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NUMERICAL SOLUTION OF SINGULAR STOCHASTIC

INTEGRAL EQUATIONS OF ABEL’S TYPE USING

OPERATIONAL MATRIX METHOD

S. RAJA BALACHANDAR, D. UMA, S.G. VENKATESH, AND H. JAFARI

Abstract. This paper proposes the orthogonal shifted Legendre collo-
cation method to obtain an approximate solution for Abel-type singular
linear stochastic integral equation. Our proposed method converts the
singular linear stochastic equation to a system of algebraic equations.
The shifted Legendre polynomials are used to obtain the operational
matrices for such a conversion. The main advantage of the proposed
method is that a sparse, tridiagonal orthogonal matrix is obtained, thus
making process simple and efficient. The convergence and error analysis
of the proposed method are discussed. Numerical examples prove the
applicability and the efficiency of our proposed method.

1. Introduction

In 1823, N. H. Abel [26], a Norwegian Mathematician, made one of the earliest
applications of integral equations to a physical problem in Mechanics. Later,
many physical problems such as classical simple harmonic oscillator problems
and quantum simple harmonic problems were modelled using integral equations
[5]. In recent years, various types of deterministic and stochastic integral equa-
tions have become inevitable to represent a variety of physical problems aris-
ing in plasma physics, elasticity theory, stereology, spectroscopy, scattering the-
ory and astrophysics. Notably, stochastic integral equations have piqued the
interest of researchers more than deterministic integral equations, as the real-
time scenario can be more satisfactorily modelled using stochastic models. The
study on various deterministic integral equations of Volterra type, Fredholm
type, Volterra-Fredholm type, integro-differential equations, etc., can be seen
in [12, 17, 9, 19, 20, 21, 31, 4, 3]. Also, various problems modelled using stochas-
tic integral equations and stochastic integro-differential equations can be found
in [18, 22, 6, 16].

Most of the deterministic and stochastic integral equations of various types
are either challenging or time-consuming to solve. Varied applications of integral
equations necessitate the development of new methodologies to solve such equa-
tions. In the past several decades, researchers have developed various efficient
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numerical techniques for the same. Wavelet techniques using Haar wavelets, Le-
gendre wavelets, Boubaker wavelets [1, 10, 30], polynomial approximation meth-
ods using Legendre polynomials [24] and operational matrix methods using block
pulse function [23] are a few among many.

An integral equation is singular not only when the range of integration is in-
finite but also when the kernel has singularities within the range of integration.
Such integral equations possess very unusual properties and occur frequently
in mathematical physics. The numerical solution of one such two-dimensional
weakly singular stochastic integral equation can be seen in [28]. The application
of a new collocation technique based on Berstein polynomials can be seen in [11].
[7, 32] also throw a light on a few different numerical techniques to solve stochas-
tic integral equations. In particular, Samadyar and Farshid Mirzaee [29] have
applied the orthonormal Bernoulli polynomials collocation approach to solving
such singular stochastic integral equations of Abel-type. Also, the application of
Boubaker wavelets operational matrix of integration for such an equation can be
seen in [30].

Not only motivated by the above works but also due to the limited research
works on singular stochastic integral equations, in this article, we attempt to find
an approximate solution of the following singular stochastic Itõ-Volterra integral
equation of Abel-type:

X(t) = X0 + λ1

∫ t

0

X(s)

(t− s)α
ds+ λ2

∫ t

0
k(t, s)X(s)dB(s), t ∈ [0, 1], (1.1)

where X0, λ1 and λ2 are constants and 0 < α < 1. The functions X(t) and
k(t, s) are stochastic processes. They are defined on the probability space triplet
(Ω,F , P ). Also, B(t) is the Brownian motion process defined on the same space
and X(t), the unknown function to be determined, is the solution of the singular
stochastic Itõ-Volterra integral equation of Abel-type. Our proposed methodol-
ogy has the following advantages:

• Shifted Legendre polynomials have orthogonal property. This property
plays a vital role in obtaining the operational matrices and thereafter in
the proposed methodology, and is more convenient than the other non -
orthogonal polynomials.

• The proposed method involves operational matrices which help in re-
ducing the problem considered to an algebraic system of equations. The
system of equations thus obtained is solved, using a well-known numerical
technique.

• The proposed method provides a more accurate solution and is easy to
implement, as it involves sparse matrices.

• The convergence analysis discussed ensures the efficiency, whereas the
error analysis ensures the accuracy of the proposed method.

• The theorem on time complexity ensures the validity and applicability of
the proposed technique.

• Unlike other papers in the literature, an approximation is considered for
the kernel function which paves a way for more accurate results.

Even though the proposed method has the above-mentioned salient features that
overcome the limitations of the other methods discussed in the literature, the
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limitations of our proposed method lie in the value of N . For higher values of N ,
the amount of computational work is slightly higher.

In this paper, we use the shifted version of Legendre polynomials called shifted
Legendre polynomials to find an approximate solution to our problem under
consideration. The orthogonal property of this polynomial produces triangular,
tri-diagonal and diagonal matrices at different instances. It is very advantageous
to use this novel method as this is very simple and betterment can be realized in
solving such singular stochastic equations because of the salient features of the
shifted Legendre polynomial. The orthogonal property, together with the opera-
tional matrix of integration and stochastic integration converts the problem into
simultaneous algebraic equations. By solving the system of algebraic equations
by any known method, we arrive at the numerical solution of the problem con-
sidered. The theoretical analysis is also carried out to ensure the convergence of
the proposed approximation technique. It has also been proved that the error
function reduces to zero for larger values of the parameters involved. The ap-
plicability, validity, accuracy and efficiency of the proposed technique are tested
with some numerical examples and the solution quality can be realized through
various figures. The error curve is also plotted which justifies that fluctuations
in error fall within the error bound discussed in the theoretical analysis.

The overview of this paper comprises the following. The fundamental defini-
tions and theorems required for our subsequent study are given in the Mathe-
matical background followed by the fundamentals of shifted Legendre polynomials
and their properties. The various operational matrices required for the proposed
method are also derived. In the next section, we give a detailed presentation of
the convergence theorems and error estimates. The accuracy and applicability of
the scheme are tested on a few examples and comparative results are also pre-
sented in the section on numerical examples. The superiority of this method is
also highlighted in that section. The final section has the concluding remarks.

2. Mathematical Background

In this section, we provide the fundamental definitions of stochastic calculus
and information about our subsequent study [8, 14, 25]. We start by defin-
ing Brownian motion, which is a fundamental example of a stochastic process.
The underlying probability space (Ω,F , P ) can be constructed on the space
Ω = C0(R+) of continuous real-valued functions on R+ starting at 0. Next,
we introduce the idea of Hilbert space and Banach space, where the concept of
defining a norm has been established in the probability space (Ω,F , P ). The idea
of the convergence of a sequence {Xn} in the given space, where the function is
defined, is also discussed. The basic properties of Itô integral and Itô isometry
are also elucidated for our subsequent development.

Definition 2.1. [15] Let (Ω,F , P ) be a probability space with a filtration {Ft}t≥0.
A (standard) one-dimensional Brownian motion is a real-valued continuous {Ft}-
adapted process {Bt} t≥0 with the following properties:
(i) B0 = 0 a.s.;
(ii) for 0 ≤ s < t < ∞, the increment (Bt − Bs) is normally distributed with
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mean zero and variance (t− s);
(iii) for 0 ≤ s < t < ∞, the increment (Bt −Bs) is independent of {Fs}.

Definition 2.2. [14] Let p ≥ 2 and Lp(Ω, H) be the collection of all strongly

measurable random variables and if ∥V ∥Lp= {E |V |p}1/p =
(∫

Ω |V |p dP
)1/p

, for

each V ∈ LP (Ω, H) then Lp(Ω, H) is a Banach space.

Definition 2.3. [14] Let A,B ∈ [0, T ] → R and if A(t) ≤ λ+
∫ t
0 B(s)A(s)ds for

t ∈ [0, T ] then

A(t) ≤ λ
(∫ t

0 B(s)ds
)
for all t ∈ [0, T ] with λ ≥ 0.

Definition 2.4. [13] The sequence {Xn} converges to X in L2 if E(|Xn|2) < ∞
and E(∥Xn −X∥)2 −→ 0 when n → ∞.

Definition 2.5. [25] The Itô integral of f ∈ v(s, T ) is defined by
∫ T
s f(t, w)dB(t)(w)

= limn→∞
∫ T
s φn(t, w)dB, where φn is the sequence of elementary functions such

that E
(∫ T

s (f − φn)
2dt

)
→ 0 as n → ∞.

Lemma 2.1. [25] The Itõ isometry of f ∈ v(s, T ) is given by

E
(
(
∫ T
s (f(t, w)dB(t)(w))2

)
= E

(∫ T
s (f2(t, w)dt)

)
.

3. Shifted Legendre Polynomials

3.1. Preliminaries and properties. The Legendre polynomials, Pn(z), are
the solutions of Legendre’s Differential Equations [2]. The orthogonal property

of Legendre polynomials is defined as
∫ 1
−1 Pn(z)Pm(z)dz = 2

2n+1δnm, where δnm
is the Kronecker delta. The shifted Legendre polynomials Ln(t) are derived from
Pn(z) by replacing z with (2t − 1), which in turn refines the interval to [0, 1].
The orthogonal property of Ln(t) with Kronecker delta in [0, 1] is defined by∫ 1
0 Ln(t)Lm(t)dt = 1

2n+1δnm. Then,

(i) the recurrence relation of Ln(t) is defined as

Li+1 (t) =
(2i+ 1)(2t− 1)

i+ 1
Li (t)−

i

i+ 1
Li−1 (t) , i = 1, 2..., (3.1)

where L0 (t) = 1 and L1 (t) = 2t− 1.
(ii) The analytic form of the shifted Legendre polynomials Ln(t) of degree n is
given by

Ln (t) =
n∑

i=0

(−1)n+i (n+ i)!

(n− i)!

ti

(i!)2
. (3.2)

Note that Ln (0) = (−1)n and Ln (1) = 1.
(iii) The shifted Legendre vector L(t) is

L(t) = [L0(t) L1(t) . . . LN (t)]T . (3.3)
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(iv) the matrix form of L(t) which is of degree N can be represented as

1 0 . . . 0

(−1)1+0 (1+0)!
(1−0)!(0!)2

(−1)1+1 (1+1)!
(1−1)!(1!)2

. . . 0

(−1)2+0 (2+0)!
(2−0)!(0!)2

(−1)2+1 (2+1)!
(2−1)!(1!)2

. . . 0
...

...
...

...

(−1)N+0 (N+0)!
(N−0)!(0!)2

(−1)N+1 (N+1)!
(N−1)!(1!)2

. . . (−1)N+N (N+N)!
(N−N)!(N !)2




1
t
t2

...
tN

 .(3.4)

Thus

L(t) = DY (t). (3.5)

The dual matrix Q1 is

Q1 =

∫ 1

0
L(t)LT (t)dt =

∫ 1

0
DY (t)(DY (t))Tdt,

= D

(∫ 1

0
Y (t)Y T (t)dt

)
DT , (3.6)

= DHDT ,

where H, a Hilbert matrix of order (N + 1) is given by

H =

∫ 1

0
Y (t)Y T (t)dt =


1 1

2
1
3 . . . 1

N+1
1
2

1
3

1
4 . . . 1

N+2
1
3

1
4

1
5 . . . 1

N+3
...

...
...

. . .
...

1
N+1

1
N+2

1
N+3 . . . 1

2N+1

 .

Theorem 3.1. [23] Any arbitrary function u(t) ∈ L2[0, 1] can be approximated
in terms of Ln(t) as

u(t) =

∞∑
n=0

unLn(t), (3.7)

from which the coefficients uj are given by

uj = (2j + 1)

∫ 1

0
u(x)Lj(x)dx, j = 0, 1, .... (3.8)

If u(t) is approximated by the first (N + 1) terms, then

u(t) ≃
N∑

n=0

unLn(t) = UTL(t) = LT (t)U,

where U is the shifted Legendre coefficient vector given by

U = [u0 u1 . . . uN ]T .

We approximate the kernel function by truncating the Taylor series of degree N
in the form

k(t, s) =

N∑
m=0

N∑
n=0

kmnt
msn,
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where kmn = 1
m!n!

∂m+nk(0,0)
∂tm∂sn , n,m = 0, 1, ..., N .

The matrix form of the above expression is given by k(t, s) = Y (t)KY T (s).
Additionally, the kernel function k(t, s) can be expanded approximately by Lm(s)
and Ln(t) of degree N in the form

kN (t, s) =

N∑
m=0

N∑
n=0

LkmnLm(t)Ln(s),

and the matrix form of k(t, s) in terms of L(t) and LT (s) is

k(t, s) = L(t)KLL
T (s),KL = Lkmn .

3.2. Operational Matrices. In the subsequent parts of this section, we con-
struct operational matrices as follows. We define the product matrix Q(t), as

Q(t) = L(t)LT (t), (3.9)

where Q(t) is an (N + 1) order matrix. Let U = [u0 u1 . . . uN ]T , then

Q(t)U ≃ ÛL(t). (3.10)

Û is the product operational matrix of shifted Legendre polynomials, which is
calculated as

Q(t)U = D

[
N∑
i=0

uiLi(t)

N∑
i=0

uitLi(t) . . .

N∑
i=0

uit
nLi(t)

]T

. (3.11)

By approximating each tkLi(t) by LT (t)Ck,i, we get

Ck,i = [Ck,i
0 Ck,i

1 . . . Ck,i
N ]T .

From Eq.(7),

∫ t

0
tkLi(t)L(t)dt ≃

[∫ t

0
L(t)LT (t)dt

]
Ck,j = Q1Ck,j .

Therefore, for each i and k , we get

Ck,i ≃ Q−1
1

∫ t

0
tkL(t)Li(t)dt,

= Q−1
1

[∫ t
0 t

kL0(t)Li(t)dt
∫ t
0 t

kL1(t)Li(t)dt . . .
∫ t
0 t

kLN (t)Li(t)dt
]T

.
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Now the term
∑N

i=0 uit
kLi(t) can be computed as follows:

N∑
i=0

uit
kLi(t) ≃

N∑
i=0

uiL
T (t)Ck,i,

=

N∑
i=0

ui

N∑
j=0

Lj(t)C
k,i
j ,

=
N∑
j=0

Lj(t)
N∑
j=0

uiC
k,i
j ,

= LT (t)
[∑N

i=0 uiC
k,i
0

∑N
i=0 uiC

k,i
1 . . .

∑N
i=0 uiC

k,i
N

]T
,

= LT (t)[Ck,0 Ck,1 . . . Ck,N ]TU.

Thus,

N∑
i=0

uit
kLi(t) ≃ LT (t)Ĉk. (3.12)

where Ĉk = [Ck,0 Ck,1 . . . Ck,N ]U , k = 0, 1, 2 . . . N .

Let L̂ = [Ĉ0 Ĉ1 . . . ĈN ] be a matrix. From (3.11) and (3.12), we obtain

Û = DL̂T .
The integrals of Ln(s) are evaluated with the aid of recurrence property of Ln(t)∫ t

0
Ln(s)ds =

1

2(2n+ 1)
[Ln+1(t)− Ln−1(t)]. (3.13)

Therefore, ∫ t

0
L(s)ds = PL(t)− 1

2(2n+ 1)
Ln+1(t), (3.14)

where P is the matrix, which denotes the integration matrix of polynomials, given
by

P =



1
2

1
2 0 0 . . . 0 0

−1
6 0 1

6 0 . . . 0 0
0 1

10 0 1
10 . . . 0 0

0 0 −1
14 0 . . . 0 0

...
...

...
...

...
...

0 0 0 0 . . . 0 1
2(2m−3)

0 0 0 0 . . . −1
2(2m−3) 0


. (3.15)

The integration of the vector L(t) can be approximated from (3.14)∫ t

0
L(s)ds ≃ PL(t). (3.16)

Hence any function f(t) is approximated as∫ t

0
f(s)ds ≃

∫ t

0
F TL(s)ds = F TPL(t). (3.17)
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3.3. Stochastic operational matrix of shifted Legendre polynomials.
For the vector L(t), we define it’s Itõ integral with stochastic operational matrix
of integration Ps as ∫ t

0
L(s)dW (s) = PsL(t), (3.18)

where Ps is the stochastic operational matrix of integration of order (N + 1) ×
(N + 1). It is computed as follows:∫ t

0
L(s)dW (s) =

∫ t

0
DX(s)dW (s), (3.19)

= D
[∫ t

0 dW (s)
∫ t
0 sdW (s) . . .

∫ t
0 s

NdW (s)
]T

,

= D
[
W (t)Y (t)−

[
0

∫ t
0 dW (s) . . . N

∫ t
0 s

N−1dW (s)
]T ]

,

= Dϑ(t) = D(λi), i = 0, 1, ..., N,

where λi = tiW (t)−
∫ t
0 s

i−1W (s)ds, i = 0, 1, ..., N.
Evaluating the integral for each i, we get,

λi = tiW (t)− ti

4 (2(
t
2)

i−1W ( t2) + ti−1W (t)) = [(1− i
4)W (t)− i

2W ( t2)]t
i.

We assume that W (0.5) and W (0.25) are the approximate value of W (t) and
W ( t2) respectively for any value of t ∈ [0, 1]. Hence,

Dϑ(t) = D Γs


1
t
...
tN

 ,

where

Γs =


W (0.5) 0 . . . 0

0 3
4W (0.5)− 1

2W (0.25) . . . 0
...

...
. . .

...
0 0 . . . (1− N

4 )W (0.5)− N
2N

W (0.25)

 .

Hence, Dϑ(t) = DΓsY (t)= DΓsD
−1L(t)= PsL(t), where Ps= DΓsD

−1.
By using (3.7) and (3.16), the Itõ integral of any function u(t) is defined as∫ t

0
u(s)dW (s) =

∫ t

0
UTL(s)dW (s) = UTPsL(t). (3.20)

3.4. Proposed method. The stochastic processes X(t) and k(t, s) are approx-
imated as follows:

X(t) = XTL(t) (or) LT (t)X,

k(t, s) = LT (t)KL(s) (or) LT (s)KL(t),
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where X and K are the shifted Legendre coefficient matrices corresponding to
X(t) and k(t, s) respectively. Substituting the above approximations in (1.1),

XTL(t) = X0 + λ1

∫ t

0

XTL(s)

(t− s)α
ds+ λ2

∫ t

0
LT (t)KL(s)LT (s)XdB(s). (3.21)

Let I1 = λ1

∫ t

0

XTL(s)

(t− s)α
ds and I2 = λ2

∫ t

0
LT (t)KL(s)LT (s)XdB(s).

Consider I1,

I1 = λ1

∫ t

0

XTL(s)

(t− s)α
ds,

= λ1X
T

∫ t

0

L(s)

(t− s)α
ds, where L(s) =

[
1 s s2 . . . sN

]T
.∫ t

0

L(s)

(t− s)α
ds =

[∫ t

0

1

(t− s)α
ds

∫ t

0

s

(t− s)α
ds . . .

∫ t

0

sN

(t− s)α
ds

]
,

where,

∫ t

0

sn

(t− s)α
ds =

Γ(n+ 1)Γ(1− α)

Γ(n+ 2− α)
tn+1−α.

Therefore, I1 becomes,

λ1

∫ t

0

XTL(s)

(t− s)α
ds = λ1X

T

[
Γ(1)Γ(1− α)

Γ(2− α)
t1−α . . .

Γ(N + 1)Γ(1− α)

Γ(N + 2− α)
tN+1−α

]T
,

= λ1X
TRL(t)(say).

Consider I2,

λ2

∫ t

0
LT (t)KL(s)LT (s)XdB(s) = λ2L

T (t)K

∫ t

0
L(s)LT (s)XdB(s),

= λ2L
T (t)K

∫ t

0
Q(s)XdB(s),

= λ2L
T (t)KX̂

∫ t

0
L(s)dB(s),

= λ2L
T (t)KX̂PsL(s),

= λ2M̂L(t)(say).

Substituting the above, (3.21) becomes,

XTL(t) = X0 + λ1X
TRL(t) + λ2M̂L(t). (3.22)

By collocating (3.22) at (N + 1) points defined on ti =
2i+1

2(N+1) , i = 0, 1, 2, ..., N ,

we arrive at the following (N + 1) linear algebraic system of equations:

XTL(ti) = X0 + λ1X
TRL(ti) + λ2M̂L(ti), i = 0, 1, 2, ..., N. (3.23)

Solving the above linear algebraic system of equations using an appropriate well-
known numerical method, the approximate solution of (1.1) is obtained.
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4. Theoretical Analysis

Let the error function eN (t) = (X(t)−XN (t)), where XN (t) is the N th degree
approximation of the exact solution X(t). The error bound and convergence
theorem are as follows:

Theorem 4.1. Let fN (t) be the shifted Legendre approximation of an arbitrary

function f(t), then the error bound is given by ∥f(t)− fN (t)∥ ≤ CF̂2−N , t ∈
[0, 1], F̂ = supt

∥∥fN (t)
∥∥
L2 , C being a constant.

Proof.

∥f(t)− fN (t)∥2 =
∫ 1

0
(f(t)− fN (t))2 dt,

≤
∫ 1

0

(
1

N !2N
F̂ dt

)2

,

≤
(

1

N !2N
F̂

)2

,

=
(
CF̂2−1

)2
, where C =

1

N !
and F̂ = sup

t

∥∥fN (t)
∥∥ .

Theorem 4.2. Let kN (t, s) be the shifted Legendre approximation of an arbi-
trary function k(t, s), then the error bound is given by ∥k(t, s)− kN (t, s)∥ ≤
ĈK̂2−2N , (t, s) ∈ [0, 1] × [0, 1], K̂ = sup(t,s)

∥∥∥∂2Nk(t,s)
∂tN∂sN

∥∥∥
L2

, Ĉ being a positive

constant.

Proof. The proof of this theorem is similar to the proof of the previous
theorem.

Theorem 4.3. Consider the singular stochastic Itõ-Volterra integral equation
of Abel-type denoted by (1.1). Let XN (t) be the approximate solution obtained
by using shifted Legendre polynomial approximation. Furthermore, assume the
following:
(I) XN (t) ≤ A1, t ∈ [0, 1]
(II) kN (t, s) ≤ A2, (t, s) ∈ [0, 1]× [0, 1]
(III) G(N) < 1, then we have,

∥X(t)−XN (t)∥ ≤
|λ1|

∣∣∣ (X(ϵ)−XN (ϵ))
1−α

∣∣∣ t(1−α) + |λ2| ∥B(t)∥A1λ(N)

1− |λ2| ∥B(t)∥ (λ(N) +A2)

and XN (t) → X(t)in L2 when E
(
|eN (t)|2

)
→ 0 where λ(N) = ĈK̂2−2N and

G(N) = |λ2| ∥B(t)∥ (λ(N) +A2) .

Proof. We know that,

X(t) = X0 + λ1

∫ t

0

X(s)

(t− s)α
ds+ λ2

∫ t

0
k(t, s)X(s)dB(s),

XN (t) = X0 + λ1

∫ t

0

XN (s)

(t− s)α
ds+ λ2

∫ t

0
kN (t, s)XN (s)dB(s).
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Therefore,

eN (t) = λ1

∫ t

0

X(s)−XN (s)

(t− s)α
ds+ λ2

∫ t

0
(k(t, s)X(s)− kN (t, s)XN (s)) dB(s).

(4.1)

Let

J1 = λ1

∫ t

0

X(s)−XN (s)

(t− s)α
ds,

J2 = λ2

∫ t

0
(k(t, s)X(s)− kN (t, s)XN (s)) dB(s).

To simplify the above expressions, we state the result as mentioned in [27]
If h : [p, q] → R is a continuous function and f is an integrable function that its

sign does not change on the interval [p, q], then there exists a constant ϵ ∈ (p, q)
such that

∫ q
p h(x)f(x)dx = h(ϵ)

∫ q
p f(x)dx.

By the above result,

J1 = λ1 (X(ϵ)−XN (ϵ))

∫ t

0

1

(t− s)α
ds,

= λ1
(X(ϵ)−XN (ϵ))

1− α
t(1−α),

therefore, ∥J1∥ ≤ |λ1|
∣∣∣∣(X(ϵ)−XN (ϵ))

1− α

∣∣∣∣ t(1−α).

and

J2 = λ2

∫ t

0
(k(t, s)X(s)− kN (t, s)XN (s)) dB(s),

∥J2∥ ≤ |λ2| ∥B(t)∥ (λ(N) ∥eN (t)∥+A2 ∥X(t)−XN (t)∥+A1λ(N)) .

Using the above inequalities in (4.1) ,

∥eN (t)∥ ≤ |λ1|
∣∣∣∣(X(ϵ)−XN (ϵ))

1− α

∣∣∣∣ t(1−α)

+ |λ2| ∥B(t)∥ (λ(N) ∥eN (t)∥+A2 ∥eN (t)∥+A1λ(N))

∥eN (t)∥ ≤
|λ1|

∣∣∣ (X(ϵ)−XN (ϵ))
1−α

∣∣∣ t(1−α) + |λ2| ∥B(t)∥A1λ(N)

1− |λ2| ∥B(t)∥ (λ(N) +A2)

also, ∥eN (t)∥ = E
(
|eN (t)|2

)
.

By Gronwall inequality, E
(
|eN (t)|2

)
→ 0. Hence, the theorem is proved.

4.1. Time complexity. This proposed method deals with matrix multiplica-
tion and solving a system of equations. The key steps involved in the calculation
of time complexity of the proposed approach are the construction of the ap-
proximation vector, computation of various matrices like D,P,Γs, Ps, R, M̂ . This
approach also involves the process of initialization of λ1 and λ2 values. Finally,
generating and solving the system of equations in terms of connection coefficients
according to (3.23) and handling them in terms of traditional numerical methods.
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Theorem 4.4. Suppose that N and k are the degree of the approximate func-
tion and the number of simulations respectively, then the time complexity of this
proposed method is O(k(N + 1)2).

Proof. The key steps involved in the proposed approach are as given below:
Step 1: Construct the approximate vector L(x), L(t).

Step 2: Compute the matrices D,H,KL, P,Γs, Ps, R, M̂ .
Step 3: Initialize λ1 and λ2.
Step 4: Generate and solve the system of algebraic equations according to (3.23).
This proposed method has 2 major steps of computation. Step 2 computes various

matrix multiplications which require O
(
(N + 1)2

)
time. Step 4 computes the

system of equations and displays the approximate solution numerically. They

require O
(
(N + 1)2

)
time. These steps are executed k times. Hence, the overall

time complexity of this proposed method is O
(
k (N + 1)2

)
. □

5. Numerical Analysis

Two examples are considered to illustrate the reliability, effectiveness and ef-
ficiency of our proposed method. The numerical calculations were performed by
running a code written using MAPLE software and MATLAB.
Example 1:
Consider the linear singular stochastic Itõ - Volterra integral equation: [29]

X(t) =
1

18
−
∫ t

0

X(s)

(t− s)α
ds−

∫ t

0
sin(s)X(s)dB(s), t ∈ [0, 1]. (5.1)

The exact solution for the above problem is

X(t) =
1

18
exp

(
− t1−α

1− α
− 1

4
t+

1

8
sin(2t)−

∫ t

0
sin(s)dB(s)

)
.

Figure.1 is the error graph obtained for α = 0.125, 0.25 for N = 4, 8. Tables 1
and 2 depict the exact solution, and the comparison of approximate solution us-
ing the proposed methodology(SLP) with Bernoulli polynomials method (BPM)
and Boubaker Wavelet method (BWM) with α = 0.5 for N = 4 and N = 8
respectively.

Table 1. Error comparison for Example 1(α = 0.5 and N=4).

N=4 Absolute error

ti Exact SLP BPM[29] BWM[30] SLP BPM BWM

0.0 0.0555 0.0556 0.0453 0.0496 0.0001 0.0102 0.0060

0.1 0.029 0.0295 0.0379 0.0267 0.0005 0.0089 0.0023

0.2 0.022 0.0227 0.0323 0.0219 0.0004 0.0100 0.0004

0.3 0.017 0.0185 0.0281 0.0245 0.0010 0.0106 0.0070

0.4 0.015 0.0156 0.0249 0.0154 0.0005 0.0098 0.0003

0.5 0.014 0.0133 0.0223 0.0216 0.0007 0.0083 0.0076

0.6 0.010 0.0115 0.0200 0.0177 0.0013 0.0098 0.0075

0.7 0.014 0.0101 0.0180 0.0118 0.0044 0.0035 0.0027

0.8 0.012 0.0090 0.0163 0.0154 0.0039 0.0033 0.0025

0.9 0.008 0.0082 0.0148 0.0050 0.0000 0.0066 0.0032
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Table 2. Error comparison for Example 1(α = 0.5 and N=8).

N=8 Absolute error

ti Exact SLP BPM BWM SLP BPM BWM

0.0 0.0555 0.0556 0.0492 0.0523 0.0001 0.0063 0.0033

0.1 0.0300 0.0295 0.0385 0.0313 0.0006 0.0085 0.0012

0.2 0.0220 0.0227 0.0322 0.0291 0.0002 0.0097 0.0066

0.3 0.0187 0.0187 0.0277 0.0245 0.0000 0.0090 0.0058

0.4 0.0134 0.0156 0.0242 0.0154 0.0022 0.0108 0.0020

0.5 0.0111 0.0133 0.0213 0.0132 0.0022 0.0103 0.0021

0.6 0.0134 0.0115 0.0190 0.0148 0.0019 0.0056 0.0014

0.7 0.0100 0.0107 0.0170 0.0130 0.0000 0.0063 0.0023

0.8 0.0074 0.0090 0.0154 0.0054 0.0016 0.0080 0.0020

0.9 0.0059 0.0082 0.0140 0.0060 0.0023 0.0081 0.0001

Figure 1. Error graphs for Example 1.

Example 2:
Consider the linear singular stochastic Itõ - Volterra integral equation:[29]

X(t) =
1

36
−
∫ t

0

X(s)

(t− s)α
ds−

∫ t

0
exsin(s)X(s)dB(s), t ∈ [0, 1]. (5.2)
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The exact solution for the above problem is

X(t) =
1

36
exp

(
− t1−α

1− α
− 1

4
te2t +

1

8
e2tsin(2t)−

∫ t

0
exsin(s)dB(s)

)
Figure.2 is the error graph obtained for α = 0.125, 0.25 for N = 4, 8. Tables 3 and
4 depict the exact solution, and the comparison of approximate solution using
the proposed methodology (SLP) with Bernoulli polynomials method (BPM)
and Boubaker Wavelet method (BWM) with α = 0.5 for N = 4 and N = 8
respectively.

Table 3. Error comparison for Example 2(α = 0.5 and N=4).

N=4 Absolute error

ti Exact SLP BPM[29] BWM[30] SLP BPM BWM

0.0 0.0277 0.0277 0.0227 0.0267 0.0000 0.0050 0.0011

0.1 0.0144 0.0148 0.0190 0.0140 0.0004 0.0046 0.0004

0.2 0.0111 0.0113 0.0162 0.0119 0.0002 0.0051 0.0008

0.3 0.0086 0.0092 0.0140 0.0092 0.0006 0.0055 0.0006

0.4 0.0073 0.0077 0.0124 0.0066 0.0004 0.0051 0.0007

0.5 0.0070 0.0065 0.0110 0.0064 0.0005 0.0040 0.0006

0.6 0.0043 0.0055 0.0097 0.0017 0.0012 0.0054 0.0026

0.7 0.0091 0.0050 0.0086 0.0088 0.0041 0.0005 0.0003

0.8 0.0079 0.0052 0.0076 0.0078 0.0027 0.0003 0.0001

0.9 0.0028 0.0037 0.0066 0.0016 0.0009 0.0038 0.0012

Table 4. Error comparison for Example 2(α = 0.5 and N=8).

N=8 Absolute error

ti Exact SLP BPM BWM SLP BPM BWM

0.0 0.0277 0.0277 0.0254 0.0264 0.0000 0.0023 0.0014

0.1 0.0146 0.0148 0.0200 0.0156 0.0002 0.0054 0.0010

0.2 0.0115 0.0113 0.0171 0.0125 0.0002 0.0056 0.0010

0.3 0.0097 0.0093 0.0152 0.0098 0.0004 0.0054 0.0001

0.4 0.0090 0.0078 0.0137 0.0086 0.0012 0.0047 0.0004

0.5 0.0077 0.0067 0.0126 0.0066 0.0010 0.0049 0.0011

0.6 0.0075 0.0058 0.0118 0.0074 0.0017 0.0043 0.0001

0.7 0.0106 0.0050 0.0112 0.0102 0.0056 0.0006 0.0004

0.8 0.0099 0.0052 0.0109 0.0093 0.0047 0.0010 0.0006

0.9 0.0083 0.0055 0.0108 0.0061 0.0028 0.0026 0.0022

6. Conclusion

In this paper, shifted Legendre orthogonal polynomial approximation method
using operational matrices has been developed to solve singular stochastic in-
tegral equations of Abel’s type. The proposed method, compared to the other
methods such as the Bernoulli polynomial collocation method and the Boubaker
wavelets method, has less computational error. The numerical calculations per-
formed by running a code written in MAPLE and the graphs demonstrate the
better efficiency and accuracy of shifted Legendre polynomial approximation and
the resultant operational matrices. The theoretical analysis manifests that the
error approaches zero for a higher degree of approximation. Hence, wherever the
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Figure 2. Error graphs for Example 2.

exact solution of a problem considered is not available, our proposed method, a
powerful tool, can be used, not only to obtain an efficient numerical solution of
singular stochastic integral equations but also, in the future, to stochastic partial
differential equations of higher orders.
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