ ≥ 0 or ρ ≤ 0 and

Λ ≤ 0 or;
ii) n

2 < −1 and the scalar curvature is ρ ≥ 0 and Λ ≤ 0 or ρ ≤ 0 and Λ ≥ 0
or,

iii) the scalar curvature, either ρ ≥ 2nΛ
n+2 or ρ ≤ 2nΛ

n+2 ,

then M most be constant scalar curvature and trivial.

Proof. From Lemma 5.1 and estructural equation we obtain

0 =

∫
M
Lrψ =

∫
M
[Λn− (

n

2
+ 1)ρ].

Hence, if holds (i), (ii) we obtain ρ = Λ = 0 and from estructural equation we
get Lrψ = 0. Since Pr is bounded from above or from below (in the sense of
quadratic forms), there is a positive constant C > 0 such that

0 = Lrψ ≤ C∆ψ, or 0 = Lrψ ≥ −C∆ψ,
respectively. So, ψ is a subharmonic function. Since M is compact we conclude
from Hopf’s theorem that ψ is a constant function. Therefore M is trivial.

Finally the item (iii) follows identically to (i) and (ii). □

Theorem 5.2. Let Mn be a compact gradient r-Newton-Einstein soliton im-

mersed into a GSS-forms M2n+1
of functions f1, f2, f3 with constant sectional

curvature c, such that Pr is bounded from above or from below (in the sense of
quadratic forms) and n

2 ̸= −1. If M has constant scalar curvature, then Mn is
trivial.

Proof. From Lemma 5.1 and estructural equation we have∫
M

|nΛ− (
n

2
+ 1)ρ|2 =

∫
M
(nΛ− (

n

2
+ 1)ρ)Lrψ = (nΛ− (

n

2
+ 1)ρ)

∫
M
Lrψ = 0.

Hence, we obtain ρ = 2nΛ
n+2 and Lrψ = 0. Using that Pr is bounded from above or

from below (in the sense of quadratic forms) we can proceeding as in the proof
of Theorem 5.1 to conclude that Mn is trivial. □

In the next result we proved Schur’s type inequality. We proved the following.

Theorem 5.3. Let Mn be a compact gradient r-Newton-Einstein soliton im-

mersed into a GSS-forms M2n+1
of functions f1, f2, f3 with constant sectional

curvature c, such that Pr is bounded from below (in the sense of quadratic forms)
and n

2 > −1. Then∫
M

|ρ− ρ|2 ≤ nC

(n− 2)(n+ 2)

◦
∥Ric∥L2 ∥∇2ψ − ∆ψ

n
g∥L2 . (5.1)

Proof. We recall the contracted second Bianchi identity tells us that

divRic +
1

2
∇ρ = 0,
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and hence that

div
◦

Ric= −n− 2

2n
∇ρ.

Since M is compact we get using our assumption on Pr that∫
M

|nΛ− (
n

2
+ 1)ρ|2 =

∫
M
(nΛ− (

n

2
+ 1)ρ)Lrψ =

∫
M
(nΛ− (

n

2
+ 1)ρ)div(Pr∇ψ)

= −(
n

2
+ 1)

∫
M
⟨∇ρ, Pr∇ψ⟩ ≤ C(

n

2
+ 1)

∫
M
⟨∇ρ,∇ψ⟩

= −nC(n+ 2)

n− 2

∫
M
⟨div

◦
Ric,∇ψ⟩

=
nC(n+ 2)

n− 2

∫
M
⟨

◦
Ric,∇2ψ⟩

=
nC(n+ 2)

n− 2

∫
M
⟨

◦
Ric,∇2ψ − ∆ψ

n
g⟩

≤ nC(n+ 2)

n− 2

◦
∥Ric∥L2 ∥∇2ψ − ∆ψ

n
g∥L2 ,

where we used that ⟨
◦

Ric, g⟩ = 0. Since M is compact we have

nΛ = (
n

2
+ 1)ρ,

where ρ stands for the average of ρ. Therefore,

(
n

2
+ 1)2

∫
M

|ρ− ρ|2 =
∫
M

|nΛ + (
n

2
+ 1)ρ|2,

i.e.,

(
n

2
+ 1)2

∫
M

|ρ− ρ|2 ≤ nC(n+ 2)

n− 2

◦
∥Ric∥L2 ∥∇2ψ − ∆ψ

n
g∥L2 ,

i.e., ∫
M

|ρ− ρ|2 ≤ nC

(n− 2)(n+ 2)

◦
∥Ric∥L2 ∥∇2ψ − ∆ψ

n
g∥L2 . (5.2)

This completes the proof. □
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