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ON FRACTAL PATTERNS FOR MULTI-WING

HYPERCHAOTIC ATTRACTORS WITH A MIRROR

SYMMETRICAL STRUCTURE

EMILE F. DOUNGMO GOUFO

Abstract. Hyperchaos remains one of the most complex behaviors in
the bifurcation mechanisms and so far, only few hyperchaotic dynamics
have been identified experimentally. The construction and design of
complex models able to generate hyperchaotic attractors with wings on
many rows and columns have become a source of interest for many fractal
& chaos theorists, applied physicists and engineers. In this paper, we
make use of a simple method, that consists on combining the fractal and
fractional operator with Lü system, in order to generate second class
hyperchaotic attractors with wings on many rows and columns. Such a
combination yields a modified initial value problem, that is solved both
analytically and numerically. We then implement the proposed scheme
to perform some graphical representations showing the second class types
of attractors in the form n×m-wings, (n, m ∈ N), which appear to be
hyperchaotic and exhibit a mirror symmetrical structure. The graphical
simulations also depict a process where the lower and upper parts of the
second class hyperchaotic attractors are seen to be moving away from
the mirror symmetrical junction due to the parameter’s impact of the
fractal-fractional operator.

1. Introductory remarks and preliminaries

The concept of hyperchaotic behavior was introduced decades ago when the
German author Rössler proposed its equation for hyperchaos [25] and since then,
the interest for such a complex dynamics has never stopped growing among the re-
searchers. Hence we have seen the the development of many other systems related
to the generation of chaotic and hyperchaotic behaviors such as Lorenz system,
Chua system, Sprott system, Rössler system and hyperchaotic Lorenz system,
proto-Lorenz system and proto-Lü system [9, 6, 21, 7, 10, 19, 11, 22, 20, 28].
In many instances, hyperchaotic attactors have been generated by introducing
into the model, additional terms such as linear or nonlinear quadratic controllers
[6, 21, 29, 30]. Second class hyperchaotic attactors are generated using a similar
approach. We propose another method here applicable to hyperchaotic models
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and suitable for the generation second class hyperchaotic attactors with wings on
many rows and columns. Hence, consider the following modified hyperchaotic Lü
system [29, 30]


dx(t)
dt = −δ11x+ δ12y + δ13u,

dy(t)
dt = −δ21xz + δ22y,

dz(t)
dt = δ31y

2 + δ32z,
du(t)
dt = δ41xz + δ42u.

(1.1)

where the coefficients are real numbers. The authors in [29, 30] show that is
possible to modify such a hyperchaotic system to get a different system which
takes the form of an attractor with n+m number of wings and denoted as n×m-
wings, with n,m ∈ N. The resulting attractor is also expected to be hyperchaotic
and to express it, we can insert into (1.1) an additional function denoted by F,
dependent on the variable y so as to have


dx(t)
dt = −δ11x+ δ12y + δ13u,

dy(t)
dt = −δ21xz + δ22y,

dz(t)
dt = F(y)− δ32z,

du(t)
dt = δ41xz + δ42u.

(1.2)

The function F(y) is called a duality-symmetric multi-segment quadratic function
expressed as

F(y) = A0y
2 +

T∑
k=1

Ak

(
sgn(y + Ãk)− sgn(y − Ãk)− 2

)
(1.3)

with k = 1, 2, · · · ,T where N ∋ T ≥ 1. The coefficients Ak, k = 0, 1, 2, · · · ,T
and Ãk) reads as


A0 = ρ,

Ak = α
ρk
,

Ãk = α
2ρ(k + 1).

(1.4)

Now, we can make use of the system (1.2) to express a hyperchaotic model with
mirror symmetry conversion system that reads as


dx
dt (t) = −δ11x+ δ12y + δ13u,
dy
dt (t) = −δ21x× [sgn(z − z̃)× (z − z̃)−G(z)] + δ22y,
dz
dt (t) = sgn(z − z̃)× F(y)− δ32[(z − z̃) + sgn(z − z̃)×G(z)],
du
dt (t) = δ41x× [sgn(z − z̃)× (z − z̃)−G(z)] + δ42u.

(1.5)
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Figure 1. Numerical representation of the system (1.5) showing a second class

of hyperchaotic attractor (with a mirror junction) of type 4× 2-wings in the plan yz,

when M = 0, G(z) = 0. The parameter values used read as T = 1, ρ = 17.9, ρ1 =

1.7, ρ2 = 1.45 α = 18 and then, A0 = 17.9, A1 = 10.59, A2 = 12.41, Ã1 =

1.0056, Ã2 = 1.5084.

The function F has already been defined in (1.3) and the z dependent function
G represents the mirror symmetry conversion function and expressed by

G(z) =

M∑
k=1

(±Φ · (1± sgn(sgn(z − z̃)× (z − z̃)− (zk − z̃)))) . (1.6)

This model is able to generate the so-called second class of hyperchaotic attractor
with (2T+2)+(2M+2) number of wings (denoted in form (2T+2)× (2M+2)-
wing) . Hence, taking M = 0, G(z) = 0 and for the parameter values T = 1 and
T = 2, we respectively obtain the numerical representations of the system (1.5)
depicting a second class of hyperchaotic attractor of type 4× 2-wings in the plan
yz as shown in Fig. 1 and of type 6 × 2-wings as shown in Fig. 2. The other
parameters used are ρ = 17.9, ρ1 = 1.7, ρ2 = 1.45 α = 18. Using (1.4) we obtain

A0 = 17.9, A1 = 10.59, A2 = 12.41, Ã1 = 1.0056, Ã2 = 1.5084. Now considering
T = 7, M = 1, and taking G(z) ̸= 0 so that Φ = 1.05, z̃ = −2.5, z1 = 4 then
G(z) becomes

G(z) = Φ(1 + sgn(sgn(z − z̃)× (z − z̃)− (z1 − z̃))).

With these values, we obtain the numerical representation of the second class of
hyperchaotic attractor of type 16× 4-wings in the plan yz as depicted in Fig. 3.

Remark 1.1. (1) Both attractors are shown to have incorporated the mirror
symmetry conversion system as the upper part of the attractor seems to
be the mirror reflection of the lower part

(2) The circuit diagram used to establish such second class of n × m-wing
hyperchaotic models with a mirror system is given by Fig. 4.

The question we ask now is whether there exist other alternative methods,
maybe less complicated, and that can generate similar hyperchaotic models.
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Figure 2. Numerical representation of the system (1.5) showing a second class

of hyperchaotic attractor (with a mirror junction) of type 6× 2-wings in the plan yz,
when M = 0, G(z) = 0. The parameter values used read as T = 2, ρ = 17.9, ρ1 =

1.7, ρ2 = 1.45 α = 18 and then, A0 = 17.9, A1 = 10.59, A2 = 12.41, Ã1 =

1.0056, Ã2 = 1.5084.

Figure 3. Numerical representation of the system (1.5) showing a second class
of hyperchaotic attractor (with a mirror junction) of type 16 × 4-wings in the plan

yz, when M = 1, and taking G(z) ̸= 0 with G(z) = Φ(1+ sgn(sgn(z− z̃)× (z− z̃)−
(z1 − z̃))) and for T = 7, so that Φ = 1.05, z̃ = −2.5, z1 = 4. The other parameter
values used are ρ = 17.9, ρ1 = 1.7, ρ2 = 1.45, ρ3 = 1, ρ4 = 0.8, ρ5 = 0.65, ρ6 =

0.57, ρ7 = 0.55, α = 18, A0 = 17.9, A1 = 10.59, A2 = 12.41, A3 = 18, A4 =

22.5, A5 = 27.69, A6 = 31.58, A7 = 32.73, Ã1 = 1.0056, Ã2 = 1.5084, Ã3 =
2.0112, Ã4 = 2.514, Ã5 = 3.0168, Ã6 = 3.5196, Ã7 = 4.0223.

2. Generation of the fractal patterns for the multi-wing
hyperchaotic attractors with a mirror symmetrical structure

Recall that dynamical systems which display a fractal structure have been
intensively analysed and simulated in the last years by a growing number of
researchers [14, 24, 23, 16, 12, 4, 13, 5] where they managed to recreate and
generate chaotic bifurcation dynamics using different methods involving, in one
way or an another, fractal design. In this section, we show how to use the fractal
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Figure 4. Circuit diagram used to establish such second class of n × m-wing

hyperchaotic models with a mirror system, (n, m ∈ N).

and fractional processes to generate second class of hyperchaotic attractors of
type n×m-wing. For that, we need to state the following definitions

Definition 2.1. • Let t > 0 and consider the subspace E ⊆ R+, in which
we define φ : E −→ R, t 7→ φ(t). Let (a1, a2) ⊂ E an open interval
(a1, a2 ∈ R+). We assume that φ fractal-differentiable on (a1, a2) at the
order q ∈ (0, 1). Then, we define the fractal-fractional derivative of the
function φ with order q in Riemann-Liouville sense, with power law kernel
as

frpDq
tφ(t) =

1

Γ (1− q)

∂

∂tq

∫ t

0
φ (ω) (t− ω)−qdω, (2.1)

where ∂
∂tqφ is defined as

∂

∂tq
φ(ξ) = lim

t→ξ

φ(t)− φ(ξ)

tq − ξq

• Its generalized version is

frpDq,ι
t φ(t) =

1

Γ (1− q)

∂ι

∂tq

∫ t

0
φ (ω) (t− ω)−qdω, (2.2)

with ι > 0 and ∂ι

∂tqφ given by

∂ι

∂tq
φ(ξ) = lim

t→t0

φι(t)− φι(t0)

tq − ξq
.

• We define the fractal-fractional derivative of the function φ with order q
in Caputo sense, with power law kernel as

fcpDq
tφ(t) =

1

Γ (1− q)

∫ t

0

∂

∂ωq
φ (ω) (t− ω)−qdω, (2.3)
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• Its generalized version is

fcpDq,ι
t φ(t) =

1

Γ (1− q)

∫ t

0

∂ι

∂ωq
φ (ω) (t− ω)−qdω, (2.4)

We refer to the Caputo sense fractal-fractional derivative with power law ker-
nel fcpDq

t given in (2.3) of Definition 2.1 in order to generate second class hyper-
chaotic attractors. To this end, we will need its corresponding anti-derivative of
order q, that is

fcpIqt φ(t) =
q

Γ(q)

∫ t

0
χ−qφ(χ)(t− χ)q−1dχ, t > 0. (2.5)

Knowing these preliminary definitions, the system (1.5) can be modified to
become a fractional-fractal model taking the expression


fcpDq

tx(t) = −δ11x+ δ12y + δ13u,
fcpDq

t y(t) = −δ21x× [sgn(z − z̃)× (z − z̃)−G(z)] + δ22y,
fcpDq

t z(t) = sgn(z − z̃)× F(y)− δ32[(z − z̃) + sgn(z − z̃)×G(z)],
fcpDq

tu(t) = δ41x× [sgn(z − z̃)× (z − z̃)−G(z)] + δ42u.

(2.6)

To solve this model, it is necessary to consider its initial conditions

x(0) = x̄(x), y(0) = ȳ(y), z(0) = z̄(z), u(0) = ū(u). (2.7)

The transformation the initial value problem (2.6)-(2.7) into a compact prob-
lem is possible via the use of state vectors

y(t) = (x(t), y(t), z(t), u(t))

y0(x, y, z) = y(0) = (x(0), y(0), z(0), u(0)) = (x̄, ȳ, z̄, ū) .

Moreover, we also define
the matrix O expressed by

O(y(t), t) = O(x(t), y(t), z(t), u(t), t) =

(O1(y(t), t),O2(y(t), t),O3(y(t), t),O4(y(t), t)) ,

which is then assumed to depend on x, y, z, u so as to have:



O1(y(t), t) = O1(x(t), y(t), z(t), u(t), t) = −δ11x+ δ12y + δ13u,
O2(y(t), t) = O2(x(t), y(t), z(t), u(t), t) =

−δ21x× [sgn(z − z̃)× (z − z̃)−G(z)] + δ22y,
O3(y(t), t) = O3(x(t), y(t), z(t), u(t), t) =

sgn(z − z̃)× F(y)− δ32[(z − z̃) + sgn(z − z̃)×G(z)],
O4(y(t), t) = O3(x(t), y(t), z(t), u(t), t) = δ41x× [sgn(z − z̃)× (z − z̃)−G(z)]
+δ42u

or equivalently
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O1(y(t), t) = O1(x(t), y(t), z(t), u(t), t) = −δ11x+ δ12y + δ13u,
O2(y(t), t) = O2(x(t), y(t), z(t), u(t), t) =

−δ21x× [sgn(z − z̃)× (z − z̃)−G(z)] + δ22y,
O3(y(t), t) = O3(x(t), y(t), z(t), u(t), t) =

sgn(z − z̃)×
[
A0y

2 +
∑T

k=1Ak

(
sgn(y + Ãk)− sgn(y − Ãk)− 2

)]
−

δ32[(z − z̃) + sgn(z − z̃)×G(z)],
O4(y(t), t) = O3(x(t), y(t), z(t), u(t), t) = δ41x× [sgn(z − z̃)× (z − z̃)−G(z)]
+δ42u

Thus, the resulting compact system obtained from (2.6) takes the form

fcpDq
t y(t) = O(y(t), t)

equivalently,

fcpDq
tx(t) = O1(y(t), t)

fcpDq
t y(t) = O2(y(t), t)

fcpDq
t z(t) = O3(y(t), t)

fcpDq
tu(t) = O4(y(t), t),

(2.8)

with initial conditions

x(0) = x̄(x), y(0) = ȳ(y), z(0) = z̄(z), u(0) = ū(u).

With reference to the numerical method of Haar wavelets as defined, developed
and described in [2, 18], we can approximate the main function y using the Haar
orthonormal basis functions ϕk,j so as to get

y(t) ≈ yµ(t) =

m∑
k=1

µ−1∑
j=0

ϕk,jWk,j(t) (2.9)

with µ ∈ {2i : i = 0, 1, 2, · · · },

ϕk,j = ⟨y,Wk,j⟩ =
∫ ∞

0
y(t)Wk,j(t)dt.

The quantity Wk,j is referred to as Haar function and reads as

Wk,j(t) = Wj(t− k + 1) k = 1, 2, · · · ,m and j = 0, 1, 2, · · · (2.10)

where

Wj(t) =

{
2

i
2B(2it− µ), for j = 1, 2, · · · ;

1, for j = 0,
(2.11)

and

B(t) =

 1, when 0 ≤ t < 1/2;
−1, for 1/2 ≤ t < 1;
0, everywhere else.

(2.12)

Recall the main property that has helped us reaching this results which is: Every
number j ∈ {0, 1, 2, 3, · · · } can be expressed using the power form j = 2i + µ for
i = 0, 1, 2, · · · and µ = 0, 1, 2, · · · , 2i − 1.
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To further complete our analysis, it is important to use the fact that (2.9) can
explicitly be transformed in

y(t) ≈ yµ(t) = Bmµ×1
TEmµ×1 (2.13)

with the vector Bmµ×1 reading as

Bmµ×1 = (ϕ1,0, · · · , ϕ1,µ−1, ϕ2,0, · · · , ϕ2,µ−1, · · · , ϕm,0, · · · , ϕm,µ−1, )

and the transpose TEmµ×1 of the vector Emµ×1 given by

Emµ×1 = (W1,0, · · · ,W1,µ−1,W2,0, · · · ,W2,µ−1, · · · ,Wm,0, · · · ,Wm,µ−1, ) .

Using the Caputo sense fractal-fractional operator fcpDq
t defined earlier and

resulting model (2.8) on which fcpDq
t is applied, we obtain for the whole system

approximation scheme

fcpDq
tx(t) = O1(y(t), t) ≈fcp Dq

txµ(t) =
T B1

mµ×1Emµ×1
fcpDq

t y(t) = O2(y(t), t) ≈fcp Dq
t yµ(t) =

T B2
mµ×1Emµ×1

fcpDq
t z(t) = O3(y(t), t) ≈fcp Dq

t zµ(t) =
T B3

mµ×1Emµ×1
fcpDq

tu(t) = O4(y(t), t) ≈fcp Dq
tuµ(t) =

T B4
mµ×1Emµ×1.

(2.14)

Now the antiderivative (2.5) is applied on both sides of this system (2.14) to have

x(t)− x̄ ≈fcp Dq
txµ(t) =

T B1
mµ×1Θ

q
mµ×mµEmµ×1

y(t)− ȳ ≈fcp Dq
t yµ(t) =

T B2
mµ×1Θ

q
mµ×mµEmµ×1

z(t)− z̄ ≈fcp Dq
t zµ(t) =

T B3
mµ×1Θ

q
mµ×mµEmµ×1

u(t)− ū ≈fcp Dq
tuµ(t) =

T B4
mµ×1Θ

q
mµ×mµEmµ×1,

(2.15)

that also take the equivalent form

x(t) ≈ xµ(t) =
T B1

mµ×1Θ
q
mµ×mµEmµ×1 + x̄

y(t) ≈ yµ(t) =
T B2

mµ×1Θ
q
mµ×mµEmµ×1 + ȳ

z(t) ≈ zµ(t) =
T B3

mµ×1Θ
q
mµ×mµEmµ×1 + z̄

u(t) ≈ uµ(t) =
T B4

mµ×1Θ
q
mµ×mµEmµ×1 + z̄,

(2.16)

where the quantity Θq
mµ×mµ is Haar fractional operational matrix [2, 8]. We

finalize the solvability of the initial value problem (2.6)-(2.7) by making use of
the collocation points approach of the Galerkin method. Hence, it allows the
substitution of the two systems (2.14) and (2.16) into the model (2.6), which
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leads to the generation of the residual errors expressed as

ϑ1

(
τ1, τ2, τ3, t

)
=T B1

mµ×1Emµ×1 −O1

(
TB1

mµ×1Θ
q
mµ×mµEmµ×1,

TB2
mµ×1Θ

q
mµ×mµEmµ×1,

T B3
mµ×1Θ

q
mµ×mµEmµ×1, t

)
ϑ2

(
τ1, τ2, τ3, τ4, t

)
=T B2

mµ×1Emµ×1 −O2

(
TB1

mµ×1Θ
q
mµ×mµEmµ×1,

TB2
mµ×1Θ

q
mµ×mµEmµ×1,

T B3
mµ×1Θ

q
mµ×mµEmµ×1, t,

T B4
mµ×1Θ

q
mµ×mµEmµ×1, t

)
ϑ3

(
τ1, τ2, τ3, τ4, t

)
=T B3

mµ×1Emµ×1 −O3

(
TB1

mµ×1Θ
q
mµ×mµEmµ×1,

TB2
mµ×1Θ

q
mµ×mµEmµ×1,

T B3
mµ×1Θ

q
mµ×mµEmµ×1, t,

T B4
mµ×1Θ

q
mµ×mµEmµ×1, t

)
ϑ4

(
τ1, τ2, τ3, τ4, t

)
=T B3

mµ×1Emµ×1 −O3

(
TB1

mµ×1Θ
q
mµ×mµEmµ×1,

TB2
mµ×1Θ

q
mµ×mµEmµ×1,

T B3
mµ×1Θ

q
mµ×mµEmµ×1, t,

T B4
mµ×1Θ

q
mµ×mµEmµ×1, t

)
(2.17)

where

τ1 = ϕ1
1,0, · · · , ϕ1

1,µ−1, · · · , ϕ1
m,0, · · · , ϕ1

m,µ−1

τ2 = ϕ2
1,0, · · · , ϕ2

1,µ−1, · · · , ϕ2
m,0, · · · , ϕ2

m,µ−1

τ3 = ϕ3
1,0, · · · , ϕ3

1,µ−1, · · · , ϕ3
m,0, · · · , ϕ3

m,µ−1

τ4 = ϕ4
1,0, · · · , ϕ4

1,µ−1, · · · , ϕ4
m,0, · · · , ϕ3

m,µ−1

and the terms ϕj
·,· are the components of TCj

·×·.
Assuming that

ϑ1

(
τ1, τ2, τ3, τ4, tl,j

)
= 0

ϑ2

(
τ1, τ2, τ3, τ4, tl,j

)
= 0

ϑ3

(
τ1, τ2, τ3, τ4, tl,j

)
= 0

ϑ4

(
τ1, τ2, τ3, τ4, tl,j

)
= 0,

then, we finally obtain a system of 4mµ differential equations with 4mµ unknowns
reading as

ϕ1
1,0, · · · , ϕ1

1,µ−1, · · · , ϕ1
m,0, · · · , ϕ1

m,µ−1

ϕ2
1,0, · · · , ϕ2

1,µ−1, · · · , ϕ2
m,0, · · · , ϕ2

m,µ−1

ϕ3
1,0, · · · , ϕ3

1,µ−1, · · · , ϕ3
m,0, · · · , ϕ3

m,µ−1

ϕ4
1,0, · · · , ϕ4

1,µ−1, · · · , ϕ4
m,0, · · · , ϕ4

m,µ−1.

Here, the terms

tl,j =
2µi− 1

2µ
+ l − j − 1, l = 1, 2, · · · ,m; j = 1, 2, · · · , µ

are referred to as the mµ collocation points necessary to successfully preform the
approximation process. At this level, we ultimately solve the problem for these
unknowns and substitute then into (2.16) to get the numerical solution taking
the form

y(t) = (xµ(t), yµ(t), zµ(t), uµ(t))
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3. Numerical representations and interpretations

We proceed now with some numerical simulations using the implementation of
the scheme described in the section here above. Using the initial conditions x̄ =
0, ȳ = 2, z̄ = 1, ū = −2, we perform in the yz-plan, numerical representations
of the system (2.6)-(2.7), depicting second class types of attractors in the form
n ×m-wings as shown in Fig. 5 to Fig. 10 and having n +m number of wings.
In Fig. 5 where q = 1, G(z) = 0, the 4 × 2-wing attractor is similar to the
one represented in Fig. 1. Hence, it is also a second class hyperchaotic system
with a mirror symmetrical structure. Here, we have used the constant parameter
values T = 1, M = 0, ρ = 17.9, ρ1 = 1.7, α = 18. Using (1.4) we obtain

A0 = 17.9, A1 = 10.59, Ã1 = 1.0056. The same scenario is observed in Fig. 6
and Fig. 7 with the respective orders q = 0.85 and q = 0.70 where the mirror
symmetrical design appears to vary with the parameter q. The lower and upper
parts of the 4×2-wing hyperchaotic attractor are shown to be moving away from
the mirror symmetrical junction due to impact of the fractal-fractional operator
(2.3) with order q.

For q = 1, T = 7, M = 1 and taking G(z) ̸= 0 so that Φ = 1.05, z̃ =
−2.5, z1 = 4 and then

G(z) = Φ(1 + sgn(sgn(z − z̃)× (z − z̃)− (z1 − z̃))),

we have in Fig. 8 a 16 × 4-wing attractor that is similar to the one shown
in Fig. 3 and which is also a second class hyperchaotic system with a mirror
symmetrical structure. Such a structure extends to Fig. 9 and Fig. 10 with the
respective orders q = 0.85 and q = 0.70. The mirror symmetrical design appears
again to vary with the parameter q. The lower and upper parts of the 16 × 4-
wing hyperchaotic attractor move away from the mirror symmetrical junction due
to impact of the fractal-fractional operator. The additional constant parameter
values used here are ρ = 17.9, ρ1 = 1.7, ρ2 = 1.45, ρ3 = 1, ρ4 = 0.8, ρ5 =
0.65, ρ6 = 0.57, ρ7 = 0.55, α = 18, A0 = 17.9, A1 = 10.59, A2 = 12.41, A3 =
18, A4 = 22.5, A5 = 27.69, A6 = 31.58, A7 = 32.73, Ã1 = 1.0056, Ã2 =
1.5084, Ã3 = 2.0112, Ã4 = 2.514, Ã5 = 3.0168, Ã6 = 3.5196, Ã7 = 4.0223.
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Figure 5. Numerical representation of the initial value problem (2.6)-(2.7) with

q = 1, depicting a second class of hyperchaotic attractor (with a mirror junction)

of type 4 × 2-wings in the plan yz, when M = 0, G(z) = 0. The initial conditions
used are x̄ = 0, ȳ = 2, z̄ = 1, ū = −2. The parameter values used read as T =

1, ρ = 17.9, ρ1 = 1.7, ρ2 = 1.45 α = 18 and then, A0 = 17.9, A1 = 10.59, A2 =

12.41, Ã1 = 1.0056, Ã2 = 1.5084. This attractor is similar to the one represented in
Fig. 1

*

4. Conclusion

We have used in this paper a simple method, consisting on the combination
of the fractal and fractional operator with Lü system to generate second class
hyperchaotic attractors with many wings divided into rows and columns. This
combination has resulted in a modified initial value problem, that we solved
numerically. After solving, we have implemented the proposed scheme to perform
some numerical representations showing the second class types of attractors in
the form n ×m-wings that appeared to be hyperchaotic and exhibited a mirror
symmetrical structure. The graphical simulations have also shown that the lower
and upper parts of the second class hyperchaotic attractors are moving away from
the mirror symmetrical junction due to the parameter’s impact of the fractal-
fractional operator. The results obtained in this study show an alternative way
of generating second class hyperchaotic attractors without using circuit design
and implementation. The knowledge conveyed by this research improves the
preceding ones with the generation of the second class hyperchaotic attractor
using the fractal and fractional model. Lastly, the moving observation on the
attractor’s lower and upper parts shows how important the parameters are in
changing the dynamical system.
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Figure 6. Numerical representation of the initial value problem (2.6)-(2.7) with

q = 0.85, depicting a second class of hyperchaotic attractor (with a mirror junction)
of type 4 × 2-wings in the plan yz, when M = 0, G(z) = 0. The initial conditions

used are x̄ = 0, ȳ = 2, z̄ = 1, ū = −2. The parameter values used read as T =

1, ρ = 17.9, ρ1 = 1.7, ρ2 = 1.45 α = 18 and then, A0 = 17.9, A1 = 10.59, A2 =
12.41, Ã1 = 1.0056, Ã2 = 1.5084. In this representation, the mirror symmetrical

design appears to vary with the parameter q and the lower and upper parts are

shown to be moving away from the mirror symmetrical junction.

Figure 7. Numerical representation of the initial value problem (2.6)-(2.7) with

q = 0.70, depicting a second class of hyperchaotic attractor (with a mirror junction)
of type 4 × 2-wings in the plan yz, when M = 0, G(z) = 0. The initial conditions

used are x̄ = 0, ȳ = 2, z̄ = 1, ū = −2. The parameter values used read as T =

1, ρ = 17.9, ρ1 = 1.7, ρ2 = 1.45 α = 18 and then, A0 = 17.9, A1 = 10.59, A2 =
12.41, Ã1 = 1.0056, Ã2 = 1.5084. In this representation, the mirror symmetrical

design appears to vary with the parameter q and the lower and upper parts are

shown to be moving further away from the mirror symmetrical junction.

*
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attractor is similar to the one represented in Fig. 3.

Figure 9. Numerical representation of the initial value problem (2.6)-(2.7) with

q = 0.85, depicting a second class of hyperchaotic attractor (with a mirror junc-
tion) of type 16 × 4-wings in the plan yz, when M = 1, and taking G(z) ̸= 0 with
G(z) = Φ(1+sgn(sgn(z−z̃)×(z−z̃)−(z1−z̃))) and for T = 7, so that Φ = 1.05, z̃ =
−2.5, z1 = 4. The initial conditions used are x̄ = 0, ȳ = 2, z̄ = 1, ū = −2. The other
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2, z̄ = 1, ū = −2. The other parameter values used are ρ = 17.9, ρ1 = 1.7, ρ2 =

1.45, ρ3 = 1, ρ4 = 0.8, ρ5 = 0.65, ρ6 = 0.57, ρ7 = 0.55, α = 18, A0 = 17.9, A1 =

10.59, A2 = 12.41, A3 = 18, A4 = 22.5, A5 = 27.69, A6 = 31.58, A7 = 32.73, Ã1 =
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