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OPTIMAL CONTROL OF SEMILINEAR HIGHER-ORDER

DIFFERENTIAL INCLUSIONS

DILARA MASTALIYEVA

Abstract. The paper investigates an optimal control problem described
by higher-order differential inclusions (DFIs). In terms of the Euler-
Lagrange type adjoint DFIs and Hamiltonian, a sufficient optimality
condition for higher-order DFIs is derived. At the same time, when
constructing the Euler-Lagrange type adjoint DFI, without using tra-
ditional approaches to constructing an adjoint operator and a discrete-
approximate method, the new method of adjoint DFI of Mahmudov for
”higher-order problems” is used. It is shown also that the adjoint DFI for
the first order DFI coincides with the classical Euler-Lagrange inclusion,
and the optimality conditions coincide with the results of Rockafellar on
the Mayer problem with first order DFIs. Thus, the obtained results are
universal in the sense that sufficient optimality conditions can be formu-
lated for a DFI of any order. At the end of the paper, problems with a
high-order polyhedral DFIs and higher-order linear optimal control prob-
lems are considered, the optimality conditions of which are transformed
into the Pontryagin maximum principle. Also, for high-order polyhedral
optimization, from the point of view of abstract economics, non-negative
adjoint variables can be interpreted as the price of a resource.

1. Introduction

The paper concerns with the unseparated Mayer problem of the higher-order
ordinary differential inclusions:

minimize f(x(0), x(T )), (1.1)

(HD)
dsx(t)

dts
∈

s−1∑
i=1

Aix
(i)(t) + F (x(t), t), a.e. t ∈ [0, T ], (1.2)

x(i)(0) = x0i , i = 1, . . . , s− 1 (1.3)

where F (·, t) : Rn ⇒ Rn is a set-valued mapping [4, 7, 12, 18, 26], f : R2n → R1

is a proper function, s is an arbitrary fixed natural number, T is an arbitrary
positive real number. We label this problem as (HD). It is required to find
a feasible trajectory (arc)x(t), t ∈ [0, T ] of the ordinary differential inclusion
(DFI) (1.2) that satisfies the initial condition (1.3), and minimizes the so-called
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Mayer functional f(x(0), x(T )). Let us refine the definition of the concept of a
solution of problem for s-th order DFIs (1.2)-(1.3); suppose ACi ([0, T ],Rn) is
the space of i-times differentiable functions x(·) ∈ ACs−1([0, T ]) ∩ W1,s([0, T ]),
where W1,s([0, T ]) is a Banach space of absolutely continuous functions, up to

order s− 1, x(s)(·) ∈ L1 ([0, T ],Rn). Then x(·) is a feasible solution of a problem
(1.2)-(1.3) if it satisfies almost everywhere (a.e.) the s-th order DFI (1.2) and
condition (1.3), where as usual, L1 ([0, T ],Rn) is the Banach space of integrable
(in the Lebesgue sense) functions v(·) : [0, T ] → Rn endowed with the norm

∥v(·)∥1 =
∫ T
0 |v(t)|dt.

It should be noted that for many applications type problems (HD) are im-
portant; attract more and more attention in connection with the development of
feedback control systems and dynamic systems described by higher-order differ-
ential equations with a discontinuous righthand side. For example, in the case of
state constraints Clarke and Wolenski [11] give an excellent introduction to this
problem with first order DFIs and describes several applications. Such problems
often arise not only in problems of automatic control, mechanics, control science
and economics, designing optimal or stabilizing feedback, but also in aerospace
engineering, anti-vibration.

Obviously, for convexity of the problem (HD) we will assume that the set-
valued mapping F (·, t) is convex and f is proper convex function. In fact, from
further presentations it will be clear that the convexity of the problem (HD) is
assumed for the sake of simplicity of the results obtained and, definition of LAM,
through the Hamiltonian function makes it possible to generalize these results to
the nonconvex case.

In a certain sense, the problem (HD) is an essential generalization of the
Loewen and Rockefeller problem [20] with s = 1, where under a number of strin-
gent conditions, the necessary optimality conditions are derived; Nevertheless, our
sufficient optimality conditions contain more convenient forms of the transversal-
ity condition and the associated inclusions of Mahmudov of the Euler-Lagrange
type. Our results allow us to simplify the proof of the maximum principle and
obtain a new adjoint Mahmudov’s [24] inclusion, which is a generalization of the
Euler-Lagrange inclusion to the case of higher-order optimal control problems.
In addition, it is interesting to note that the results of Theorem 3.1 of this pa-
per and Theorem 4.3 of Loewen and Rockafellar [20], and their transversality
conditions for s = 1, coincide. Moreover, the simplicity of the locally adjoint
mapping (LAM) approach and the method of the ”cone of tangent directions”
instead of the normal cone simplifies the derivation and formulation of optimality
conditions.

Notice that a significant part of the studies related to ordinary differential
equations/inclusions are contained in the following works [2, 3, 4, 5, 6, 7, 8, 9,
10, 12, 13, 14, 15, 17, 18, 19, 25, 36, 38]. In the paper of Mordukhovich [36] the
Bolza problem for DFIs with general restrictions at the end is considered. First,
a finite difference method is developed for the problem posed and a discrete
approximate problem is constructed that ensures strong convergence of optimal
solutions. Second, this direct method is used to obtain the necessary optimality
conditions in the refined Euler-Lagrange form without the standard convexity as-
sumptions, which is satisfied without any relaxation. In the works of Mardanov et
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al. [31, 32, 34] by introducing the new concept of a convexity and relative interior
of a set a new discrete analogue of Pontryagin’s maximum principle is obtained.
The paper [27] deals with the optimal control problem described by second order
differential inclusions. Based on the infimal convolution concept of convex func-
tions, dual problems for differential inclusions are constructed and the results of
duality are proved. In this case, it turns out that Euler-Lagrange type inclusions
are ”duality relations” for both primary and dual problems. The paper [23] con-
siders a Bolza problem of optimal control theory with a varying time interval
given by convex, nonconvex functional-differential inclusions. The main goal is
to derive sufficient optimality conditions for neutral functional-differential inclu-
sions, which contain time delays in both state and velocity variables. Both state
and endpoint constraints are involved. Presence of constraint conditions implies
jump conditions for conjugate variable which are typical for such problems.

Thibault et al. [3, 4] and Marco, Murillo [29] proved an existence theorem for
an absolutely continuous solution for second/higher -order DFIs. Cubiotti and
Yao [13] presented a new proof of a classical result by Bressan on the Cauchy
problem for first-order DFIs with null initial condition. This approach allows to
prove the result directly for k-th order DFIs, under weaker regularity assump-
tions on the involved set-valued map. In the paper [2] is proved a result which is
the counterpart of the above for quasi monotone set-valued maps, based on the
concept of single-directional property. Sufficient conditions for the controllability
of second-order DFIs in Banach spaces with nonlocal conditions were established
in [6]. They rely on the fixed-point theorem for condensing Martelli mappings.
Strong duality, stating that the optimal values of the primal convex problem and
its dual Lagrangian problem are equal (i.e. zero duality gap) and the dual problem
reaches its maximum, is the cornerstone of convex optimization. In particular, it
plays an important role in the numerical solution, as well as in the application of
convex semidefinite optimization. Strong duality requires a specification known
as constraint qualification (CQ). There are several CQs in the literature that are
sufficient for strong duality. In [7] it is shown existence and uniqueness of the
generated trajectories as well as their weak asymptotic convergence to a zero
of the operators. The work [18] presents new necessary and sufficient CQs for
strong duality in a convex semidefinite optimization. The work [28] discusses the
problem of optimal control theory given by second-order sweeping processes with
discrete and DFIs. The use of difference operators of the first and second -order
connects the second order sweeping processes with the discrete-approximate prob-
lem. Based on this, optimality conditions for discrete-approximate inclusions and
transversality conditions are obtained. The establishment of adjoint inclusions
of the Euler-Lagrange type is based on the existence of equivalence relations for
LAMs. The paper [25] is devoted to the duality of the Mayer problem for k-th
order viable DFIs with endpoint constraints, where k is an arbitrary natural num-
ber. Using locally adjoint mappings in the form of Euler-Lagrange type inclusions
and transversality conditions, sufficient optimality conditions are obtained. It is
noteworthy that the EulerLagrange type inclusions for both primary and dual
problems are ”duality relations”.

Semilinear differential/discrete inclusions are attracting more and more atten-
tion due to the development of control theory, for which the reader can refer to



298 DILARA MASTALIYEVA

[1, 11, 16, 35] and their references. The paper [1] discusses the controllability
problem for damped second-order impulsive neutral functional-differential sys-
tems in Banach spaces. Sufficient conditions for controllability results are derived
using the Sadovskii fixed-point theorem combined with a non-compact condition
on the cosine family of operators. An earlier article [11] considers an optimal
control problem in which the dynamic equation and cost function depend on the
recent past of the trajectory. It is shown that for a given optimal solution there
exists an associated arc of bounded variation that satisfies the associated Hamil-
tonian inclusion. From this result one can easily derive the well-known smooth
versions of the Pontryagin maximum principle for hereditary problems. The pa-
per [35] deals with optimal control problems for dynamical systems governed by
constrained functional-DFIs of neutral type. Such control systems contain time
delays not only in state variables but also in velocity variables, which make them
essentially more complicated than delay-differential inclusions. The main goal is
to derive necessary optimality conditions of both Euler-Lagrange and Hamilton-
ian types.

In principle, from the point of view of universality, more interesting results were
obtained on the so-called ”higher-order problems”, in recent decades by Mahmu-
dov [24, 25, 28], since they include useful forms of the Weierstrass-Pontryagin
condition and related Euler-Lagrange type adjoint inclusions. Higher-order op-
timality conditions are in fact the main optimality tool for high-order problems
commonly encountered in practice. It suffices to recall that due to the absence of
higher-order optimality conditions, it was impossible to construct even an adjoint
equation for the well-known time-optimal problem given by a simple secondorder
differential equation x′′(t) = u, u ∈ U = [−1, 1] (see, for example [37]). Recall
that, as a rule, this problem is reduced with the help of additional variables to
the system consisting of two first-order equations, and further research is car-
ried out in a two-dimensional phase space, the main reason for which is that the
Weierstrass-Pontryagin principle is valid precisely only for first-order controlled
systems.

Note that in order to obtain the optimality condition for the Mayer problem
(HD) described by ordinary high-order delayed DFIs with constraints at the initial
points, one can use the traditional discrete-approximate method [30, 33], where
the problem (HD) is replaced by the following s-th order discrete-approximate
problem:
minimize f(x(0), x(T )) subject to ∆sx(t) ∈

∑s−1
i=1 Ai∆

ix(t) + F (x(t), t), t =
0, h, . . . , T −sh; ∆ix(0) = x0i , i = 1, . . . , s − 1, where ∆i(i = 0, . . . , s) is a i-th
order difference operator, h is a discrete step on the t-axis and x(t) ≡ xh(t)
is a grid function on a uniform grid on [0, T ]. Thus, the approximation method
makes it possible to construct an adjoint DFI and thereby establish necessary and
sufficient conditions for a rather complicated discrete-approximation problem of
s-th order. Then by passing to the limit in necessary and sufficient conditions
of this problem as h → 0, we can derive the optimality condition for the Mayer
problem (HD) described by high-order DFIs. However, due to the complexity
of the resulting higher-order difference derivative, the approach to constructing
these optimality conditions in this way is omitted. Instead, when considering the
high-order adjoint inclusion of Mahmudov [25], the formal construction of the
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adjoint inclusion for the stated problem is used.
Thus, the novelty of our problem lies in the consideration of a combination of
high-order DFIs for controlled systems. Note that the problem posed does not
lose its novelty even in the case of first-order DFIs.

The obtained results can be organized in the following order:
In Section 2, for the convenience of the readers, all definitions, basic facts and
concepts from the book of Mahmudov [21] are given.
In Section 3, a sufficient optimality condition for the problem (HD) with semi-
linear s-th order DFI is proved. The construction of conjugate DFIs is based on
some auxiliary propositions and the Euler-Lagrange type of conjugate DFIs, ob-
tained in [25]. In addition, the so-called transversality conditions associated with
the endpoints of the ”adjoint” trajectory are also formulated. It turns out that,
the classical adjoint Euler-Lagrange inclusion follows from the existing optimality
conditions (Remarks 3.2 and 3.3). Further, it is also possible to obtain optimal-
ity conditions in the form of a Hamiltonian function for the problem posed by
Loewen and Rockafellar [20], which means that there is actually no ”gap” be-
tween the necessary and sufficient conditions.
In Section 4 are given some applications of problem (HD). At the beginning of
the section, some sufficient optimality conditions are obtained for a high-order
semilinear optimal control problem (LHR) in the form of Ponrtyagin’s maximum
principle [37]. At the end of the section, we consider a polyhedral optimization
problem and give some interpretation of it related to abstract economics.

2. Necessary Facts, Preliminary Information

All definitions and concepts that we come across can be found in Mahmu-
dov’s book [21]. Suppose that G : Rns ⇒ Rn is a set-valued mapping from
ns-dimensional Euclidean space Rns into the family of subsets of Rn, ⟨x, v⟩ be an
inner product of x and v. G is convex closed if its graph gph G = {(z, v) : v ∈
G(z)}, z = (x, x1, . . . , xs−1) is a convex closed set in Rn(s+1). Let’s give impor-
tant definitions of Hamiltonian function and argmaximum set for a set-valued
mapping G, which we will often see in the paper:

HG (z, v∗) = sup
v

{⟨v, v∗⟩ : v ∈ G(z)} ,

GA (z; v∗) = {v ∈ G(z) : ⟨v, v∗⟩ = HG (z, v∗)} , v∗ ∈ Rn.

If G(z) = ∅ in order to ensure the concavity of the Hamiltonian function, we
put HG (z, v∗) = −∞. For such a mapping G, the cone of tangent directions [21,
p.61] at the point (z, v) ∈ gphG is defined as follows

KG(z, v) ≡ KgphG (z, v) = cone [gphG− (z, v)] = {(z̄, v̄) :
z̄ = γ (z1 − z) , v̄ = γ (v1 − v) , γ > 0} ,∀ (x1, v1) ∈ gphG.

The main objects of our study are the so-called LAMs, which are natural exten-
sions of the adjoint operator to the classical derivatives of smooth mappings. A
set-valued mapping G∗(·, z, v) : Rn ⇒ Rns defined by

G∗ (v∗; (z, v)) = {z∗ : (z∗,−v∗) ∈ K∗
G(z, v)}
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is called the LAM to G at a point (z, v) ∈ gphG, where K∗
G(z, v) is the dual cone.

Note that, using the definition of the cone of tangent vectors in the non-convex
case, the LAM for nonconvex set-valued mappings is determined by the same
formula [21, p.129].
In terms of Hamiltonian mappings, a ”dual” mapping defined by

G∗ (v∗; (z, v)) := {z∗ : HG (z1, v
∗)−HG (z, v∗)

≤ ⟨z∗, z1 − z⟩ ,∀z1 ∈ Rns} , v ∈ G (z; v∗)

is called the LAM to ”nonconvex” mapping G at a point (z, v) ∈ gphG. Obvi-
ously, in the convex case HG (·, v∗) is concave and the latter definition of LAM
coincide with the previous definition of LAM. Similarly to the definition of the
Weierstrass excess function, for all fixed z∗, v∗ let us denote R (z, z1, z

∗, v∗) =
HG (z1, v

∗)−HG (z, v∗)−⟨z∗, z1 − z⟩. It follows that in particular, if HG (·, v∗) is
concave, then the function R (·, ·, z∗, v∗) is a nonpositive, i.e., R (z, z1, z

∗, v∗) ≤ 0.
The geometric meaning of this is that, for each z1, the graph of the function
HG (·, v∗) lies below its tangent plane HG (z, v∗) + ⟨z∗, z1 − z⟩ at the point z,
which can be interpreted as a local concavity property of the Hamilton function.

A function f = f(x, y) is called a proper function if it does not assume the
value −∞ and is not identically equal to +∞. Obviously, f is proper if and only
if dom f ̸= ∅ and f(x, y) is finite for (x, y) ∈ dom f = {(x, y) : f(x, y) < +∞}.

3. Sufficient Condition of Optimality for a Problem (HD) with
s-th Order DFI

In this section, we formulate a sufficient optimality condition in the form of
an adjoint EulerLagrange type inclusion for the problem under consideration.
Due to the fact that the construction of a Euler-Lagrange-type inclusion, as well
as the transversality conditions, are complicated by the accompanying discrete
and discrete-approximation problems [21], we omit them and use the generalized
adjoint DFI [25] together with the following auxiliary propositions.

Proposition 3.1. Let G(z) =
∑s−1

i=1 Aixi + F (x), where Ai, i = 1, . . . , s − 1 be
n × n matrix and F be a convex set-valued mapping F : Rn ⇒ Rn. Then the
following formulas are true:

(i) HG (z, v∗) =
∑s−1

i=1 ⟨Aixi, v
∗⟩+HF (x, v∗),

(ii) GA (z; v∗) = FA (x; v∗) , v∗ ∈ Rn.

Proof. In fact, by definition of argmaximum set we obtain

HG (z, v∗) = sup
v

{⟨v, v∗⟩ : v ∈ G(z)} = sup
v1

{〈
s−1∑
i=1

Ajxj + v1, v
∗

〉
: v1 ∈ F (x)

}

=
s−1∑
i=1

⟨Aixi, v
∗⟩+ sup

v1
{⟨v1, v∗⟩ : v1 ∈ F (x)} =

s−1∑
i=1

⟨Aixi, v
∗⟩+HF (x, v∗) .

Then considering this formula and definition of argmaximum set again, we have
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GA (z; v∗) =

{
v ∈

s−1∑
i=1

Aixi + F (x) : ⟨v, v∗⟩ =
s−1∑
i=1

⟨Aixi, v
∗⟩+HF (x, v∗)

}

=

{
v ∈

s−1∑
i=1

Aixi + F (x) :

〈
v −

s−1∑
i=1

Aixi, v
∗

〉
= HF (x, v∗)

}
= {v1 ∈ F (x) : ⟨v1, v∗⟩ = HF (x, v∗)} = FA (x; v∗) .

□

Proposition 3.2. The LAM G∗ and the LAM F ∗ for v ∈ FA (x; v∗) are related
by the following formula

G∗ (v∗; (z, v)) =
{(

x∗, A∗
1v

∗, . . . , A∗
s−1v

∗) : x∗ ∈ F ∗ (v∗; (x, v))
}
.

Proof. By condition (i) of Proposition 3.1 we have

HG (z, v∗) =

s−1∑
j=1

⟨Ajxj , v
∗⟩+HF (x, v∗) .

Obviously, dom
∑s−1

i=1 ⟨Aixi, v
∗⟩ =

⋂s−1
i=1 dom ⟨Aixi, v

∗⟩ = Rn(s−1) and for x ∈
ridomHF (·, v∗) these functions are continuous. Then, according to well-known
theorems [23] of convex analysis

∂zHG (z, v∗) =
{(

x∗, A∗
1v

∗, . . . , A∗
s−1v

∗) : x∗ ∈ ∂xHF (x, v∗)
}
. (3.1)

On the other hand, by Theorem 2.1[23] G∗ (v∗; (z, v)) = ∂zHG (z, v∗), if v ∈
GA (z; v∗) and since G∗ (v∗; (z, v)) = ∂zHG (z, v∗) , F ∗ (v∗; (x, v)) = ∂xHF (x, v∗)
we have from (3.1) the needed result. Here by condition (ii) of Proposition 3.1
GA (z; v∗) = FA (x; v∗) and both the LAM G∗ and F ∗ are nonempty. □

To construct adjoint DFIs, we return to Mahmudov’s adjoint inclusion [30]
and Proposition 3.2. Thus, the reminded generalized inclusion consists of the
following:(

(−1)sx∗(s)(t) +
dφ∗

s−1

dt
(t), φ∗

s−1(t) +
dφ∗

s−2

dt
, . . . , φ∗

2(t) +
dφ∗

1

dt
, φ∗

1(t)

)
(3.2)

∈ G∗
(
x∗(t);

(
x̃(t), x̃′(t), . . . , x̃(s)(t)

)
, t
)
,

where G(·, t) : Rns ⇒ Rn and auxiliary functions φ∗
i (·), i = 1, . . . s − 1 arise due

to the presence of x̃′(·), . . . , x̃(s−1)(·). Then, taking into account the structure of
LAM G∗ in Proposition 3.2, in terms of variables (3.2), we obtain that

(−1)sx∗(s)(t) +
dφ∗

s−1

dt
(t) ∈ F ∗

(
x∗(t);

(
x̃(t), x̃(s)(t)

)
, t
)
, (3.3)

where according to (3.2)

φ∗
1(t) = A∗

s−1x
∗(t), φ∗

2(t) +
dφ∗

1

dt
= A∗

s−2x
∗(t), . . . , φ∗

s−1(t) +
dφ∗

s−2

dt
= A∗

1x
∗(t).

Here, successively differentiating φ∗
i (t) and substituting it into the next relation

to obtain φ∗
i+1(t), we have the useful formula

φ∗
s−1(t) = A∗

1x
∗(t)−A∗

2x
∗′(t) +A∗

3x
∗′′ − · · ·+ (−1)sA∗

s−1x
∗(s−2)(t),
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whereas, differentiating again, we have

dφ∗
s−1(t)

dt
= A∗

1x
∗′(t)−A∗

2x
∗′′(t) +A∗

3x
∗′′′ − · · ·+ (−1)sA∗

s−1x
∗(s−1)(t). (3.4)

Finally, substituting (3.4) into the adjoint DFI (3.3) and taking into account the
specifics of systems for the Mayer problem (HD) with high-order DFI, we can
formulate the following EulerLagrange type adjoint inclusion and the so-called
transversality conditions:
(a) (−1)sx∗(s)(t)−

∑s−1
i=1 (−1)iA∗

ix
∗(i)(t) ∈ F ∗ (x∗(t); (x̃(t), x̃(s)(t)) , t),

a.e. t ∈ [0, T ]

(b) x̃(s)(t)−
∑s−1

i=1 Aix̃
(i)(t) ∈ FA (x̃(t);x∗(t), t), a.e. t ∈ [0, T ]

(c)
(
(−1)s−1x∗(s−1)(0)−

∑s−1
i=1 (−1)i−1A∗

ix
∗(i−1)(0), (−1)sx∗(s−1)(T )

−
∑s−1

i=1 (−1)iA∗
ix

∗(i−1)(T )
)
∈ ∂(x,y)f(x̃(0), x̃(T )), x∗(i)(T ) = 0, i = 0, . . . , s − 2.

The definition of the solution to the Euler-Lagrange inclusion is defined appro-
priately to the definition of the solution to problem (HD); a pair of absolutely
continuous functions x∗(t), x∗(·) ∈ ACs−1([0, T ])∩W1,s([0, T ]), is called a feasible
solution to problem (a) - (c), if x∗(·) satisfy the associated inclusions (a) and the
transversality condition (c).

Theorem 3.1. Let F (·, t) : Rn ⇒ Rn be a convex mapping, f : R2n → R1∪{+∞}
be continuous proper convex function and Ai, i = 1, . . . , s−1 be n×n real matrices.
Then, for optimality of the trajectory x̃(·) in problem (HD), it is sufficient that
there exists a pair of functions x∗(·) satisfying a.e. the adjoint Euler-Lagrange
type inclusion (a), (b) and the transversality condition (c).

Proof. Recall that, according to Theorem 2.1 [21, p.62], the Euler-Lagrange in-
clusion (a) is equivalent to the subdifferential inclusion

(−1)sx∗(s)(t)−
s−1∑
i=1

(−1)iA∗
ix

∗(i)(t) ∈ ∂xHF (x̃(t), x∗(t)) , t ∈ [0, T ],

whereas, by definition of Hamiltonian function HF implies that

HF (x(t), x∗(t))−HF (x̃(t), x∗(t))

≤

〈
(−1)sx∗(s)(t)−

s−1∑
i=1

(−1)iA∗
ix

∗(i)(t), x(t)− x̃(t)

〉
. (3.5)

Further, by condition (b) of theorem and Proposition 3.1 and definition of
Hamiltonian, we have

HF (x̃(t), x∗(t)) =
〈
x̃(s)(t), x∗(t)

〉
−

s−1∑
i=1

〈
Aix̃

(i)(t), x∗(t)
〉

=

〈
x̃(s)(t)−

s−1∑
i=1

Aix̃
(i)(t), x∗(t)

〉
,

(3.6)

HF (x(t), x∗(t)) = HG (x(t), x∗(t))

−
s−1∑
i=1

〈
Aix

(i)(t), x∗(t)
〉
≥

〈
x(s)(t)−

s−1∑
i=1

Aix
(i)(t), x∗(t)

〉
.

(3.7)



SEMILINEAR INCLUSIONS . . . 303

Hence, considering the two relations (3.6),(3.7) from inequality (3.5) we obtain〈
x(s)(t)−

s−1∑
i=1

Aix
(i)(t), x∗(t)

〉
−

〈
x̃(s)(t)−

s−1∑
i=1

Aix̃
(i)(t), x∗(t)

〉

≤
〈
(−1)sx∗(s)(t), x(t)− x̃(t)

〉
−

s−1∑
i=1

〈
(−1)ix∗(i)(t), Ai(x(t)− x̃(t)

〉
(3.8)

Hence, from the inequality (3.8) we derive

∫ T

0

[〈
x(s)(t)− x̃(s)(t), x∗(t)

〉
−
〈
(−1)sx∗(s)(t), x(t)− x̃(t)

〉]
dt (3.9)

≤
s−1∑
i=1

∫ T

0

[〈
Ai

(
x(i)(t)− x̃(i)(t)

)
, x∗(t)

〉
−
〈
(−1)ix∗(i)(t), Ai(x(t)− x̃(t)⟩

]
dt.

and finally, from (3.9) we immediately derive that∫ T

0

[〈
x(s)(t)− x̃(s)(t), x∗(t)

〉
−
〈
(−1)sx∗(s)(t), x(t)− x̃(t)

〉]
dt

−
s−1∑
i=1

∫ T

0

[〈
Aix

(i)(t)−Aix̃
(i)(t), x∗(t)

〉
−
〈
(−1)ix∗(i)(t), Aix(t)−Aix̃(t)

〉]
dt ≤ 0. (3.10)

Hence, denoting M =
〈
x(s)(t)− x̃(s)(t), x∗(t)

〉
−
〈
(−1)sx∗(s)(t), x(t)− x̃(t)

〉
in

square brackets on the left hand-side of inequality (3.10), we can reduce M to
the following useful relation

M = − d

dt

〈
(−1)sx∗(s−1)(t), x(t)− x̃(t)

〉
− d

dt

〈
(−1)s−1x∗(s−2)(t), x′(t)− x̃′(t)

〉
− d

dt

〈
(−1)s−2x∗(s−3)(t), x′′(t)− x̃′′(t)

〉
− d

dt

〈
(−1)s−3x∗(s−4)(t), x′′′(t)− x̃′′′(t)

〉
− · · ·+ d

dt

〈
x∗(t), x(s−1)(t)− x̃(s−1)(t)

〉
.

(3.11)

Now, if we integrate (3.11) over [0, T ] according to higher-order differential cal-
culus [24], we obtain∫ T

0
Mdt =

s−1∑
i=0

〈
(−1)i+1x∗(i)(0), x(s−i−1)(0)− x̃(s−i−1)(0)

〉
−

s−1∑
i=0

〈
(−1)i+1x∗(i)(T ), x(s−i−1)(T )− x̃(s−i−1)(T )

〉
. (3.12)

Recall that x(·) and x̃(·) are feasible
(
x(i)(0) = x̃(i)(0) = x0i , i = 1, . . . , s− 1

)
and

by the second transversality condition x∗(i)(T ) = 0, i = 0, . . . , s− 2. Considering
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these from the last relation (3.12) we have more compactly∫ T

0
Mdt =

〈
(−1)sx∗(s−1)(0), x(0)− x̃(0)

〉
−
〈
(−1)sx∗(s−1)(T ), x(T )− x̃(T )

〉
.

(3.13)

Let us now calculate the second integral in (3.11); by analogy denoting Aix(t) =
ηi(t), i = 1, . . ., s− 1 and

Qi =
〈
Aix

(i)(t)−Aix̃
(i)(t), x∗(t)

〉
−
〈
(−1)ix∗(i)(t), Aix(t)−Aix̃(t)

〉
we should calculate the integral∫ T

0
Qidt =

∫ T

0

[〈
η
(i)
i (t)− η̃

(i)
i (t), x∗(t)

〉
−
〈
(−1)ix∗(i)(t), ηi(t)− η̃i(t)

〉]
dt,

which has the same form as the integral of M with respect to new functions
ηi(t), i = 1, . . . , s−1. Then taking into account Ajx

(j)(0) = Aj x̃
(j)(0) = Ajx

0
j ; j =

1, . . . , i and using again the second transversality condition (c)
(
x∗(j)(T ) = 0 , j =

0, . . . , i− 2) similarly to (3.13) immediately we have∫ T
0 Qidt =

〈
(−1)ix∗(i−1)(0), Aix(0)−Aix̃(0)

〉
−
〈
(−1)ix∗(i−1)(T ), Aix(T )−Aix̃(T )

〉
and

s−1∑
i=1

∫ T

0
Qidt =

〈
s−1∑
i=1

(−1)iA∗
ix

∗(i−1)(0), x(0)− x̃(0)

〉
(3.14)

−

〈
s−1∑
i=1

(−1)iA∗
ix

∗(i−1)(T ), x(T )− x̃(T )

〉
.

Finally, considering (3.13), (3.14) in inequality (3.10), we obtain〈
(−1)s−1x∗(s−1)(0)−

s−1∑
i=1

(−1)i−1A∗
ix

∗(i−1)(0), x(0)− x̃(0)

〉

+

〈
(−1)sx∗(s−1)(T )−

s−1∑
i=1

(−1)i−1A∗
ix

∗(i−1)(T ), x(T )− x̃(T )

〉
≥ 0. (3.15)

On the other hand, by the first transversality condition (c) for all feasible arcs
x(·) we have (

(−1)s−1x∗(s−1)(0)−
s−1∑
i=1

(−1)i−1A∗
ix

∗(i−1)(0)

(−1)sx∗(s−1)(T )−
s−1∑
i=1

(−1)i−1A∗
ix

∗(i−1)(T )

)
∈ ∂(x,y)f(x̃(0), x̃(T ))

or by definition of subdifferential

f(x(0), x(T ))− f(x̃(0), x̃(T ))
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≥

〈
(−1)sx∗(s−1)(0)−

s−1∑
i=1

(−1)i−1A∗
ix

∗(i−1)(0), x(0)− x̃(0)

〉

+

〈
(−1)sx∗(s−1)(T )−

s−1∑
i=1

(−1)i−1A∗
ix

∗(i−1)(T ), x(T )− x̃(T )

〉
.

Then this inequality and (3.15) imply that for all feasible trajectories f(x(0), x(T ))
−f(x̃(0), x̃(T )) ≥ 0 or f(x(0), x(T )) ≥ f(x̃(0), x̃(T )) i.e., x̃(·) is the optimal tra-
jectory. □

Remark 3.1. We remind that the next approach to constructing the adjoint Euler-
Lagrange type DFIs (a), (b) of Theorem 3.1 for such problems is to use the concept
of an adjoint differential operator; assume that Di is an i-th order operator of
derivatives of function x(·). Let us rewrite the semilinear DFI of problem (HD) in

the following operator form Lx(t) ∈ F (x(t), t), where Lx = Dsx−
∑s−1

i=1 AiD
ix is

a s -th order polynomial linear differential operator [28] with matrix coefficients
Ai, i = 1, . . . , s, and As, is unique matrix. Hence, for the case in the conditions
(a), (b) of Theorem 3.1 should be an adjoint inclusion with adjoint operator

L∗x∗(t) = (−1)sx∗(s)(t) +
∑s−1

i=1 (−1)i+1A∗
ix

∗(i)(t).

Corollary 3.1. Let F (·, t) be a convex closed set-valued mapping. Then, the con-
ditions (a), (b) of Theorem 3.1 can be rewritten in term of Hamiltonian function
as follows

(i) (−1)sx∗(s)(t) +
∑s−1

i=1 (−1)i+1A∗
ix

∗(i)(t) ∈ ∂xHF (x̃(t), x∗(t)), a.e. t ∈ [0, T ],

(ii) x̃(s)(t)−
∑s−1

i=1 (−1)i+1Aix
(i)(t) ∈ ∂v∗HF (x̃(t), x∗(t)), a.e. t ∈ [0, T ].

Proof. By Theorem 2.1 [21, p.62] and Theorem 3.1 above the LAM and argmax-
imum set are the subdifferentials of the Hamiltonian function on x and v∗, re-
spectively:

F ∗ (v∗; (x, v), t) = ∂xHF (x, v∗) , FA (x; v∗, t) = ∂v∗HF (x, v∗) .

Then the indicated inclusions (i), (ii) of corollary are equivalent with the condi-
tions (a), (b) of Theorem 3.1. □

Remark 3.2. Note that if we consider the problem (HD) with state constraints,
x(t) ∈ X(t), t ∈ [0, T ] without liner part of DFIs (1.2) it can be shown that the
Euler-Lagrange type inclusions (a), (c) of Theorem 3.1 should be replaced by

(a1) (−1)sx∗(s)(t) ∈ F ∗ (x∗(t); (x̃(t), x̃(s)(t)) , t)+K∗
X(t)(x̃(t)), a.e. t ∈ [0, T ],

(b1)
(
(−1)s−1x∗(s−1)(0), (−1)sx∗(s−1)(T )

)
∈ ∂(x,y)f(x̃(0), x̃(T )),,

x∗(i)(T ) = 0, i = 0, . . . , s− 2
where KX(t)(x̃(t)) is a cone of tangent directions at a point x̃(t) ∈ X(t), t ∈ [0, T ].
To obtain these conditions formally, it suffices to substitute zero matrices instead
of Ai,i = 1, . . . , s−1 in the conditions of Theorem 3.1. It is easy to verify that the
whole proof of Theorem 3.1 remains valid in this last case, if we remain within
the class of absolutely continuous functions. To this end as a solution of the
adjoint DFIs (a1) , (b1) we did not use a function of bounded variation in order
to consider the jumps caused by the presence of state constraints in the primal
problem. Recall only that every function with bounded variation has a finite
derivative almost everywhere, and if it has bounded variation on [0, T ], then its
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set of discontinuities can be at most countable. Note also that, each point of
discontinuity is of the first kind and that an absolutely continuous function has
a bounded variation.

Remark 3.3. In the work of Loewen and Rockafellar [20], in terms of the Hamil-
tonian and the normal cone, it was proved that the conditions of Theorem 3.1
are necessary optimality conditions for a first-order DFI. Therefore, it is inter-
esting to note that taking into account NX(t)(x̃(t)) = −K∗

X(t)(x̃(t)), the results

of Theorem 4.3 [20] and Theorem 3.1 for the problem (HD) with s = 1 coincide.
Moreover, the transversality conditions of Theorem 4.3 [20] and Theorem 3.1
coincide in the present statement of the problem (HD). Indeed, according to con-
dition (b1), since s = 1 is an odd number, we immediately have (x∗(0),−x∗(T ))
∈ ∂(x,y)f(x̃(0), x̃(T )). Therefore, in this sense, the adjoint inclusion of the prob-
lem (HD) is a natural generalization of the classical Euler-Lagrange inclusion for
first-order DFI. On the other hand, we can conclude that, in fact, in the convex
case, there is no ”gap” between the necessary and sufficient conditions.

4. Some Applications of Theorem 3.1

In this section are given some applications of problem (HD). First of all, we
formulate sufficient optimality conditions for a higher-order linear optimal control
problem, then for a higher-order polyhedral optimization also. At the end of
polyhedral optimization, some of its interpretations related to abstract economics
are given.
Let us consider the problem:

minimize f(x(0), x(T )),

(LH)
dsx(t)

dts
∈ F (x(t)), a.e. t ∈ [0, T ], F (x, y) ≡ Ā1x+BU

x(i)(0) = x0i , i = 1, . . . , s− 1,

where f is continuously differentiable function, Ā1 and B are n × n and n × r
matrices, respectively, U -convex compact in Rr. The problem is to find a control
function ũ(t) ∈ U so that the corresponding solution x̃(t) minimizes f(x(0), x(T )).

Theorem 4.1. The arc x̃(t) according to the control function ũ(t) is a solution
of the problem (LH), if there exists an absolutely continuous function x∗(t), sat-
isfying the transversality condition (c) of Theorem 3.1, the higher-order adjoint
equations and the Pontryagin maximum principle:

(−1)sx∗(s)(t) = Ā∗
1x

∗(t), a.e. t ∈ [0, T ],

⟨Bũ(t), x∗(t)⟩ = max
u∈U

⟨Bu, x∗(t)⟩ , t ∈ [0, T ].

Proof. By elementary computations, we find that if ṽ = Ā1x̃+Bũ, then

F ∗ (v∗; (x̃, ṽ)) =

{
Ā∗

1v
∗, if −B∗v∗ ∈ K∗

U (ũ),
∅, if −B∗v∗ /∈ K∗

U (ũ),

whereas ⟨u− ũ,−B∗v∗⟩ ≥ 0, u ∈ U or ⟨Bũ, v∗⟩ = maxu∈U ⟨Bu, v∗⟩. Thus, ap-
plying the conditions of Theorem 3.1 we deduce the adjoint linear differential
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equation of the higher-order, and the Pontryagin’s maximum principle [33]. In-
deed, considering that in problem (LH) all matrices Ai, i = 1, . . . , s − 1 are zero
matrices the LAM in the conditions of Theorem 3.1 is

F ∗ (v∗; (x̃, ṽ)) = Ā∗
1v

∗,−B∗v∗ ∈ K∗
U (ũ)

we have

(−1)(s)x∗(s)(t) = Ā∗
1x

∗(t), a.e. t ∈ [0, T ],

At the same time, we note that the inclusion −B∗v∗ ∈ K∗
U (ũ) expresses the fact

that the maximum principle is satisfied:

⟨Bũ(t), x∗(t)⟩ = max
u∈U

⟨Bu, x∗(t)⟩ , t ∈ [0, T ]. The proof is completed.

□

The second problem is the following ”polyhedral” problem one:

minimize f(x(0), x(T )),

(PHR)
dsx(t)

dts
∈ F (x(t)), a.e. t ∈ [0, T ], F (x) = {v : Ax− Cv ≤ d}

x(i)(0) = x0i , i = 1, . . . , s− 1,

where A,C are m×n dimensional matrices, d is a m-dimensional vector-column,
f(·, ·) is a proper convex polyhedral function [23]( epi f is a polyhedral set in
R2n+1). The problem is to find the trajectory x̃(·) of the problem (PHR) that
minimizes the Mayer functional f(·, ·). Thus, based on Theorem 3.1 for the
problem (PHR), we prove the following theorem.

Theorem 4.2. For the optimality of the trajectory x̃(·) in problem (PH) with a
higher-order polyhedral DFI, it is sufficient that there exists a nonnegative func-
tion λ(t) ≥ 0, t ∈ [0, T ] satisfying (i)- (iii):

(i) (−1)s−1C∗λ(s)(t) +A∗λ(t) = 0, a.e. t ∈ [0, T ],

(ii)
〈
Ax̃(t)− Cx̃(s)(t)− d, λ(t)

〉
= 0, a.e. t ∈ [0, T ],

(iii)
(
(−1)sC∗λ(s−1)(0), (−1)s−1C∗λ(s−1)(T )

)
∈ ∂(x,y)f(x̃(0), x̃(T )),

C∗λ(i)(T ) = 0, i = 0, . . . , s− 2.

Proof. According to Farkas theorem [21, p. 22], and the LAM calculation tech-
nique for polyhedral set-valued mappings [21] it is not hard to calculate that

F ∗ (v∗; (x̃, ṽ)) = {−A∗λ : v∗ = −C∗λ, λ ≥ 0, ⟨Ax− Cv − d, λ⟩ = 0} . (4.1)

Thus, from Theorem 3.1 and (4.1) we derive that

(−1)sx∗(s)(t) = −A∗λ(t), a.e. t ∈ [0, T ], x∗(t) = −C∗λ(t), t ∈ [0, T ],〈
Ax̃(t)− Cx̃(s)(t)− d, λ(t)

〉
= 0, a.e. t ∈ [0, T ]. (4.2)

Finally, substituting x∗(t) = −C∗λ(t), t ∈ [0, T ] into the adjoint inclusion (equa-
tion) (4.2) and the transversality condition (c) of Theorem 3.1, we obtain the
required result. □
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Remark 4.1. From the point of view of abstract economics the ”dual” variable
λ(·) =

(
λ1(t), . . . , λn(t)

)
≥ 0 can be interpreted as a price of a resource. Wherein,

if λj(t) = 0(j = 1, . . . , n) for some i whenever the supply of this resource is not
exhausted by the activities. In economic terminology, such a resource is a ”free
good”; the price of goods that are oversupplied must drop to zero by the law of
supply and demand. Generally speaking, from the point of view of the duality of
optimal control theory this fact is what justifies interpreting the objective for the
dual problem as maximizing the total implicit value of the resources consumed,
rather than the resources allocated, where the strong duality means the solution
to these matches centralized if λ(t) is optimal multiplier.

5. Conclusion

The paper deals with the development of Mayer problem for higher- order
semilinear evolution DFIs with endpoint constraints. First are derived sufficient
optimality conditions in the form of Euler-Lagrange type inclusions and transver-
sality conditions. It is shown that in the case s = 1 the adjoint inclusion for the
higher-order DFIs, defined in terms of LAM coincides with the classical Euler-
Lagrange inclusion. Hence, the problem posed does not lose its novelty even in
the case of first-order DFIs. Comparing with the problem posed by Loewen, and
Rockafellar [20] in the case of s = 1, it is easy to see that there is almost no
”gap” between the necessary and sufficient conditions. Consequently, there can
be no doubt that investigations of optimality results to semilinear problems with
higher-order DFIs can have great contribution to the modern development of the
optimal control theory and the proposed method is reliable for solving the various
problems with higher -order DFIs.
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