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A STUDY OF THE HEPATITIS B VIRUS INFECTION USING

HILFER FRACTIONAL DERIVATIVE

SHYAMSUNDER, SANJAY BHATTER, KAMLESH JANGID,
AND SUNIL DUTT PUROHIT

Abstract. Mathematical models have been used to understand the fac-
tors that control infectious disease progression in viral infections. This
work considers a fractionalized model for HBV infection treating in-
fected cells. Initially, the Hilfer fractional model has been developed for
the epidemic problem. In this article analyzed the fractional form of the
model for HBV infection using a numerical technique, i.e., the Laplace
homotopy analysis method (LHAM). Homotopy analysis techniques, ho-
motopy polynomials, and Laplace transforms are used to generate the
suggested approach. Also, the convergence and uniqueness of the solu-
tion are considered. The obtained solutions are graphically simulated
through MATLAB. The results obtained can prove helpful in the medi-
cal world. The fractional model gives important and relevant inferences
to infer new information about the medical field.

1. Introduction

Hepatitis B virus is a common virus in humans that causes hepatitis. HBV
causes serious health problems and is the leading cause of death globally. Hep-
atitis B has infected about two billion individuals, and 7,80,000 people have died
as a result of it. The main cause of primary liver cancer is infectious hepatitis
B infection. This illness can be spread from one person to another in a number
of ways, including skin cuts or mucosa contact with an infected blood or bodily
fluids, as well as semen and saliva and sharing syringes. Open sores on an infected
person’s body can also spread the illness from one person to the other.

The literature behind the modeling of the dynamics of hepatitis B is very rich.
A number of models have been used by various authors to explain the dynamics
of contagious infection like HIV, hepatitis B and vector born diseases, etc. The
field of mathematical epidemiology aids in the understanding of rapid infection
transmission through the use of appropriate complete models, as well as the right
evaluation of control mechanism efficacy.

Mathematical modeling can be used to investigate the dynamic characteris-
tics of HBV infection. Among the modeling attempts, a series of mathematical
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equations is critical in explaining the dynamics of the host cell, virus, and, most
likely, the immune system.

HBV is the kind of Hepadnaviriade material that is turned into covalently
closed circular DNA from a short (3kb) partially double-stranded circular DNA
molecule (cccDNA). The nucleus of infected cells contains some copies of cccDNA
and is used to produce mRNA. The full-length unspliced mRNA, pre-genome, is
translated into DNA by viral polymerase for the creation of new virions [28].

HBV chiefly infects the hepatocytes entirely. The HBV can also infect the other
cell types by replicating at both intra and extra hepatical cites. But infection on
the cell types other than the hepatocytes is not well documented. Uninfected cells
(i.e., target cells: hepocytes), infected cells, and the virus are all incorporates in
the basic model. The creation of target cells occurs at a constant rate. These
cells are created by differentiation of progenitor cells or by direct procreation
from mature hepatocytes.

There is a lot of research on modeling the dynamics of hepatitis B: [2, 20, 22, 29,
19, 12]. Various authors have utilised a range of models to explain the dynamics of
infectious infections like hepatitis B, HIV, brain tumor, and vector-borne diseases
(see, e.g., [5, 10, 11, 15, 33]). Vargas–De–León [31] used a hepatocyte infection
model of curable infected cells as a model for HBV infection, we have (see also
[17, 23]).

The corresponding mathematical equations are

dX

dt
= a− bX − cXZ + dY,

dY

dt
= cXZ − (v + d)Y,

dZ

dt
= sY − gZ,


(1.1)

where
X the density of the hepatocytes,
Y the density of the uninfected one and the infected cells,
Z the density of virions,
a the production rate of the susceptible cells,
bX the death rate,
c the rate of infection curing,
cXZ the infected susceptible cells,
vY the death rate of infected hepatocytes,
sY the rate of production of the free virions from the infected hepatocytes,
gZ the rate of the viral particles are cleared,
d the rate of production of uninfected hepatocytes created through curing,

respectively.
The mathematical operations differentiation and integration are generalized to

arbitrary (non-integer) order under the area of mathematics: fractional calculus.
Recently, this area is applied at large scale in various fields [1, 32, 24, 14, 6].
Since differential equations are frequently used in science and engineering, and
that’s the why concept of fractional calculus (introduction of arbitrary order in
them) attracted many applied researchers [7, 4, 26, 8, 16]. The fractional calculus
is capable to perform integration and differentiation of fractional order [30, 9].
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To understand the dynamics of biological systems using mathematical models,
including the integer-order differential equations, are valuable. But, many bi-
ological systems have memory or after-effects. The models involving fractional
ordered differential equations are advantageous over the integer ordered models
as these classical models ignore such effects. Fractional operators are more bene-
ficial over integer-order differential operators because of their non-local property,
i.e., the system’s next state is influenced by all of its prior stages as well as the
current state. Due to this non-locality property of fractional operators, the non-
linear fractional model considers the full memory effects and explains the problem
accurately.

Salman and Yousef [25] used a fractional model to model the phenomenon
and produced a numerical solution utilising the predictor-corrector approach for
numerically solving fractional differential equations.

This paper investigates the fractional form of the following HBV infection
model. The use of the Hilfer fractional derivative to fractionalized the model
is advantageous since it allows the use of the classical initial condition for the
respective initial value problem without causing solvability issues. The non-linear
model considers the entire memory effects and accurately explains the difficulty
due to the non-locality of the Hilfer derivative.

The LHAM was used in the current study. This method is the outcome of mod-
ification in the homotopy analysis method with the Laplace transform technique
[18]. In comparison to normal procedures, this change provides a simplified pro-
cedure for reaching the solution. In comparison with the HAM in LHAM, there
is no requirement of assuming an auxiliary linear operator.

2. Mathematical preliminaries

In this section, certain definitions of fractional operators, namely, Riemann-
Liouville integral and Hilfer derivative. The integral transforms required in forth-
coming sections are also touched upon in this section.

Definition 2.1. Let h be a function of real value and its rth-order derivatives
(r = 1, 2, 3, ..., n) continuous on (0,∞). Then, the Hilfer fractional derivative of
order 0 ≤ ϑ ≤ 1 and 0 ≤ µ ≤ 1 with respect to y [13] is defined as, a ≥ −∞

Dϑ,µ
a+

(h(y)) =
(
I
µ(1−ϑ)
a+

d

dy
(I

(1−µ)(1−ϑ)
a+

h)
)
(y), (2.1)

Particular if µ = 0, then Dϑ,0
a+

= Dϑ
a+ R-L Derivative,

if µ = 1, then CDϑ,1
a+

= Dϑ
a+ Caputo Derivative.

Definition 2.2. Let h : R+ → R be a continuous piecewise function. Then, for
y > 0 the Riemann-Liouville fractional integral [24] of h of order Re(v) > 0 is

0D
−v
y h(y) = Ivh(y) =

1

Γ(v)

∫ y

0
(y − ξ)v−1h(ξ)dξ. (2.2)

Definition 2.3. Let g be a real-valued piecewise continuous function (0,∞).
The Laplace transform of g(z) [27] of exponential order α > 0 with respect to
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parameter z is given as follows;

L[g(z); s] = ḡ(s) = L[g(z)](s) =
∫ ∞

0
e−szg(z)dz, ℜ(s) > α, z ≥ 0. (2.3)

Definition 2.4. For the function ḡ(s), the inverse Laplace Transform with re-
spect to y ≥ 0 is given as follows [27];

L−1[ḡ(s); y] = g(y) =
1

2πi

∫ Γ+i∞

Γ−i∞
egy ḡ(s)ds, (2.4)

here Γ ∈ R is a constant.

Definition 2.5. The Laplace transform of the Hilfer fractional derivative is given
by [13] as:

L[Dµ,vh(x); p] =
pL[h(x)](p)

p1−µ
− I(1−v)(1−µ)h(0)

p(1−µ)v
= pµL[h(x)](p)− I(1−v)(1−µ)h(0)

p(1−µ)v
.

(2.5)

3. The fractionalized HBV infection model and its solution

The fractional model is selected because of the relationship between fractional-
ordered differential equations and systems with memory. This reason applies to
the immune system, which develops memory B cells and T cells capable of fighting
any threat due to previous experiences; these cells can also recognize and fight
also capable of recognizing and fighting the same danger in the future. In integer-
ordered models, on the other hand, there is no information about hepatocytes or
free virions.

When system (1.1) is rearranged using definition (2.1), the following system is
obtained.

Dµ,v
t X(t) = a− bX − cXZ + dY,

Dµ,v
t Y (t) = cXZ − (λ+ d)Y,

Dµ,v
t Z(t) = sY − gZ.

 (3.1)

Let us consider

(1− µ)(1− v) = θ, (1− µ)v = ζ. (3.2)

with initial condition for the system, X(0) = 1.73× 108 cell/(mL), Y (0) = 0 and
Z(0) = 400 copies/(mL).
Firstly, we taking the Laplace transform of the above system of equations and
using the initial conditions

L[X(t); k]− IθX(0)

kζ+µ
+

1

kµ
L[−a+ bX + cXZ − dY ] = 0,

L[Y (t); k]− IθY (0)

kζ+µ
+

1

kµ
L[−cXZ + (λ+ d)Y ] = 0,

L[Z(t); k]− IθZ(0)

kζ+µ
+

1

kµ
L[−sY + gZ] = 0.


(3.3)
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Here, the non-linear operator is defined as follows:

N1[Ψ1(t, p),Ψ2(t, p),Ψ3(t, p)] = L[Ψ1(t); p]−
Γ(θ + 1)X0

kζ+µΓ(2θ + 1)

+
1

kµ
L[−a+ bΨ1 + cΨ1Ψ3 − dΨ2],

N2[Ψ1(t, p),Ψ2(t, p),Ψ3(t, p)] = L[Ψ2(t); p]−
Γ(θ + 1)Y0

kζ+µΓ(2θ + 1)

+
1

kµ
L[−cΨ1Ψ3 + (λ+ d)Ψ2],

N3[Ψ1(t, p),Ψ2(t, p),Ψ3(t, p)] = L[Ψ3(t); p]−
Γ(θ + 1)Z0

kζ+µ
+

1

kµ
L[−sΨ2 + gΨ3],

where p ∈ [0, 1] is the embedding parameter and Ψ1(t, p), Ψ2(t, p) and Ψ3(t, p)
are real-valued function. Now, developing the homotopy,

(1− p)L[Ψi(t, p)− Ii(t)] = hiH(t)pNi[Ψ1,Ψ2,Ψ3], i = 1, 2, 3, (3.4)

where hi ̸= 0 stand for auxiliary parameter, H(t) ̸= 0 is an auxiliary function, L
is the Laplace transform operator, and Ii(t) represent the initial guess of X(t),
Y (t) and Z(t) corresponding to i = 1, 2, 3. If the embedding parameter p = 0, it
gives;

Ψ1(t; 0) = I1(t),

Ψ2(t; 0) = I2(t),

Ψ3(t; 0) = I3(t),

and for p = 1 we get,

Ψ1(t; 1) = X(t),

Ψ2(t; 1) = Y (t),

Ψ3(t; 1) = Z(t).

As a result, the value of p varies from 0 to 1, the solution Ψi(t, p) (i = 1, 2, 3)
varies from the initial guess Ii(t) (i = 1, 2, 3) to the solution X(t), Y (t) and Z(t)
respectively. On writing the function Ψi(t; p) (i = 1, 2, 3) in the form of series
using Taylor’s theorem around p, we have

X(t; p) = X0(t) +
∞∑
n=1

Xn(t)p
n,

Y (t; p) = Y0(t) +

∞∑
n=1

Yn(t)p
n, (3.5)

Z(t; p) = Z0(t) +
∞∑
n=1

Zn(t)p
n,



A STUDY OF THE HEPATITIS B VIRUS INFECTION 105

where

Xn =
1

n

∂nf1(t; p)

∂pn

∣∣∣∣
q=0

,

Yn =
1

n

∂nf2(t; p)

∂pn

∣∣∣∣
q=0

,

Zn =
1

n

∂nf3(t; p)

∂pn

∣∣∣∣
q=0

.

Now on making use of initial approximation I1(t) = X0(t), I2 = Y0(t) and I3(t) =
Z0(t), the auxiliary function H(t) = 1, selecting the parameter h appropriately,
we reach at the result given below as the series (3.5) converges at p = 1.

X(t) = X0(t) +

∞∑
n=1

Xn(t),

Y (t) = X0(t) +
∞∑
n=1

Yn(t),

Z(t) = X0(t) +

∞∑
n=1

Zn(t).

Now, defining the nth-order deformation equation

L[Xn − ϕnXn−1] = h1R1,n(Xn−1(t), Yn−1(t), Zn−1(t)),

L[Yn − ϕnYn−1] = h2R2,n(Xn−1(t), Yn−1(t), Zn−1(t)),

L[Zn − ϕnZn−1] = h3R3,n(Xn−1(t), Yn−1(t), Zn−1(t)),

 (3.6)

where

R1,n(Xn−1(t), Yn−1(t), Zn−1(t)) = L[Xn−1(t)]− (1− ϕn)
X0Γ(θ + 1)

kζ+µΓ(2θ + 1)

+
1

kµ
L[−a+ bXn−1 + cAn−1 − dYn−1],

(3.7)

R2,n(Xn−1(t), Yn−1(t), Zn−1(t)) = L[Yn−1(t)]− (1− ϕn)
Y0Γ(θ + 1)

kζ+µΓ(2θ + 1)

+
1

kµ
L[−cAn−1 + (λ+ d)Yn−1],

(3.8)

R3,n(Xn−1(t), Yn−1(t), Zn−1(t)) = L[Zn−1(t)]− (1− ϕn)
Z0Γ(θ + 1)

kζ+µΓ(2θ + 1)

+
1

kµ
L[−sYn−1 + gZn−1],

(3.9)

respectively. On taking the inverse Laplace Transform,

Xn = ϕnXn−1 + h1L
−1R1,n(Xn−1(t), Yn−1(t), Zn−1(t)),

Yn = ϕnYn−1 + h2L
−1R2,n(Xn−1(t), Yn−1(t), Zn−1(t)),

Zn = ϕnZn−1 + h3L
−1R3,n(Xn−1(t), Yn−1(t), Zn−1(t)).
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On using (3.7), (3.8), and (3.9) in above equations we obtain

Xn = ϕnXn−1 + h1L
−1

[
L[Xn−1]− (1− ϕn)

X0Γ(θ + 1)

kζ+µ Γ(2θ + 1)

+
1

kµ
L[−a+ bXn−1 + cAn−1 − dYn−1]

]
, (3.10)

Yn = ϕnYn−1 + h2L
−1

[
L[Yn−1]− (1− ϕn)

Y0Γ(θ + 1)

kζ+µΓ(2θ + 1)

+
1

kµ
L[−cAn−1 + (λ+ d)Yn−1]

]
, (3.11)

Zn = ϕnZn−1 + h3L
−1

[
L[Zn−1]− (1− ϕn)

Z0Γ(θ + 1)

kζ+µΓ(2θ + 1)

+
1

kµ
L[−sYn−1 + gZn−1]

]
, (3.12)

where

ϕn =

{
0, if n ≤ 1,

1, if n > 1

An is the Homotopy polynomial and is expressed as

An =
1

Γ(n+ 1)

dn

dpn

[
n∑

i=0

piXi(t)

n∑
i=0

piZi(t)

]
p=0

. (3.13)

For ease, we will take H(t) = 1, h1 = h2 = h3 = h, and now, on use of initial
approximation from the initial condition, we have X0 = 1.73 × 108 cell/(mL),
Y0 = 0 and Z0 = 400 copies/(mL).
On using the recursive scheme (3.10), (3.11), and (3.12), we will obtain the fol-
lowing components of series solution,

X1(t) == hX0 − hX0
Γ(θ + 1)tζ+µ−1

Γ(2θ + 1)Γ(ζ + µ)
+

htµ

Γ(µ+ 1)
(−a+ bX0 + cA0), (3.14)

Similarly

Y1 =
−cA0 h t

µ

Γ(µ+ 1)
, (3.15)

Z1 = hZ0 −
hZ0Γ(θ + 1)tζ+µ−1

Γ(2θ + 1)Γ(ζ + µ)
+

hgZ0t
µ

Γ(µ+ 1)
, (3.16)

Now taking Laplace transform of above equations, we have

L[X1(t)](k) = h
X0

k
− hX0Γ(θ + 1)

Γ(2θ + 1)kζ+µ
+

h

kµ+1
(−a+ bX0 + cA0),

L[Y1(t)](k) =
−chA0

kµ+1
,

L[Z1(t)](k) =
hZ0

k
− hZ0Γ(θ + 1)

Γ(2θ + 1)kζ+µ
+

hgZ0

kµ+1
.
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Now, for n = 2

X2(t) = (1 + h)hX0 +
h tµ

Γ(1 + µ)

[
− a(h+ 2) + 2b hX0 + bX0 + cA0 h

+cA0 + 2h cX0 Z0

]
+

t2µh2

Γ(1 + 2µ)

[
− a b− a cZ0 + b2X0 + c bA0

+b cX0Z0 + c2A0Z0 − g cX0Z0 − c dA0

]
−X0 h (1 + h)

Γ(1 + θ) tµ+ζ−1

Γ(2θ + 1)Γ(ζ + µ)
− cZ0X0 h

2 Γ(1 + θ) t2µ+ζ−1

Γ(2θ + 1)Γ(ζ + 2µ)
,

(3.17)

Y2 =
−c htµ

Γ(µ+ 1)
(2hX0Z0 +A0 + hA0)−

c h2t2µ

Γ(2µ+ 1)

(
hX0Z0 − aZ0 + bX0Z0

+ cA0Z0 +A0λ+A0d
)
+

2h2cX0Z0Γ(θ + 1) t2µ+ζ−1

Γ(2θ + 1) Γ(2µ+ ζ)
, (3.18)

and

Z2 = (1 + h)hZ0 + (1 + 2h)
h tµ g Z0

Γ(1 + µ)
+ (g2 Z0 + s cA0)

t2µ h2

Γ(2µ+ 1)

−hZ0 t
µ+ζ−1

Γ(2θ + 1)

[
h+ 1

Γ(µ+ ζ)
+

h tµ

Γ(2µ+ ζ)

]
.

(3.19)

Thus, we get the values of X, Y, Z as follows

X = X0 +X1 +X2,

X(t) = (1 + h)2X0 +
h tµ

Γ(µ+ 1)

[
− 3a+ 2bX0 + 2cA0 − ah+ 2bhX0 + cA0h

+ 2chX0Z0

]
+

t2µh2

Γ(2µ+ 1)

[
− a b− a cZ0 + b2X0 + b cA0 + b cX0Z0

+ c2A0Z0 − g cX0Z0 − d cA0

]
− (2 + h)X0 h t

µ+ζ−1 Γ(θ + 1)

Γ(2θ + 1)Γ(µ+ ζ)

− cX0Z0 h
2 t2µ+ζ−1 Γ(θ + 1)

Γ(2θ + 1)Γ(2µ+ ζ)
. (3.20)

Y = Y0 + Y1 + Y2,

Y (t) = − c htµ

Γ(1 + µ)
(2A0 + 2hX0Z0 + hA0) +

ch2t2µ

Γ(2µ+ 1)

[
X0Z0g − aZ0 + bX0Z0

+ cA0Z0 +A0λ+A0d
]
+

2h2cX0Z0t
2µ+ζ−1 Γ(θ + 1)

Γ(2θ + 1) Γ(2µ+ ζ)
, (3.21)

and

Z = Z0 + Z1 + Z2,
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Z(t) = (1 + h)2Z0 +
2(1 + h)h g Z0t

µ

Γ(1 + µ)
+
(
g2 Z0 + c sA0

) h2 t2µ

Γ(2µ+ 1)

−(2 + h)hZ0 t
µ+ζ−1 Γ(1 + θ)

Γ(2θ + 1) Γ(µ+ ζ)
− h2 Z0 t

2µ+ζ−1 Γ(1 + θ)

Γ(2θ + 1) Γ(2µ+ ζ)
. (3.22)

4. Convergence analysis

In this section, we show that the system (3.1) has a unique solution.

Theorem 4.1. The solution obtained for the HBV infection model (3.1) by the
use of LHAM is unique, wherever 0 < ω1, ω2, ω3 < 1, where ω1 = 1 + h + h b +
h cGT1, ω2 = 1 + h+ hT2(λ+ d), and ω3 = 1 + h+ hgT3.

Proof. The solution of the fractional HBV infection model is,

X =

∞∑
q=0

Xq(t),

Y =
∞∑
q=0

Yq(t),

Z =
∞∑
q=0

Zq(t),

Xm = (h+ ϕm)Xm−1 + h L−1
[
− (1− ϕm)

X0 Γ(θ + 1)

kµ+ζ Γ(2θ + 1)

+
1

kµ
L (−a+ b Xm−1 + c Am−1d Ym−1)

]
,

Ym = (h+ ϕm)Ym−1 + h L−1
[
− (1− ϕm)

Y0 Γ(θ + 1)

kµ+ζ Γ(2θ + 1)

+
1

kµ
L (−c Am−1 + (λ+ d) Ym−1)

]
,

Zm = (h+ ϕm)Zm−1 + h L−1
[
− (1− ϕm)

Z0 Γ(θ + 1)

kµ+ζ Γ(2θ + 1)

+
1

kµ
L (−s Ym−1 + g Zm−1)

]
.

Consider the X, Y , Z and X∆, Y ∆, Z∆ solution sets of the above system of
equations such that |X| ≤ E, |Y | ≤ F and |Z| ≤ G,

|X −X∆| =
∣∣∣(1 + h)(X −X∆) + hL−1

[ 1

kµ
L
[
b(X −X∆) + cZ(X −X∆)

]]∣∣∣,
|Y − Y ∆| =

∣∣∣(1 + h)(Y − Y ∆) + hL−1
[ 1

kµ
L[(v + d)(Y − Y ∆)]

]∣∣∣,
|Z − Z∆| =

∣∣∣(1 + h)(Z − Z∆) + hL−1
[ 1

kµ
L[g(Z − Z∆)]

]∣∣∣.



A STUDY OF THE HEPATITIS B VIRUS INFECTION 109

using the convolution theorem to the Laplace transform, we have

|X −X∆| ≤ (1 + h)|X −X∆|+ h

∫ t

0

(
|b(X −X∆)|+ |cZ(X −X∆)|

) (t− ξ)µ

Γ(1 + µ)
dξ,

|Y − Y ∆| ≤ (1 + h)|Y − Y ∆|+ h

∫ t

0
(λ+ d)|Y − Y ∆| (t− ξ)µ

Γ(1 + µ)
dξ,

|Z − Z∆| ≤ (1 + h)|Z − Z∆|+ h

∫ t

0
g|Z − Z∆|( t− ξ)µ

Γ(1 + µ)
dξ.

And hence
For X,

|X −X∆| ≤ (1 + h)|X −X∆|+ h

∫ t

0

(
b|X −X∆|+ cG|X −X∆|

) (t− ξ)µ

Γ(1 + µ)
dξ,

(4.1)

For Y ,

|Y − Y ∆| ≤ (1 + h)|Y − Y ∆|+ h

∫ t

0
(λ+ d)|Y − Y ∆| (t− ξ)µ

Γ(1 + µ)
dξ, (4.2)

For Z,

|Z − Z∆| ≤ (1 + h)|Z − Z∆|+ h

∫ t

0
g|Z − Z∆|( t− ξ)µ

Γ(1 + µ)
dξ. (4.3)

Now, applying the mean value theorem
For X,

|X −X∆| ≤ (1 + h)|X −X∆|+ h(b+ cG)T1 |X −X∆|,
or |X −X∆| ≤ (1 + h+ hb+ h cG)T1 |X −X∆|,
or |X −X∆| ≤ |X −X∆| ω1.

For Y ,

|Y − Y ∆| ≤ (1 + h)|Y − Y ∆|+ h(λ+ d)T2|Y − Y v|,
or |Y − Y ∆| ≤ (1 + h+ h(λ+ d)T2)|Y − Y ∆|,
or |Y − Y ∆| ≤ |Y − Y ∆| ω2.

For Z,

|Z − Z∆| ≤ (1 + h)|Z − Z∆|+ hg|Z − Z∆|T3,

or |Z − Z∆| ≤ (1 + h+ hgT3)|Z − Z∆|,
or |Z − Z∆| ≤ |Z − Z∆| ω3.

It gives (1−ω1)|X−X∆| ≤ 0, (1−ω2)|Y −Y ∆| ≤ 0 and (1−ω3)|Z−Z∆| ≤ 0.
Since, 0 < ω1, ω2, ω3 < 1 therefore, |X−X∆| = 0, |Y −Y ∆| = 0 and |Z−Z∆| = 0
which implies X = X∆, Y = Y ∆ and Z = Z∆. Therefore, the solution is
unique. □

Theorem 4.2. Let us suppose that B1, B2, and B3 be Banach spaces and G1,
G2 and G3 be nonlinear mapping i.e. G1 : B1 −→ B1, G2 : B2 −→ B2 and
G3 : B3 −→ B3 and assume, ∥G1(X) − G1(X

′
)∥ ≤ ω1∥X −X

′∥, ∀ X,X
′ ∈ B1,
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∥G2(Y )−G2(Y
′
)∥ ≤ ω2∥Y −Y

′∥, ∀ Y, Y
′ ∈ B2 and ∥G3(Z)−G3(Z

′
)∥ ≤ ω3∥Z−

Z
′∥, ∀ Z,Z

′ ∈ B3. Then according to Banach’s fixed point theorem [3, 21], each
mapping G1, G2 and G3 has a fixed point. The sequence corresponding to the
solution obtained by the LHAM with X0 ∈ G1, Y0 ∈ G2 and Z0 ∈ G3 chosen
arbitrarily will converge to fixed point of G1, G2 and G3 respectively,

∥Xm −Xr∥ ≤ ωr
1

1− ω1
∥X1 −X0∥ ∀Xm, Xr ∈ B1,

∥Ym − Yr∥ ≤ ωr
2

1− ω2
∥Y1 − Y0∥ ∀Ym, Yr ∈ B2,

∥Zm − Zr∥ ≤ ωr
3

1− ω3
∥Z1 − Z0∥ ∀Zm, Zr ∈ B3.

Proof. Let us consider (C1[η1], ∥.∥), (C2[η2], ∥.∥) and (C3[η3], ∥.∥) of all continuous
functions of η1, η2 and η3 with the norm ∥g1(t)∥ = maxt∈η1 |g1(t)|, ∥g2(t)∥ =
maxt∈η2 |g2(t)| and ∥g3(t)∥ = maxt∈η3 |g3(t)| respectively. Now, we will show that
Xr, Yr, and Zr are the Cauchy sequences in the aforesaid Banach spaces.

∥Xm −Xr∥ = maxt∈η1 |Xm −Xr|,
∥Ym − Yr∥ = maxt∈η2 |Ym − Yr|,
∥Zm − Zr∥ = maxt∈η3 |Zm − Zr|.

Now

∥Xm −Xr∥ = maxt∈η1

∣∣∣(1 + h)(Xm−1 −Xr−1) + hL−1
[ 1

kµ
L
[
b(Xm−1

−Xr−1) + cZ(Xm−1 −Xr−1)
]]∣∣∣,

or

∥Xm −Xr∥ ≤ maxt∈η1

[
(1 + h)

∣∣Xm−1 −Xr−1

∣∣+ hL−1
( 1

kµ
L
[∣∣b(Xm−1

−Xr−1)
∣∣+ ∣∣cZ(Xm−1 −Xr−1)

∣∣])],
∥Ym − Yr∥ = maxt∈η2

∣∣∣(1 + h)(Ym−1 − Yr−1) + hL−1
[ 1

kµ
L
[
(λ+ d)

(Ym−1 − Yr−1)
]]∣∣∣,

or

∥Ym − Yr∥ ≤ maxt∈η2

[
(1 + h)|Ym−1 − Yr−1|+ hL−1

( 1

kµ
L
[
|(λ+ d)

(Ym−1 − Yr−1)|
])]

,

∥Zm − Zr∥ = maxt∈η3

∣∣∣(1 + h)(Zm−1 − Zr−1) + hL−1
( 1

kµ
L
[
g(Zm−1 − Zr−1)

])∣∣∣,
or

∥Zm − Zr∥ ≤ maxt∈η3

[
(1 + h)|Zm−1 − Zr−1|+ hL−1

( 1

kµ

L
[
|g(Zm−1 − Zr−1)|

])]
,
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Now applying the convolution theorem, we obtain

∥Xm −Xr∥ ≤ maxt∈η1

[
(1 + h)|Xm−1 −Xr−1|+ h

∫ t

0

(
|b(Xm−1 −Xr−1)|

+|cZ(Xm−1 −Xr−1)|
) (t− ξ)µ

Γ(1 + µ)
dξ

]
,

or

∥Xm −Xr∥ ≤ maxt∈η1

[
(1 + h)|Xm−1 −Xr−1|+ h

∫ t

0

(
b|Xm−1 −Xr−1|

+cG|Xm−1 −Xr−1|
) (t− ξ)µ

Γ(1 + µ)
dξ

]
,

Next, by using the integral mean value theorem, we have

∥Xm −Xr∥ ≤ maxt∈η1

[
(1 + h)|Xm−1 −Xr−1|+ h |b(Xm−1 −Xr−1)|

+|cZ(Xm−1 −Xr−1)|T1

]
,

or ∥Xm −Xr∥ ≤ ω1∥Xm−1 −Xr−1∥. (4.4)

Similarly

∥Ym − Yr∥ ≤ maxt∈η2

[
(1 + h)|Ym−1 − Yr−1|+ h

(
|(λ+ d)(Ym−1 − Yr−1)|

)
T2

]
,

or ∥Ym − Yr∥ ≤ ω2∥Ym−1 − Yr−1∥, (4.5)

and

∥Zm − Zr∥ ≤ maxt∈η3

[
(1 + h)|Zm−1 − Zr−1|+ h

(
|g(Zm − Zr)|

)
T3

]
,

or ∥Zm − Zr∥ ≤ ω3∥Zm−1 − Zr−1∥. (4.6)

Taking m = r + 1 gives,

∥Xr+1 −Xr∥ ≤ ω1∥Xr −Xr−1∥ ≤ ω2
1∥Xr−1 −Xr−2∥ ≤ ... ≤ ωr

1∥X1 −X0∥,
∥Yr+1 − Yr∥ ≤ ω2∥Yr − Yr−1∥ ≤ ω2

2∥Yr−1 − Yr−2∥ ≤ ... ≤ ωr
2∥Y1 − Y0∥,

∥Zr+1 − Zr∥ ≤ ω3∥Zr − Zr−1∥ ≤ ω2
3∥Zr−1 − Zr−2∥ ≤ ... ≤ ωr

3∥Z1 − Z0∥.

Now, on using the triangle inequality

∥Xm −Xr∥ ≤ ∥Xr+1 −Xr∥+ ∥Xr+2 −Xr+1∥+ ...+ ∥Xm −Xm−1∥.

Hence
∥Xm −Xr∥ ≤

(
ωr
1 + ωr+1

1 + ...+ ωm−1
1

)
∥X1 −X0∥

≤ ωr
1

(
1 + ω1 + ω2

1 + ...+ ωm−r−1
1

)
∥X1 −X0∥

≤ ωr
1

[
1− ωm−r−1

1

1− ω1

]
∥X1 −X0∥.

(4.7)

Similarly

∥Ym − Yr∥ ≤ ωr
2

[
1− ωm−r−1

2

1− ω2

]
∥Y1 − Y0∥, (4.8)
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and

∥Zm − Zr∥ ≤ ωr
3

[
1− ωm−r−1

3

1− ω3

]
∥Z1 − Z0∥. (4.9)

Since, 0 < ω1, ω2, ω3 < 1, so 1−ωm−r−1
1 < 1, 1−ωm−r−1

2 < 1, and 1−ωm−r−1
3 <

1 then we obtain

∥Xm −Xr∥ ≤ ωr
1

1− ω1
∥X1 −X0∥, (4.10)

∥Ym − Yr∥ ≤ ωr
2

1− ω2
∥Y1 − Y0∥, (4.11)

∥Zm − Zr∥ ≤ ωr
3

1− ω3
∥Z1 − Z0∥. (4.12)

Since, ∥X1−X0∥ < ∞, ∥Y1−Y0∥ < ∞ and ∥Z1−Z0∥ < ∞ so as m −→ ∞ then
∥Xm −Xr∥ −→ 0, ∥Ym − Yr∥ −→ 0 and ∥Zm − Zr∥ −→ 0. Hence, the sequence
Xr, Yr and Zr each one is a Cauchy sequence in C1[η1], C2[η2] and C3[η3] so these
sequences are convergent. □

5. Discussion and results

The Hepatitis B virus is highly prevalent, and control of HB is a major public
health concern worldwide. Since the assays of HBV markers were developed, the
prevalence and incidence rates and the age distribution of HBV infection and
HBV carriage have remained very similar across most provinces of the World for
decades. This stable state, expressed as the ‘equilibrium’ between the virus and
the human population, has provided good opportunities for using mathematical
models to study the disease’s dynamics.

Figure 1. Variation of X(t) for µ and v
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Here we obtained a numerical simulation of the effect of fractional order deriva-
tives on HBV. Graphs are plotted in MATLAB with the values of the parameters
used here [25]: a = 5×105 cells/(mL.d), b = 0.003d−1, c = 4×10−10 mL/(copies.d),
d = 0.502d−1, s = 6.24d−1, g = 0.65d−1, v = 0.1d−1,X(0) = 1.73×108 cells/(mL),
Y (0) = 0, h = 1, and Z(0) = 400 copies/(mL). Graphs are plotted for fractional
and integer order values of µ and v in the system (3.1).

Figure 2. Variation of Y (t) for µ and v

The dynamical behavior of the susceptible, HBV-infected, and virions is shown
in the graphs. From Figure 1 for the integral value of µ, v, we observe that the
susceptible cells rise with time, and the spreading of the infection is rising. But
for the fractional orders, it can be revealed that the rise in susceptible units
is at a slower rate as compared to the integral one, and hence, on behalf of this
observation; making use of the fractional model to study the dynamics of infection
the susceptible cells can be prevented from getting infected at an earlier step.

As the number of susceptible cells increases, so does the number of infected
cells, as seen in Figure 2. We can see from the comparison between the integral
and fractional orders in Figure 3 that the virions replicate considerably quicker
for the integral values than the fractional values, resulting in disease proliferation.
As a result, the fractional model is preferable to the integral model because, based
on the information obtained from the fractional model study, treatment can be
started at an early stage with minimal cell damage and virions replication.

6. Conclusion

This work introduces a model for HBV infection with a fractional-order de-
rivative as a generalization of an integer-order model. The considered model is
successfully examined for numerical results with the LHAM for the first few terms.
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Figure 3. Variation of Z(t) for µ and v

We have achieved numerical simulations using the LHAM method. As a whole,
we can say that the fractional order differential equation comparatively achieved
better prediction than that of the classical derivatives. Fractional calculus is
frequently used to generalize models and aid in their more detailed elaboration.
The rationale for this generalization is that, when modeling a phenomenon, some
simplifications are made when considering it. In addition, it reduces the rate
of variation. The fractional model is accurate and improves the results, and it
has the potential to explain the computational dynamics problem in this case,
which helps research hepatitis B. While this attempt to quantify the long-term
benefits of targeting a high HBV prevalence population with preventive health
measures has several limitations, it is consistent with the international experi-
ence of hepatitis B control. Thus, the results obtained here are general and can
be very useful in applied mathematics, medical science, biochemistry, and other
branches.
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