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ON A SOLUTION TO A NONLOCAL INVERSE COEFFICIENT PROBLEM
USING FEED-FORWARD NEURAL NETWORKS

REFET POLAT

Abstract. This study gives a determination of the diffusion coefficient D(x)
from the equation ut =(D(x)ux)x+ν(C(x)u(x))x+ f (x, t) using Neumann type
boundary measurements. The nonlocal condition enables us to reduce the par-
abolic problem to a boundary-value problem for ODE. The flux data can be
used for the initial condition of the Cauchy problem obtained from the reduced
problem. The feed-forward neural network is used to find the solution to the
corresponding inverse problem for D(x). The presented approach is based on
the solution of a nonlinear optimization problem using Particle Swarm Opti-
mization. The efficiency and applicability of the method is demonstrated using
various numerical examples with noisy free and noisy data.

1. Introduction
The determination of the leading unknown coefficient in ordinary and partial differen-

tial equations is one of key current problems in inverse problem theory and practice (see
[1, 2, 4, 9, 7, 8, 14] and references therein). The mathematical model of sludge particles
settling in a water treatment plant (settler) is given by the transport-diffusion equation
ut = (D(x)ux)x + ν(C(x)u(x, t))x + f (x, t). Here the coefficients D(x) and C(x) are the
diffusion and ”sludge concentration” functions, respectively. In the case of the resi-
dence time of sludge particles in the settler the model leads to a nonlinear age-dependent
transport-diffusion equation with a nonlocal additional condition. The determination of
the diffusion coefficient D(x) is considered. For the case of constant (”average”) ve-
locity ν , the problem can be reduced to a boundary-value problem for the second order
nonlinear ordinary differential equation in C(x) [13]. Flux data is used to define the
Cauchy problem in D(x) which is obtained from the boundary-value problem chang-
ing the homogeneous boundary conditions with an initial condition. The feed-forward
neural network is used to find the solution of the corresponding Cauchy problem for
D(x). Determination of D(x) is obtained by introducing a nonlinear optimization prob-
lem. Particle swarm optimization (PSO) methodology gives the solution to the nonlinear
optimization problem.
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2. Problem formulation
The following parabolic problem is considered.

Find a pair of ⟨u(x, t),D(x)⟩ (x, t)∈ΩT := (−ℓ,ℓ)×(0,∞), which satisfies the parabolic
problem

∂u(x, t)
∂ t

=
∂

∂x

(
D(x)

∂u(x, t)
∂x

)
−ν

∂

∂x
(C(x)u(x, t))+ f (x, t), ∀(x, t) ∈ Ωt , (2.1)

u(x,0) = ϕ(x), ∀x ∈ (−ℓ,ℓ), (2.2)
u(−ℓ, t) = u(ℓ, t) = 0, ∀t ∈ R+ , , (2.3)∫

∞

0
u(x, t)dt =C(x), ∀x ∈ (−ℓ,ℓ). (2.4)

and the flux information

−D(−ℓ)ux(−ℓ, t) = g1(t), t > 0 (or,−D(ℓ)ux(ℓ, t) = g2(t), t > 0). (2.5)

It is assumed that the condition (2.5) is an additional condition. It is also assumed that
the initial data and coefficients are continuous functions, i.e. ϕ(x), D(x), C(x)∈C[−ℓ,ℓ],
and

0 < D∗ ≤ D(x)≤ D∗, 0 ≤C(x)≤C∗, ∀x ∈ [−ℓ,ℓ]. (2.6)

For a given coefficient C(x),D(x) ∈ C[−ℓ,ℓ] are denoted by u = u(x, t;D,C), the
unique classical solution of the parabolic initial value problem (2.1)-(2.4). Here the
coefficients C(x),D(x) are assumed to be unknown and the nonlocal measured data (2.4)
can be treated as observations for determination of the coefficient D(x). For this rea-
son, the problem (2.1) to (2.5) is defined as a nonlocal optimal control or identification
problem, and the couple ⟨u,D⟩ is called a solution of the inverse coefficient problem
(2.1)-(2.5). In this case the problem (2.1)-(2.4) is called a direct problem corresponding
to the inverse problem (2.1)-(2.5).

3. Necessary conditions for optimality
Assume that ⟨u,D⟩ is a solution of the problem (2.1)-(2.5). Then integrating equation

(2.1) on [0,∞) with respect to the variable t > 0, we obtain

u(x,∞)−u(x,0) =∫
∞

0

∂

∂x

(
D(x)

∂u(x, t)
∂x

)
dt −ν

∫
∞

0

∂

∂x
(C(x)u(x, t))dt +

∫
∞

0
f (x, t)dt, (3.1)

∀x ∈ (−ℓ,ℓ).
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By using the nonlocal condition (2.4) and assuming differentiability of the function
u(x, t) under the integrals, we may write

C2(x) =
∫

∞

0
C(x)u(x, t)dt, ∀x ∈ (−ℓ,ℓ),

C′(x) =
∫

∞

0

∂u(x, t)
∂x

dt, ∀x ∈ (−ℓ,ℓ),

(C2(x))′ =
∫

∞

0

∂

∂x
(C(x)u(x, t))dt, ∀x ∈ (−ℓ,ℓ),

(D(x)C′(x))′ =
∫

∞

0

∂

∂x

(
D(x)

∂u(x, t)
∂x

)
dt, ∀x ∈ (−ℓ,ℓ),

F(x) := ϕ(x)+
∫

∞

0
f (x, t)dt.

Taking into account the initial condition (2.2), we can rewrite the integro-differential
equation (3.1) in the following reduced form:{

− d
dx

(
D(x)dC(x)

dx

)
+ν

d
dx(C

2(x)) = F(x), ∀x ∈ (−ℓ,ℓ),

C(−ℓ) = 0, C(ℓ) = 0.
(3.2)

Hence, we prove the following propositions:

Proposition 3.1. If ⟨u,D⟩ is a solution of the identification problem (2.1)-(2.5), then the
function C(x) satisfies the Cauchy problem (3.2) for the second order nonlinear ordinary
differential equation.

According to Proposition 3.1, we can now consider the reduced problem (3.2). Rewrit-
ing the equation in (3.2) with respect to the unknown function D = D(x) and using the
reduced measured data ψ which is obtained from nonlocal condition (2.4) and measured
data (2.5) for the initial condition, we have the following Cauchy problem:{

D′(x)+ C′′(x)
C′(x) D(x) = G(x), G(x) := ν(C2(x))′−F(x)

C′(x) , x ∈ (−ℓ,ℓ),

D(−ℓ) = ψ

C′(−ℓ) , ψ :=−
∫

∞

0 g1(t)dt.
(3.3)

Proposition 3.2. The identification problem (2.1)-(2.5) is equivalent to the following
problem:

Find the function D(x), which satisfies the Cauchy problem (3.3).

It is clear that if the function C =C(x) is known, the solution of the Cauchy problem
(3.3) has the following integral representation.

D(x) =
1

C′(x)

ψ +νC2(x)−
x∫

−ℓ

G(ξ )dξ

 x ∈ [−ℓ,ℓ], C′(x) ̸= 0. (3.4)

Even if this representation gives the analytical solution of the problem (3.3) the function
D(x) is undefined at the points where the derivative of the sludge concentration C(x)
vanishes. So, an Artificial Neural Network (ANN) approach is proposed for solving
the Cauchy problem (3.3) numerically in cases where C′(x) vanishes at some points in
[−ℓ,ℓ].
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4. Feed-forward Neural Networks as a solution to the reduced problem
Artificial neural networks are modeled from the human brain and neural systems,

which are suitable tools for solving large-scale problems. There are many references to
neural networks in theory and applications, modeling, algorithms, design, architecture
and mathematics [12].

We denote the ANN-solution by N(x) at the point x. According to the Kolmogorov
and Cybenko theorems[3, 11], we can establish a trial approximate solution given in Eq.
4.1 for the reduced problem (3.2).

D(x) :=
ψ

C′(−ℓ)
+(x+ ℓ)N(x; p⃗), x ∈ [−ℓ,ℓ], (4.1)

where p⃗ := p⃗(⃗α, η⃗ , β⃗ ) is an unknown parameter vector to be determined such that α⃗ ,
η⃗ and β⃗ ∈ Rm where m is the total number of neurons in the hidden layer of the neural
network.

As seen in Figure 1, for the input values x, the output of the network is the function
N(x; p⃗) defined as follows:

N(x; p⃗) :=
m

∑
k=1

αkτ(ηkx+βk) (4.2)

where αk is the synaptic weight of the kth hidden neuron to the output, ηk is the synaptic
coefficient from the spatial input x to the kth hidden neuron, and βk is the bias value of
the kth hidden neuron. Here, τ(z) = 1/(1+exp(−z)) is the logistic activation function.

z1xi

z2

zm

τ (z1)

τ (z2)

τ (zm)

∑ N(xi; p⃗)

... ...
β⃗

Input Layer Hidden Layer Activation Function

Output Layer

η1

η
2

η
m

z1

z2

zm

α
1

α2

αm

FIGURE 1. Structure of the general feed-forward single hidden layer perceptron.

As seen in Figure 1, a feed forward neural network model including a single hidden
layer, which takes inputs from the input layer and produces the weighted sum of inputs
added onto some bias values as outputs, is preferred to solve the problem effectively.
Each neuron in the hidden layer produces the corresponding values defined as follows:

z1 = η1.xi +β1, z2 = η2.xi +β2, . . . , zm = ηm.xi +βm
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where xi denotes the network inputs. Then, the activation function τ(z) takes the outputs
of the hidden layer and transforms them to the inputs of the output layer. Finally, the
sum of the weighted outputs of the activation function then generates the output N(xi; p⃗)
of the neural network.

It is possible to obtain proper values for the adjustable parameters p⃗ such that N(x)
gives a good approximation to D(x). It is at this stage that tools such as error norm
in the Hilbert space L2(ΩT ) can assist with a minimization problem. The unknown
parameter vector p⃗ is determined by considering the minimization problem defined with
the functional as follows:

Find p⃗∗ such that J(x; p⃗∗) = min
p⃗∈R3m

J(x; p⃗).

Here, the cost function J(x, p⃗) is defined as:

J(x; p⃗) =
1
2

Nx

∑
i=1

e2
i (4.3)

where
ei =−D′(xi)C′(xi)−D(xi)C′′(xi)+2νC(xi)C′(xi)−F(xi). (4.4)

For the numerical solution of the minimization problem defined above, ”Particle
Swarm Optimization (PSO)” is considered.

5. Numerical implementation
Particle swarm optimization (PSO) is a swarm intelligence technique (a search method

based on a natural system), which was introduced by Kennedy and Eberhart in 1995
[10, 5]. This method performs the search of the optimal solution through agents, re-
ferred to as particles, whose trajectories are adjusted by a stochastic and a deterministic
component. Each particle is influenced by its best achieved position and the group best
position, but tends to move randomly. A particle i is defined by its position vector, x⃗i,
and its velocity vector, v⃗i. Every iteration, each particle, changes its position as given in
Eq. 5.2 according to the new velocity given in Eq. 5.1

v⃗i[n+1] = w⃗vi[n]+ c1r1(⃗xBesti [n]− x⃗i[n])+ c2r2(⃗gBest [n]− x⃗i[n]), (5.1)

x⃗i[n+1] = x⃗i[n]+ v⃗i[n] (5.2)

where x⃗Besti denotes the best position of ith particle, g⃗Best represents the best group po-
sition, the parameters w is inertia weight, c1 and c2 are the cognitive acceleration co-
efficient and social acceleration coefficient respectively, and r1 and r2 are two random
parameters within [0,1] [6].

For the numerical solution to the Cauchy problem 3.3, we constructed a uniform grid
of mesh points xi with xi =−ℓ+ ihx, j = 0,1,2, . . . ,Nx where hx = 2ℓ/Nx. In order to do
performance analysis, various measurements were used: Mean Absolute Error (MAE),
Mean Squared Error (MSE) and Mean Squared Relative Error (MSRE). The MAE, MSE
and MRSE are defined below.

∥D−Dapp∥MAE :=
1

Nx

Nx

∑
i=1

|Di −Dapp
i |
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∥D−Dapp∥MSE :=

(
1

Nx

Nx

∑
i=1

|Di −Dapp
i |2

)(1/2)

MSRE =
∥D−Dapp∥MSE

∥D∥MSE
.

Now we consider some of the series of examples to demonstrate the efficiency of the
proposed method.

Example 5.1. Let

D(x) =
1

x2 +1

be the exact solution of the Cauchy problem (3.3) for the input data.

C(x) = exp(−x) G(x) :=
ν(C2(x))′−F(x)

C′(x)
, x ∈ (−ℓ,ℓ).

Where ν = −1.0, ℓ = 1.0 and the value ψ = D(−ℓ)C′(−ℓ) is assumed to be synthetic
noise free data given on the left boundary of the interval (−ℓ,ℓ). Figure 2 illustrates the
exact solution D(x) and its approximation Dapp(x) of the Cauchy problem on the interval
[−ℓ,ℓ]. The differences between the numerical solutions obtained using PSO variants by
means of MAE, MSE and MSRE are given in Table 1. All the results were attained with
m = 10 neurons in feed-forward neural networks. To train the network, the quadrature
nodes were firstly specified with the discretization of the domain [−ℓ,ℓ] by taking Nx =
21, and a mesh was generated. The quadrature nodes were used as inputs of the neural
net. Then, the optimization procedure was executed to train the network in the meaning
of unsupervised learning using the cost functional given in Eq. 4.3. The maximum
number of iterations were selected as 250 in the first experiments. In this study, the
cognitive and social acceleration coefficients were selected as c1 = c2 = 2. The inertia
coefficient was determined as a decreasing function with the initial value w = 1 and
the damping ratio 0.99. The lower and upper boundary of arbitrary network parameters
represented by p⃗ were determined as -10 and 10. The total number of individuals in the
PSO population was 20 in this experiment.

TABLE 1. Errors for Example 5.1
Type of Errors Errors for Noise Free Data Errors for Noisy Data

MAE
Min 3.585e−03 9.118e−03
Worst 5.411e+00 2.074e+00
Mean 2.307e−01±3.708e−01 2.392e−01±2.488e−01

MSE
Min 1.926e−03 45.455e−03
Worst 2.352e+01 9.702e−01
Mean 2.160e−01±1.508e+00 1.130e−01±1.259e−01

MSRE
Min 4.203e−04 1.190e−03
Worst 5.133e+00 2.117e−01
Mean 4.714e−02±3.291e−01 2.465e−02±2.748e−02
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FIGURE 2. (Left) Exact and noise free approximate solution of D(x)
obtained from ANN initializied uniformly. (Right) Cost function profile
in PSO

Consider now this example in the case of noisy data corresponding to the synthetic
noisy Neumann data D(−L)C′(−L) = ψδ , ψδ = ψ ±δψ with noise level δ = 0.05. The
errors corresponding to the noisy data are given in the last column of Table 1. The exact
and noisy approximate solution is plotted in Figure 3.
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FIGURE 3. (Left) Exact and noisy approximate solution of D(x) ob-
tained from ANN initializied uniformly for noise level δ = 0.05. (Right)
Cost function profile in PSO

Example 5.2. Let the non-smooth function

D(x) = 1+
√
|x|
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be an exact solution of the Cauchy problem (3.3) for the input data.

C(x) = exp(−x) G(x) :=
ν(C2(x))′−F(x)

C′(x)
, x ∈ (−ℓ,ℓ).

Where ν = 0.5, ℓ= 1.0 and the value ψδ =ψ±δψ is assumed to be synthetic noisy data
for noise level δ > 0. Figure 4 illustrates the exact solution D(x) and its approximation
Dapp(x) of the Cauchy problem on the interval [−ℓ,ℓ]. The errors MAE, MSE and
MSRE are given in Table 2. All the results were attained with m = 10 neurons in feed-
forward neural networks taking Nx = 22 nodes. The maximum number of iterations
were selected as 250 in the second experiments. In this test example, the cognitive and
social acceleration coefficients were selected as c1 = c2 = 2. The inertia coefficient was
determined as a decreasing function with the initial value w = 1 and the damping ratio
0.99. The lower and upper boundary of arbitrary network parameters represented by p⃗
were determined as -1 and 1. The total number of individuals in the PSO population was
10 in this experiment.

TABLE 2. Errors for Example 5.2
Type of Errors Errors for Noise Free Data Errors for Noisy Data

MAE
Min 1.349e−01 2.876e−01
Worst 3.824e+00 6.146e+00
Mean 1.498e+00±1.206e+00 1.756e+00±1.616e+00

MSE
Min 1.152e−01 2.132e−01
Worst 2.490e+00 3.838e+00
Mean 8.424e−01±7.081e−01 9.941e−01±1.067e+00

MSRE
Min 1.228e−03 2.273e−03
Worst 2.654e−02 4.091e−02
Mean 8.980e−03±7.548e−03 1.060e−02±1.137e−02
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FIGURE 4. (Left) Exact and noise free approximate solution of D(x)
obtained from ANN initializied uniformly. (Right) Cost function profile
in PSO
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Consider the case where noisy data corresponds to the synthetic noisy Neumann data
D(−L)C′(−L) = ψδ , ψδ = ψ ±δψ with noise level δ = 0.05. The errors corresponding
to the noisy data are given in the last column of Table 2. The exact and noisy approximate
solution is plotted in Figure 5.
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FIGURE 5. (Left) Exact and noisy approximate solution of D(x) ob-
tained from ANN initializied uniformly for noise level δ = 0.05. (Right)
Cost function profile in PSO

6. Conclusions
We have considered an inverse coefficient problem (2.1)-(2.5) with a nonlocal condi-

tion for a parabolic equation and reduced it to an inverse problem in ordinary differential
equations. We have applied a feed-forward neural network approach for a numerical
solution of the inverse problem, which is based on nonlinear optimization. Efficiency
and applicability of the method has been tested using various numerical examples with
noisy free and noisy data.
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