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ON LEGENDRE WAVELETS FOR POISSON EQUATION IN

THE FRAME OF COMPLEX SOLUTION

NACEREDDINE KERROUCHE AND ABDELOUAHAB KADEM

Abstract. In this paper, we study the Poisson equation with a complex
solution:

∆𭟋 (x, y)− Γ (x, y) = 0, (x, y) ∈ [0, 1]× [0, 1]

Γ (x, y) is a given complex function, 𭟋(x; y) = f(x; y) + ig(x; y) is the
unknown complex function,where f and g are complex functions twice
differentiable on the interval [0; 1], ∆ denotes the Laplacian operator, i
is the imaginary unit. The method is based on Legendre wavelets (LW),
and the idea, is that the two integration and derivation matrices are
mutually used to reduce the problem in order to study numerically linear
algebraic system. Some illustrative example are presented to explain the
efficiency and simplicity of the presented method.

1. Introduction

This work is based on the application of two-dimensional Legendre wavelets
for the numerical resolution of the Poisson equation

∆𭟋 (x, y)− Γ (x, y) = 0, (x, y) ∈ [0, 1]× [0, 1] ,

with the boundary conditions

𭟋(0, 0) = 0
𭟋(x, 0) = h(x) , x ∈ [0, 1]
𭟋(0, y) = k(y) , y ∈ [0, 1]
∂𭟋(x, 1)

∂x
= α , x ∈ [0, 1]

∂𭟋(1, y)

∂y
= β , y ∈ [0, 1],

where ∆ = ∂2

∂x2 + ∂2

∂y2
denote the Laplacian operator, 𭟋(x, y) is an unknown

complex function to be determined, Γ (x, y) is a given complex function, h(x) and
k(y) are given functions of complex variables x, y which are twice continuously
differentiable on the interval [0, 1], and α = α1+ iα2, β = β1+ iβ2 are two known
complex constants.
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In this direction, the derivation operational matrix for Legendre wavelets [4]
is derived, and then this matrix was used to solve the above-mentioned problem
and obtain a numerical solution. This approach has the main characteristic of
reducing these problems to solving systems of algebraic equations which greatly
simplify these problems.

This work is organized into five sections: in the second section, we described
the Legendre wavelets and their properties. In the third section, we studied the
convergence of the expansions of Legendre wavelets. In the fourth section, we
described the application of the proposed method to solve the Poisson equation.
In the fifth and last section, a conclusion was drawn.

2. Notations and Preliminaries

2.1. Wavelets and Legendre wavelets.

2.1.1. Wavelets. Nonlinear PDE represent a variety of models that play a major
role for many real world problems in different field [3, 12], and for fractional case
[13]. In recent times, works from several different fields of science and engineering
are based on wavelets. These wavelets, are a family of functions formed from the
dilation and translation of a single function called the mother wavelet w(t). the
parameter b varies continuously which allows to have the following family of
continuous wavelets as [1].

wa,b(t) = |a|−
1
2 w

(
t− b

a

)
, a, b ∈ R, a ̸= 0. (2.1)

For a restriction of parameters a and b to discrete values as a = a−k
1 , b =

nb1a
−k
1 , where a1 > 1 and b1 > 0, we obtain the following family of discrete

wavelets

wk,n(t) = |a1|
k
2 w

(
ak1t− nb1

)
. (2.2)

This family wk,n(t) ≜ wkn(t) constitutes a wavelet basis for L2 (R) where it
becomes orthonormal for a1 = 2, b1 = 1 and n, k are positive integers.

2.1.2. The Legendre wavelets. The Legendre wavelets are defined on the interval
[0, 1) as [1] :

wnm (t) =

{ √
m+ 1

2 2
k
2 Gm

(
2kt− ñ

)
ñ−1
2k

⩽ t ⩽ ñ
2k

0 otherwise
(2.3)

where m = 0, 1, . . . ,M − 1, M is a fixed positive integer, n = 1, 2, . . . , 2k−1,

k ∈ N , and ñ = 2n − 1. The real numbers a = 2
k
2 , b = ñ2

k
2 are the dilation

and translation parameter successively. Gm(t) denote the Legendre polynomials
of degree m defined on the interval [−1, 1], that we can determine them by using
the following recurrence [23] : G0 (t) = 1, G1 (t) = t

Gm+2(t) =
(
2m+3
m+2

)
t Gm+1(t)− (m+1

m+2) Gm(t) , m ≥ 0
(2.4)
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2.2. Function approximation. A function h(t) defined over [0, 1) may be ex-
panded as [9] and [1]

h(t) =
∞∑
n=1

∞∑
m=0

anmwnm (t) , (2.5)

where anm = ⟨h(t), wnm (t)⟩ is the inner product defined as anm =
∫ 1
0 h(t)wnm (t) dt.

If the infinite series in Eq. (2.5) is truncated, then it can be rewritten as

h(t) ≃
2k−1∑
n=1

M−1∑
m=0

anmwnm (t) = ATW (t), (2.6)

where T indicate transposition and A and W (t) are m̂ = 2k−1M column vectors.
For simplicity, Eq. (2.6) can be written as

h(t) ≃
m̂∑
i=1

aiwi (t) = ATW (t), (2.7)

where ai = anm, wi (t) = wnm (t). i is an integer given by i = M (n− 1)+m+1
thus we have

A
△
= [a1, a2, ...., am̂]T , W (t)

△
= [w1 (t) , w2 (t) , ...., wm̂ (t)]T . (2.8)

Similarly, for any function h(x, y) with two variables x, y defined on [0, 1)×[0, 1)
can be developed in a Legendre wavelet basis as [9] :

h(x, y) ≃
m̂∑
i=1

m̂∑
j=1

fijwi (x)wj (y) = W T (x) FW (y), (2.9)

where F = [fij ] and fij = ⟨W (x), ⟨h(x, y),W (y)⟩⟩ in which ⟨., .⟩ denotes the inner
product.

By taking the collocation points ti =
2i−1
m̂ (i = 1, 2, . . . , m̂), in the W (t), we

define the Legendre wavelets matrix ϕm̂×m̂ as

ϕm̂×m̂
△
=

[
W

(
1

2m̂

)
,W

(
3

2m̂

)
, . . . ,W

(
2m̂− 1

2m̂

)]
(2.10)

Moreover, it is shown in [1] that ϕm̂×m̂ has a diagonal form.

2.3. Derivative and integration operational matrices. Now we introduce
the operational matrices of the derivative and integration Legendre wavelets.

Theorem 2.1. [15]. If h(t) is a function and W (t) its Legendre wavelet vector
defined in 2.8, then we can write the derivative of W (t) as follows

dW (t)

dt
= DW (t), (2.11)

where D is the 2k(M + 1) operational matrix of derivative defined as follows

D =


Ă 0 . . 0

0 Ă 0 . 0
. . . .
. . . .

0 0 0 . Ă

 (2.12)
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where Ă =
(
Ăi,j

)
, is a (M +1)(M +1) matrix and their elements Ăi,j are given

by the following relation

Ăi,j =

{
2k+1

√
(2i− 1) (2j − 1) , i = 2, . . . ,M + 1, j = 1, . . . , i− 1 and i+ j odd

0 , otherwise
(2.13)

Corollary 2.1. [15]. The n-th derivative of the operational matrix can be ob-
tained using equation (2.11) as follows:

dnW (t)

dtn
= DnW (t), where Dn = D ×D × ...×D︸ ︷︷ ︸

n−times

(2.14)

The integration of the vector W (t), defined in (2.8), can be expressed as [14] :∫ x

0
W (t)dt ≃ ĨW (x), (2.15)

where Ĩ is the m̂× m̂ operational matrix of integration for LWs.
In general, by applying n times the relation (2.15), we can have Ĩn and we can

write ∫ x

0
...

∫ x

0︸ ︷︷ ︸
n−times

W (t)dt...dt ≃ ĨnW (x). (2.16)

3. Convergence

Theorem 3.1. [7]. If the second derivative of a continuous function h(t) ∈
L2[0, 1] is bounded |h”(t)| ≤ M , then the latter can be expanded as an infinite
sum of Legendre wavelets and the series converges uniformly to h(t), that is h(t) =
∞∑
n=1

∞∑
m=0

anmwnm (t), and coefficients anm are bounded as

|anm| ≤
√
12M̂

(2n)
5
2 (2m− 3)2

(3.1)

Theorem 3.2. [9]. Let AT W (t) be the approximation of a function h with
Legendre’s wavelets where h(t) ∈ L2[0, 1] and its second derivative is bounded
|h”(t)| ≤ M . Then the error is bounded as follows:

ϵm̂(h) ≤

 ∞∑
n=1

∞∑
m=M

a2nm +

∞∑
n=2k+1

M−1∑
m=0

a2nm

 1
2

, (3.2)

where

ϵm̂(h) =

(∫ 1

0

(
h(t)−AT W (t)

)2
dt

) 1
2

. (3.3)
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Theorem 3.3. [14]. If the mixed fourth partial derivatives of a continuous func-

tion h(x, y) ∈ L2 ([0, 1]× [0, 1]) is bounded
∣∣∣∂4h(x,y)
∂x2∂y2

∣∣∣ ≤ M̂ , then the Legendre

wavelets expansion of the latter converges uniformly to h(t), and coefficients fij
are bounded as

|fij | ≤
12M̂

(2n1)
5
2 (2n2)

5
2 (2m1 − 3)2 (2m2 − 3)2

, (3.4)

where i = M(n1 − 1) +m1 + 1 and j = M(n2 − 1) +m2 + 1.

Theorem 3.4. [9]. If h(x, y) ∈ L2([0, 1] × [0, 1]), M̂ is the bound of its second
derivative and its approximation with the Legendre wavelets is W T (x) FW (y).
Then the error ϵm̂×m̂ (h) is bounded as follows:

ϵm̂×m̂ (h) ≤

 ∞∑
i=1

∞∑
j=m̂+1

f2
ij +

∞∑
i=m̂+1

m̂∑
j=1

f2
ij

 1
2

, (3.5)

where

ϵm̂×m̂ (h) =

(∫ 1

0

∫ 1

0

(
h(x, y)−W T (x)FW (y)

)2
dxdy

) 1
2

. (3.6)

4. The proposed method

In this section we will solve the Poisson equation with a complex solution using
a calculation method based on the Legendre wavelets (LWs) and the operational
matrices of integration and derivative of the LWs.

Consider the following equations

∆𭟋 (x, y) = Γ (x, y) , (x, y) ∈ [0, 1]× [0, 1] , (4.1)

with the boundary conditions

𭟋(0, 0) = 0
𭟋(x, 0) = h(x) , x ∈ [0, 1]
𭟋(0, y) = k(y) , y ∈ [0, 1]
∂𭟋(x, 1)

∂x
= α , x ∈ [0, 1]

∂𭟋(1, y)

∂y
= β , y ∈ [0, 1],

(4.2)

∆ = ∂2

∂x2 + ∂2

∂y2
denote the Laplacian operator, 𭟋(x, y) is an unknown complex

function to be determined, Γ (x, y) is a given complex function, h(x) and k(y)
are given functions of complex variables x, y which are twice continuously dif-
ferentiable on the interval[0, 1], and α = α1 + iα2, β = β1 + iβ2 are two known
complex constants.

4.1. Solving the equation. To solve this equation, we suppose
𭟋(x, y) = f(x, y) + ig(x, y)
Γ (x, y) = γ1 (x, y) + iγ2 (x, y)
h(x) = h1(x) + ih2(x)
k(y) = k1(y) + ik2(y).

(25)
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So, we can rewrite the equation (4.1) and the boundary conditions (4.2) as
follows: {

∆f = γ1 (x, y) (x, y) ∈ [0, 1]× [0, 1]
∆g = γ2 (x, y) (x, y) ∈ [0, 1]× [0, 1],

(4.3)

subject to the boundary conditions

f(0, 0) = g(0, 0) = 0
f(x, 0) = h1(x), g(x, 0) = h2(x) x ∈ [0, 1]
f(0, y) = k1(y), g(0, y) = k2(y) y ∈ [0, 1]
∂f(x, 1)

∂x
= α1 x ∈ [0, 1]

∂g(x, 1)

∂x
= α2 x ∈ [0, 1]

∂f(1, y)

∂y
= β1 y ∈ [0, 1]

∂g(1, y)

∂y
= β2 y ∈ [0, 1].

(4.4)

Now we suppose 
∂4f

∂x2∂y2
= W (x)TF W (y)

∂4g

∂x2∂y2
= W (x)TG W (y)

(4.5)

where F = [fij ]m̂×m̂
and G = [gij ]m̂×m̂

are the matrices we are looking for, and
W (.) is the Legendre wavelets vector that is defined in (2.7). We suppose

f(x, 0) = h1(x)
∆
= W (x)TH1

g(x, 0) = h2(x)
∆
= W (x)TH2

f(0, y) = k1(y)
∆
= KT

1 W (y)

g(0, y) = k2(y)
∆
= KT

2 W (y)

(4.6)

By integrating (4.5) tow times with respect to y, we obtain
∂2f

∂x2
= W (x)T

(
D2

)T
H1 + y ∂

∂y

(
∂2f
∂x2

)
y=0

+W (x)TF Ĩ2W (y)

∂2g

∂x2
= W (x)T

(
D2

)T
H2 + y ∂

∂y

(
∂2g
∂x2

)
y=0

+W (x)TGĨ2W (y).

(4.7)

By putting y = 1 in (4.7), we obtain
∂
∂y

(
∂2f
∂x2

)
y=0

= ∂2f(x,1)
∂x2 −W (x)T

[(
D2

)T
H1 + F Ĩ2 W (1)

]
∂
∂y

(
∂2g
∂x2

)
y=0

= ∂2g(x,1)
∂x2 −W (x)T

[(
D2

)T
H2 +GĨ2 W (1)

]
,

(4.8)

where H1 and H2 are the Legendre wavelets coefficient vectors for h1(x) and

h2(x) respectively, and by considering (4.4), we have ∂2f(x,1)
∂x2 = 0, ∂2g(x,1)

∂x2 = 0
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and 
∂
∂y

(
∂2f
∂x2

)
y=0

= W (x)T
[
−
(
D2

)T
H1 − F Ĩ2W (1)

]
∆
= W (x)T∧1

∂
∂y

(
∂2g
∂x2

)
y=0

= W (x)T
[
−
(
D2

)T
H2 −GĨ2W (1)

]
∆
= W (x)T∧2,

(4.9)

and by substituting (4.9) into (4.7), we have{
∂2f
∂x2 = W (x)T

(
D2

)T
H1 + yW (x)T ∧1 +W (x)TF Ĩ2W (y)

∂2g
∂x2 = W (x)T

(
D2

)T
H2 + yW (x)T ∧2 +W (x)TGĨ2W (y).

(4.10)

Suppose that the coefficient vectors (LWs) of the unit step functions and y
are E and Y respectively, then (4.10) can be written as follows:

∂2f
∂x2 = W (x)T

[(
D2

)T
H1E

T + ∧1Y
T + F Ĩ2

]
W (y)

∆
= W (x)TA1W (y)

∂2g
∂x2 = W (x)T

[(
D2

)T
H2E

T + ∧2Y
T +GĨ2

]
W (y)

∆
= W (x)TA2W (y).

(4.11)
Moreover, by integrating (4.5) two times with respect to x, and considering

(4.4), we obtain
∂2f
∂y2

= k′′1(y) + x ∂
∂x

(
∂2f
∂y2

)
x=0

+W (x)T
(
ĨT

)2
FW (y)

∂2g
∂y2

= k′′2(y) + x ∂
∂x

(
∂2g
∂y2

)
x=0

+W (x)T
(
ĨT

)2
GW (y).

(4.12)

By putting x = 1, k′′1(y) = KT
1 D

2W (y) and k′′2(y) = KT
2 D

2W (y) in (4.12), we
have

(
∂2f
∂y2

)
x=1

= KT
1 D

2W (y) + ∂
∂x

(
∂2f
∂y2

)
x=0

+W (1)T
(
ĨT

)2
FW (y)(

∂2g
∂y2

)
x=1

= KT
2 D

2W (y) + ∂
∂x

(
∂2g
∂y2

)
x=0

+W (1)T
(
ĨT

)2
G W (y).

(4.13)

By considering (4.4), ∂2f(1,y)
∂y2

= 0 and ∂2g(1,y)
∂y2

= 0, we have
∂
∂x

(
∂2f
∂y2

)
x=0

=

[
−KT

1 D
2 −W (1)T

(
ĨT

)2
F

]
W (y)

∆
=

∑T
1 W (y)

∂
∂x

(
∂2g
∂y2

)
x=0

=

[
−KT

2 D
2 −W (1)T

(
ĨT

)2
G

]
W (y)

∆
=

∑T
2 W (y).

(4.14)

Suppose that the coefficient vectors (LWs) of the unit step functions and x are
E and X respectively. By considering (4.4) and by substituting (4.14) into (4.12),
we can write (4.14) as follows

∂2f
∂y2

= W (x)T
[
EKT

1 D
2 +X

∑T
1 +

(
ĨT

)2
F

]
W (y)

∆
= W (x)TB1W (y)

∂2g
∂y2

= W (x)T
[
EKT

2 D
2 +X

∑T
2 +

(
ĨT

)2
G

]
W (y)

∆
= W (x)TB2W (y).

(4.15)
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Then, by substituting (4.11), (4.15) into (4.3), we obtain{
A1 +B1 − Γ1 = 0
A2 +B2 − Γ2 = 0,

(4.16)

where Γ1 and Γ2 are the LWs coefficient vectors for the functions γ1 (x, y) and
γ2 (x, y), respectively.

By solving system (4.16), we obtain the unknown matrices F and G and sub-
sequently we get the functions f(x, y), g(x, y) by integrating (4.11) with respect
to x as follows, we obtain

∂f
∂x =

(
∂f
∂x

)
x=0

+W (x)T ĨT A1W (y)

∂g
∂x =

(
∂g
∂x

)
x=0

+W (x)T ĨT A2W (y).
(4.17)

Moreover,by integrating (4.17) with respect to x, we obtain
f(x, y) = f(0, y) + x

(
∂f
∂x

)
x=0

+W (x)T
(
ĨT

)2
A1W (y)

g(x, y) = g(0, y) + x
(
∂g
∂x

)
x=0

+W (x)T
(
ĨT

)2
A2W (y).

(4.18)

By considering (4.6) and by substituting into (4.18), we have
f(x, y) = KT

1 Ψ(y) + x
(
∂f
∂x

)
x=0

+W (x)T
(
ĨT

)2
A1W (y)

g(x, y) = KT
2 W (y) + x

(
∂g
∂x

)
x=0

+W (x)T
(
ĨT

)2
A2W (y).

(4.19)

By putting x = 1 in (4.19), we obtain
(
∂f
∂x

)
x=0

= f(1, y)−KT
1 W (y)−W (1)T

(
ĨT

)2
A1W (y)(

∂g
∂x

)
x=0

= g(1, y)−KT
2 W (y)−W (1)T

(
ĨT

)2
A2W (y),

(4.20)

and by considering (4.4), we have f(1, y) = f(1, 0) + β1y = h1(1) + β1y
∆
= ωT

1 W (y)

g(1, y) = g(1, 0) + β2y = h2(1) + β2y
∆
= ωT

2 W (y).
(4.21)

By substituting into (4.20), we have


(
∂f
∂x

)
x=0

=

[
ωT
1 −KT

1 −W (1)T
(
ĨT

)2
A1

]
W (y)

∆
= ΩT

1 W (y)(
∂g
∂x

)
x=0

=

[
ωT
2 −KT

2 −W (1)T
(
ĨT

)2
A2

]
W (y)

∆
= ΩT

2 W (y).

(4.22)

By considering (4.6), (4.22) and substituting into (4.19), we have
f(x, y) = W (x)T

[
EKT

1 +XΩT
1 +

(
ĨT

)2
A1

]
W (y)

g(x, y) = W (x)T
[
EKT

2 +XΩT
2 +

(
ĨT

)2
A2

]
W (y).

(4.23)
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As a result, we find the approximate solution of the proposed problem using (??).

4.2. Algorithm. The algorithm of this method can be presented in the following
steps:

Input: M ∈ N, k ∈ N ∪ {0}; real constants α1;α2;β1 and β2; the func-
tions h1(x), h2(x), k1(y) and k2(y) ∈ L2[0, 1]; the functions γ1 (x, y), γ2 (x, y) ∈
L2 ([0, 1]× [0, 1]).

Step 1: Define the legendre wavelets wnm(x) by (2.3).
Step 2: Prepare the legendre wavelets vector W (x) from (2.8).
Step 3: Calculation of the legendre wavelets matrix

ϕm̂×m̂
△
=

[
W

(
1
2m̂

)
,W

(
3
2m̂

)
, . . . ,W

(
2m̂−1
2m̂

)]
from (2.10).

Step 4: Calculation of the legendre wavelets operational matrices Dnand Ĩn

using (2.14)-(2.16).
Step 5: Calculation of the coefficient vectors E, X, Y , H1, H2, K1and K2

using (2.5).
Step 6: Define the unknown matrices F = [fij ]m̂×m̂ and G = [gij ]m̂×m̂.
Step 7: Calculation of the vectors ∧1, ∧2 and consequently A1, A2 using

(4.9)-(4.11).
Step 8: Calculation of the vectors

∑
1,

∑
2 and consequently B1, B2 using

(4.14)-(4.15).

Step 9: Put

{
A1 +B1 − Γ1 = 0
A2 +B2 − Γ2 = 0

.

Step 10: Find the unknown matrices F and G with the solution of the system
of algebraic equations defined in step (2.9).

Step 11: Calculation of the vectors ω1, ω2 and consequently Ω1, Ω2 using
(4.21)-(4.22).

Output: Find f(x, y) and g(x, y) from (4.23) and consequently 𭟋 (x, y).

4.2.1. Illustrative Test Problem. Consider the Poisson equation on a unit square
[0, 1]× [0, 1] which is formulated as follows:

∆𭟋 (x, y) = 2x− 2 + i (2y − 2) , (x, y) ∈ [0, 1]× [0, 1] ,

subject to the boundary conditions

𭟋(0, 0) = 0
𭟋(x, 0) = −x− ix2 , x ∈ [0, 1]
𭟋(0, y) = −y2 − iy , y ∈ [0, 1]

∂𭟋(x, 1)

∂x
= 0 , x ∈ [0, 1]

∂𭟋(1, y)

∂y
= 0 , y ∈ [0, 1]

So that the exact solution is given

𭟋 (x, y) = xy2 − x− y2 + i
(
x2y − x2 − y

) ∆
= f(x, y) + ig(x, y).

Boundary conditions can be written as
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f(0, 0) = g(0, 0) = 0

f(x, 0) = h1(x) = −x
∆
= W (x)TH1 , x ∈ [0, 1]

g(x, 0) = h2(x) = −x2
∆
= W (x)TH2 , x ∈ [0, 1]

f(0, y) = k1(y) = −y2
∆
= KT

1 W (y) , y ∈ [0, 1]

g(0, y) = k2(y) = −y
∆
= KT

2 W (y) , y ∈ [0, 1]

∂f(x,1)
∂x = α1 = 0 , x ∈ [0, 1]

∂g(x,1)
∂x = α2 = 0 , x ∈ [0, 1]

∂f(1,y)
∂y = β1 = 0 , y ∈ [0, 1]

∂g(1,y)
∂y = β2 = 0 , y ∈ [0, 1]

,

For m̂ = 3 (k = 1, M = 3), we have

D =

 0 0 0

2
√
3 0 0

0 2
√
15 0

 , Ĩ =

 1 1√
3

0

− 1√
3

0 1√
3
√
5

0 − 1√
3
√
5

0

 ,

H1 = K2 =

 −1
2

− 1
2
√
3

0

 , H2 = K1 =

 −1
3

− 1
2
√
3

− 1
6
√
5

 ,

E =

 1
0
0

 , X = Y =

 1
2
1

2
√
3

0

 ,

Γ1 = ΓT
2 =

 −1 0 0
1√
3

0 0

0 0 0

 .

Subsequently, we find

A1 = F

 −1
3 0 1

15

√
5

1
30

√
3 − 1

30 0
1
15

√
5 0 − 1

15

 ,

A2 =

 −1 1√
3

0

0 0 0
0 0 0

+G

 −1
3 0 1

15

√
5

1
30

√
3 − 1

30 0
1
15

√
5 0 − 1

15

 ,

B1 =

 −1 0 0
1
3

√
3 0 0

0 0 0

+

 −1
3

1
30

√
3 1

15

√
5

0 − 1
30 0

1
15

√
5 0 − 1

15

F,

B2 =

 −1
3

1
30

√
3 1

15

√
5

0 − 1
30 0

1
15

√
5 0 − 1

15

G
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By substituting A1, A2, B1, B2, Γ1 and Γ2 in system (4.16){
A1 +B1 − Γ1 = 0
A2 +B2 − Γ2 = 0,

we have

F

 −1
3 0

√
5

15√
3

30 − 1
30 0√

5
15 0 − 1

15

+

 −1
3

√
3

30

√
5

15
0 − 1

30 0√
5

15 0 − 1
15

F =

 0 0 0
0 0 0
0 0 0


and

G

 −1
3 0

√
5

15√
3

30 − 1
30 0√

5
15 0 − 1

15

+

 −1
3

√
3

30

√
5

15
0 − 1

30 0√
5

15 0 − 1
15

G =

 0 0 0
0 0 0
0 0 0

 ,

from where

F = G =

 0 0 0
0 0 0
0 0 0

 ,

then, we can calculate the following matrices

A1 = B2 =

 0 0 0
0 0 0
0 0 0

 , A2 = BT
1 =

 −1 1√
3

0

0 0 0
0 0 0

 , B2 =

 0 0 0
0 0 0
0 0 0




f(x, y) ≃ W (x)T
[
EKT

1 +X

[
ωT
1 −KT

1 −W (1)T
(
ĨT

)2
A1

]
+
(
ĨT

)2
A1

]
W (y)

g(x, y) ≃ W (x)T
[
EKT

2 +X

[
ωT
2 −KT

2 −W (1)T
(
ĨT

)2
A2

]
+
(
ĨT

)2
A2

]
W (y).

Finally, we find the components of the approximate solution


f(x, y) ≃ 0.999 97xy2 + 4.725 5× 10−5xy − 1.001x
−0.999 98y2 − 2. 16 1× 10−5y + 2.312 8× 10−5

g(x, y) ≃ 0.999 97x2y − 0.999 98x2 + 4. 25 5× 10−5xy
−2.416 1× 10−5x− 1.001y + 2.312 8× 10−5

In the following, we will make a comparison between the exact and approximate
solution and determine the errors for a few points.

For the solution f(x, y), see Figure 1 and Figure 2.
Table 1: The absolute errors of the proposed method for m̂ = 3 (k = 1, M =

3) for the solution f(x, y):
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xi yi ei
0.1 0.1 2.13545E-05
0.2 0.2 2.0746E-05
0.3 0.3 2.11226E-05
0.4 0.4 2.23044E-05
0.5 0.5 2.41113E-05
0.6 0.6 2.63632E-05
0.7 0.7 2.88803E-05
0.8 0.8 3.14824E-05
0.9 0.9 3.39897E-05

For the solution g(x, y), see Figure 3 and Figure 4.
Table 2 : The absolute errors of the proposed method for m̂ = 3 (k = 1, M =

3) for the solution g(x, y):

xi yi ei
0.1 0.1 2.13545E-05
0.2 0.2 2.0746E-05
0.3 0.3 2.11226E-05
0.4 0.4 2.23044E-05
0.5 0.5 2.41113E-05
0.6 0.6 2.63632E-05
0.7 0.7 2.88803E-05
0.8 0.8 3.14824E-05
0.9 0.9 3.39897E-05

Figure 1. Approximate solution for f(x, y)

Figure 2. The Exact solution f(x, y) = xy2 − x− y2
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Figure 3. Approximate solution for g(x, y)

Figure 4. The exact solution g(x, y) = x2y − x2 − y

5. Conclusion

In this work, we have presented a numerical method combined with Legendre
wavelets with their operational matrices of integration and derivation in order to
approximate numerical solutions of the Poisson partial differential equation in C.
The performance of the method applied for the given equation is effective and
has a remarkable and impressive level. The method determines the mentioned
solutions in an efficient way that is quickly and accurately. The results of the illus-
trated examples are in agreement with the results of the proposed method which
is a very powerful to find approximate solutions as well as numerical solutions.

In the future, we intend to investigate another type of nonlinear partial differ-
ential equations in a more complex domain by using the same method.
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