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ANALYSIS AND NUMERICAL SIMULATION OF

FRACTIONAL BIOLOGICAL POPULATION MODEL WITH

SINGULAR AND NON-SINGULAR KERNELS

AMIT PRAKASH AND RAHUL

Abstract. This work investigates the fractional biological population
model having carrying capacity. This fractional model is studied with
singular and non-singular fractional derivatives. The Adams-Bashforth
method is used to solve the predator-prey model with the non-local op-
erator. Our numerical scheme is simply the combination of the funda-
mental theorem of integral calculus with Lagrange’s interpolation. We
use the fixed-point theorem to check the existence and uniqueness of this
modified fractional model. We obtained different asymptotic behaviours
for three different fractional derivatives that do not exist in the integer-
order modelling. Finally, we present numerical results in tabulated and
graphically form for distinct values of fractional order.

1. Introduction

In population ecology, the relationship between predator and prey significantly
contributes. The predator is a species that primarily obtain food by killing and
consuming other species known as prey. In our nature, we have several predator-
prey pairs; examples of predator-prey pairs are lion and zebra, bear and fish, fox
and rabbit etc. The survival of predator species is not possible in the absence of
prey species.

Recently, many fractional-order biological population models have been devel-
oped to analyze the factor affecting the ecosystem. Freedman [12] examined the
Gaussian system predator-prey model. Lotka [23] and Volterra [34] proposed the
classical generalized predator-prey model. The fractional Lotka-Volterra model
is analyzed by S. Das [9] using the homotopy perturbation method. C.A. Ibarra
[16] examined the Bazykin predator-prey model with the ratio-dependent func-
tional response and predator intraspecific interactions. E. Ahmed [2] analyzed
fractional-order rabies and predator-prey models.

Fractional calculus (FC) is the generalized form of classical calculus. FC is a
branch of applied science having enormous applications in engineering and sci-
ence. During the past years, the evolution of fast and highly effective numerical
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techniques in fractional calculus drew the attention of researchers and scien-
tists. The fractional models are more authentic and realistic in analyzing real-life
problems than integer-order derivatives. The fractional derivative has significant
applications in science and engineering, such as biological sciences, control the-
ory, signal and systems, mechanics, chemical engineering, banking, fluid dynamic,
plasma physics, neurophysiology, traffic, acoustics and many engineering sciences.

In FC, Caputo and Riemann-Liouville derivatives have been used at most.
Still, they possess a singular power-law kernel, so we can’t define the non-locality
of real-life phenomena. That’s why to illustrate nonlocal behaviour ABC [4]
derivative with Mittag-Leffler kernel and CF [8] derivative with exponential de-
cay kernel with non-singular kernels are presented. They are more authentic
in illustrating real-life problems. These modern derivatives were used to in-
vestigate various fractional differential equations such as the fractional Ebola-
Virus model [10], fractional Covid-19 model [33], El Nino-Southern Oscillation
model [31], fractional immunogenetic tumour model [13], fractional nutrient-
phytoplankton-zooplankton model [14], fractional Keller-Segel model [5], SIR
epidemic model [30], fractional burgers equation [35], Spatiotemporal patterns
in the Belousov-Zhabotinskii reaction system [25], Optimal control [3], Chick-
enpox disease model [28], fractional Cahn-Allen model [27], fractional banking
model [11], fractional HIV epidemic model [20], fractional Tricomi equation [19],
Nabla fractional boundary value problem [18], Hadamard fractional differential
equations [1] etc.

This work’s main objective is to study fractional biological population model
with 3-step ABM via Caputo, CF, and ABC derivatives. This predator-prey
model is related to the species’ population, so the variables and parameters used
are non-negative. The proposed biological population model is defined as follows:

Dα
t u(t) = u(t)

(
a1 − a1u(t)

K1

)
− b1u(t)v(t),

Dα
t v(t) = v(t) (−a2 + b2u(t)) , 0 < α ≤ 1,

}
(1.1)

with

u0(t) = λ1, v0(t) = λ2, (1.2)

here u(t) and v(t) represent respectively prey and predator population density
for time t, a1 and a2 denote, the intrinsic growth rate of prey and predator
respectively, carrying capacity is denoted byK1. b1 and b2 signify the competition
coefficient of prey and predator, respectively. Here a1, a2, b1, b2 and K1 are
positive parameter.

In computational biology, fractional biological population model has many
applications. Earlier, this fractional biological population model was analyzed by
reproducing kernel Hilbert space method [7] and homotopy perturbation Sumudu
transform approach [32] via Caputo derivative. The present work explores the
proposed model with 3-step ABM with Caputo, CF, and ABC derivatives. Earlier
fractional ABM was studied by Kumar [22] and Owolabi [24], Jena [17] analyzed
coupled spring-mass system, Hamou [15] predicted COVID-19 with quarantine
and isolation strategies with CF derivative.

Organization: In section 2 some basic definitions are defined. The existence
and uniqueness of model’s solutions is presented in section. Section 4 examines
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the fractional biological population model with 3-step ABM via singular and non-
singular kernel derivatives. Simulation results are discussed in section 5, and the
conclusion is drawn in section 6.

2. Preliminaries

This section includes basic definitions of Caputo, CF and ABC derivatives and
integrals.
Definition 2.1. The Caputo derivative of ϕ ∈ Cβ, β ≥ −1 is given by [21, 26]:

C
0D

α
t ϕ(t) =

{
1

Γ(1− α)

∫ t

0
(t− p)−αϕ′(p)dp, here 0 < α < 1 .

Definition 2.2. Let ϕ ∈ H1(c, d), d > c, and α ∈ [0, 1], then the CF derivative
of ϕ(t) is ginen by [6, 8]:

CF
0D

α
t ϕ(t) =

M(α)

1− α

∫ t

0
ϕ′(p) exp

(
−α(t− p)

1− α

)
dp,

and CF integral is given by:

CF
0I

α
t ϕ(t) =

1− α

M(α)
ϕ(t) +

α

M(α)

∫ t

0
ϕ(p)dp, t ≥ 0,

here M(α) denote normalization function such that M(0) = M(1) = 1.
Definition 2.3. Let ϕ ∈ H1(c, d), d > c, α ∈ [0, 1], then the ABC derivative is
given by [4]:

ABC
0D

α
t ϕ(t) =

B(α)

1− α

∫ t

0
ϕ′(p)Eα

[
− α

1− α
(t− p)α

]
dp,

and ABC integral is given by:

ABC
0I

α
t ϕ(t) =

1− α

B(α)
ϕ(t) +

α

B(α)Γ(α)

∫ t

0
ϕ(p)(t− p)α−1dp, t ≥ 0,

here B(α) denote the normalization function such that B(0) = B(1) = 1.

3. Existence and uniqueness analysis

In this section, the existence and uniqueness of this fractional model is studied
by using the fixed-point theorem. The model equation of 2-dimentional predator-
prey system in term of ABC derivative is defined as:

ABC
0D

α
t u(t) = u(t)

(
a1 − a1u(t)

K1

)
− b1u(t)v(t),

ABC
0D

α
t v(t) = v(t) (−a2 + b2u(t)) , 0 < α ≤ 1.

}
(3.1)
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Integrating Eq. (3.1) both sides by using definition of ABC integral, we have

u(t)− u(0) =
(1− α)

B(α)

(
u(t)

(
a1 −

a1u(t)

K1

)
− b1u(t)v(t)

)
+

α

B(α)Γ(α)

∫ t

0
(t− p)α−1

(
u(p)

(
a1 −

a1u(p)

K1

)
− b1u(p)v(p)

)
dp,

v(t)− v(0) =
(1− α)

B(α)
v(t) (−a2 + b2u(t))

+
α

B(α)Γ(α)

∫ t

0
(t− p)α−1 (v(p) (−a2 + b2u(p))) dp.

(3.2)
For simplicity, we define

F (t, u, v) = u(t)
(
a1 − a1u(t)

K1

)
− b1u(t)v(t),

G(t, u, v) = v(t) (−a2 + b2u(t)) .

}
(3.3)

Now, we have to prove that the kernel F (t, u, v) and G(t, u, v) satisfies the Lips-
chitz condition.

Theorem 3.1. The kernel F(t,u,v) and G(t,u,v) satisfy the Lipschitz condition
and show contraction if:

0 < Ai ≤ 1, i = 1, 2.

Proof. Let us suppose that u(t) and v(t) are bounded. So, if u and v have
upper bound then, we have

∥F (t, u, v)− F (t, u1, v)∥ =

∥∥∥∥∥u(t)
(
a1 −

a1u(t)

K1

)
− b1u(t)v(t)

− u1(t)

(
a1 −

a1u1(t)

K1

)
+ b1u1(t)v(t)

∥∥∥∥∥,
using property of norm, we have

≤∥a1 (u(t)− u1(t))∥+
∥∥∥∥ a1
K1

(u(t) + u1(t)) (u(t)− u1(t))

∥∥∥∥
+ ∥(b1v(t)) (u(t) + u1(t))∥ ,

=

∥∥∥∥(a1 + a1
K1

(c1 + c2) + b1c3

)
(u(t)− u1(t))

∥∥∥∥ ,
≤
[
a1 +

a1
K1

(c1 + c2) + b1c3

]
∥u(t)− u1(t)∥ ,

taking A1 =
[
a1 +

a1
K1

(c1 + c2) + b1c3

]
, where u, u1 and v are bounded functions

such that ∥u∥ ≤ c1, ∥u1∥ ≤ c2 and ∥v∥ ≤ c3, then

∥F (t, u, v)− F (t, u1, v)∥ ≤ A1 ∥u(t)− u1(t)∥ . (3.4)

Thus, the kernel F (t, u, v) satisfy Lipschitz condition. If in addition 0 < A1 ≤ 1,
then it is also a contraction. Similarly, we find A2 = b1c1 such that kernel
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G(t, u, v) also satisfy Lipschitz condition as follow:

∥G(t, u, v)−G (t, u, v1)∥ ≤ A2 ∥v(t)− v1(t)∥ . (3.5)

The kernel of model can be expressed as:

u(t) = u(0) +
(1− α)

B(α)
F (t, u, v) +

α

B(α)Γ(α)

∫ t

0
(t− p)α−1 F (p, u, v)dp,

v(t) = v(0) +
(1− α)

B(α)
G(t, u, v) +

α

B(α)Γ(α)

∫ t

0
(t− p)α−1G(p, u, v)dp.

We can write initial condition as:

u(0) = u0, v(0) = v0.

We construct the iterative formula as:

un(t) = u0 +
(1− α)

B(α)
F (t, u, v) +

α

B(α)Γ(α)

∫ t

0
(t− p)α−1 F (p, un−1, v) dp,

vn(t) = v0 +
(1− α)

B(α)
G(t, u, v) +

α

B(α)Γ(α)

∫ t

0
(t− p)α−1G (p, u, vn−1) dp.

(3.6)
The succeeding terms difference is defined as follows:

xn(t) = un(t)− un−1(t) =
(1− α)

B(α)
(F (t, un−1, v)− F (t, un−2, v)) +

α

B(α)Γ(α)

×
∫ t

0
(t− p)α−1 ( F (p, un−1, v)− F (p, un−2, v)) dp,

yn(t) = vn(t)− vn−1(t) =
(1− α)

B(α)
(G (t, u, vn−1)−G (t, u, vn−2)) +

α

B(α)Γ(α)

×
∫ t

0
(t− p)α−1 (G (p, u, vn−1)−G (p, u, vn−2)) dp.

(3.7)
It can be written as follow:
un(t) =

∑n
i=0 xi(t), such that x0(t) = u0,

vn(t) =
∑n

i=0 yi(t), such that y0(t) = v0.
Applying norm on first Eq. (3.7), we get

∥xn(t)∥ = ∥un(t)− un−1(t)∥ = ∥(1− α)

B(α)
(F (t, un−1, v)− F (t, un−2, v))

+
α

B(α)Γ(α)

×
∫ t

0
(t− p)α−1 ( F (p, un−1, v)− F (p, un−2, v)) dp∥.

(3.8)
Using norm’s property on Eq. (3.8), we have

∥xn(t)∥ ≤
∥∥∥∥(1− α)

B(α)
(F (t, un−1, v)− F (t, un−2, v))

∥∥∥∥
+

∥∥∥∥ α

B(α)Γ(α)

∫ t

0
(t− p)α−1 ( F (p, un−1, v)− F (p, un−2, v)) dp

∥∥∥∥ ,
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using Eq. (3.4) in above inequality, we get

∥xn(t)∥ ≤(1− α)

B(α)
A1 ∥un−1(t)− un−2(t)∥

+
α

B(α)Γ(α)
A1

∫ t

0
(t− p)α−1 ∥un−1(t)− un−2(t)∥ dp,

∥xn(t)∥ ≤(1− α)

B(α)
A1 ∥xn−1∥+

α

B(α)Γ(α)
A1

∫ t

0
(t− p)α−1 ∥xn−1∥ dp,

similarly, we have the following result

∥yn(t)∥ ≤(1− α)

B(α)
A2 ∥yn−1∥+

α

B(α)Γ(α)
A2

∫ t

0
(t− p)α−1 ∥yn−1∥ dp. (3.9)

Theorem 3.2. The solutions of system (3.1) exists if there ∃ t0 which satisfy
the following condition[

1− α

B(α)
Ai +

α

B(α)Γ(α+ 1)
Ait

α
0

]
< 1, where i = 1, 2. (3.10)

Proof. Since u(t) and v(t) are bounded, kernel F(t,u,v) and G(t,u,v) hold the
Lipschitz condition and using Eq. (3.9) and recursive method, we get

∥xn(t)∥ ≤
[
1−α
B(α)A1 +

α
B(α)Γ(α+1)A1t0

α
]n

∥u(0)∥,

∥yn(t)∥ ≤
[
1−α
B(α)A2 +

α
B(α)Γ(α+1)A2t0

α
]n

∥v(0)∥.

Therefore, the function un(t) =
∑n

i=0 xn(t) and vn(t) =
∑n

i=0 yn(t) exist and
smooth. Next, we have to prove that the above functions are the solutions of the
fractional model.
Let

u(t)− u(0) = un(t)− ϕn(t),

v(t)− v(0) = vn(t)−Ψn(t).

Therefore, we have

∥ϕn(t)∥ =

∥∥∥∥∥1− α

B(α)
{F (t, u, v)− F (t, un−1, v)}

+
α

B(α)Γ(α)

∫ t

0
(t− p)α−1 { F (p, u, v)− F (p, un−1, v)} dp

∥∥∥∥∥,
≤ 1− α

B(α)
A1 ∥u(t)− un−1(t)∥+

α

B(α)Γ(α+ 1)
A1t

α ∥u(t)− un−1(t)∥ .

Following the similar steps, we have

∥ϕn(t)∥ ≤
[
1− α

B(α)
+

α

B(α)Γ(α+ 1)
tα
]n+1

An+1
1 M.

Then at t = t0, we have

∥ϕn(t)∥ ≤
[
1− α

B(α)
+

α

B(α)Γ(α+ 1)
tα0

]n+1

An+1
1 M.
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Now, ∥ϕn(t)∥ → 0 as n → ∞. Similarly, we can show that ∥Ψn(t)∥ → 0.
Hence, we show that the solutions exist.

Theorem 3.3. The predator-prey model (3.1) has a unique system of solution if
the condition below holds[

1− (1− α)

B(α)
Ai −

α

B(α)Γ(α+ 1)
Ait

α

]
> 0, where i = 1, 2. (3.11)

Proof. Let u∗(t) and v∗(t) be another set of solutions for this fractional bio-
logical population model. Now, taking

u(t)− u∗(t) =
(1− α)

B(α)
(F (t, u, v)− F (t, u∗, v))

+
α

B(α)Γ(α)

∫ t

0
(t− p)α−1 ( F (p, u, v)− F (p, u∗, v)) dp,

using norm

∥u(t)− u∗(t)∥ ≤(1− α)

B(α)
∥F (t, u, v)− F (t, u∗, v)∥

+
α

B(α)Γ(α)

∥∥∥∥∫ t

0
(t− p)α−1( F (p, u, v)− F (p, u∗, v))dp

∥∥∥∥ ,
≤ (1− α)

B(α)
∥u(t)− u∗(t)∥+ α

B(α)Γ(α+ 1)
tα ∥u(t)− u∗(t)∥ .

This gives

∥u(t)− u∗(t)∥
(
1− (1− α)

B(α)
A1 −

α

B(α)Γ(α+ 1)
A1t

α

)
≤ 0. (3.12)

If the condition in Eq. (3.11) exists, then we have

∥u(t)− u∗(t)∥ = 0. (3.13)

Then, we get

u(t) = u∗(t),

following similar steps, we obtain

v(t) = v∗(t).

This verifies solution’s uniqueness. Following similar steps, the proposed model’s
existence and uniqueness [17, 29] can easily be verified with Caputo and CF
derivatives.

4. Numerical scheme

In this section, we examined the proposed model with the power-law kernel,
Mittag-Leffler kernel and exponential decay kernel by using the 3-step ABM.

4.1. 3-step ABM via Caputo derivative.
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We defined the proposed model in terms of Caputo derivative as:

C
0D

α
t u(t) = F (t, u, v),

C
0D

α
t v(t) = G(t, u, v).

}
(4.1)

Where

F (t, u, v) = u(t)
(
a1 − a1u(t)

K1

)
− b1u(t)v(t),

G(t, u, v) = v(t) (−a2 + b2u(t)) .

}
(4.2)

Integration 1st equation of (4.1) in Caputo sense, we have

u(t)− u(0) =
1

Γ(α)

∫ t

0
(t− s)α−1F (s, u(s), v(s))ds. (4.3)

Using h as step size we discretizing the [0, t] and have a sequence t0 = 0,
tn+1 = t0 + (n+ 1)h, n = 0, 1, 2, . . . , q − 1, and tq = t.
Set t = tn+1 in Eq. (4.3), we get

u (tn+1)− u(0) =
1

Γ(α)

∫ tn+1

0
(tn+1 − s)α−1 F (s, u(s), v(s))ds. (4.4)

By using above sequence Eq. (4.4) can be written as:

u (tn+1)− u(0) =
1

Γ(α)

n∑
p=0

∫ tp+1

tp

(tn+1 − s)α−1 F (s, u(s), v(s))ds. (4.5)

In Eq. (4.5) we approximate the function F (t, u, v) on the interval [tp, tp+1]
through the Lagrange polynomial as follows:

u (tn+1) =u(0) +
1

Γ(α)

n∑
p=2

∫ tp+1

tp

[
F (tp, u (tp) , v (tp))

2 h2

× ( s− tp−1) (s− tp−2) (tn+1 − s)α−1 ds

−
∫ tp+1

tp

F (tp−1, u (tp−1) , v (tp−1))

h2
( s− tp) (s− tp−2) (tn+1 − s)α−1 ds

+

∫ tp+1

tp

F (tp−2, u (tp−2) , v (tp−2))

2 h2
( s− tp) (s− tp−1) (tn+1 − s)α−1 ds

]
.

(4.6)
Simplifying equation (4.6), we get

u(tn+1) = u(0) +
hα

2Γ(α+ 3)

n∑
p=2

[
F
(
tp, u(tp), v(tp)

)[
(n+ 1− p)α{2(n− p)2 + (n

− p)(3α+ 10) + 2α2 + 9α+ 12} − (n− p)α{2(n− p)2 + (n− p)(5α+ 10)

+ 6α2 + 18α+ 12}
]
− 2F

(
tp−1, u(tp−1), v(tp−1)

)[
(n+ 1− p)α{2(n− p)2

+ (n− p)(2α+ 8) + 2α+ 6} − (n− p)α{2(n− p)2 + (n− p)(4α+ 8) + 3α2

+ 9α+ 6}
]
+ F

(
tp−2, u(tp−2), v(tp−2)

)[
(n+ 1− p)α{2(n− p)2 + (n− p)(α

+ 6) + α+ 4} − (n− p)α{2(n− p)2 + (n− p)(3α+ 6) + 2α2 + 6α+ 4}
]]
.

(4.7)
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Similarly, for the 2nd equation of (4.1), we can write

v(tn+1) = v(0) +
hα

2Γ(α+ 3)

n∑
p=2

[
G
(
tp, u(tp), v(tp)

)[
(n+ 1− p)α{2(n− p)2 + (n

− p)(3α+ 10) + 2α2 + 9α+ 12} − (n− p)α{2(n− p)2 + (n− p)(5α+ 10)

+ 6α2 + 18α+ 12}
]
− 2G

(
tp−1, u(tp−1), v(tp−1)

)[
(n+ 1− p)α{2(n− p)2

+ (n− p)(2α+ 8) + 2α+ 6} − (n− p)α{2(n− p)2 + (n− p)(4α+ 8) + 3α2

+ 9α+ 6}
]
+G

(
tp−2, u(tp−2), v(tp−2)

)[
(n+ 1− p)α{2(n− p)2 + (n− p)(α

+ 6) + α+ 4} − (n− p)α{2(n− p)2 + (n− p)(3α+ 6) + 2α2 + 6α+ 4}
]]
.

(4.8)

4.2. 3-step ABM via CF derivative.
We defined the proposed model in terms of CF derivative as:

CF
0D

α
t u(t) = F (t, u, v),

CF
0D

α
t v(t) = G(t, u, v).

}
(4.9)

Integration 1st equation of (4.9) in CF sense, we get

u(t)− u(0) =
1− α

M(α)
F (t, u(t), v(t)) +

α

M(α)

∫ t

0
F (s, u(s), v(s))ds. (4.10)

Using h as step size we discretizing the [0, t] and have the sequence t0 = 0,
tn+1 = t0 + (n+ 1)h, n = 0, 1, 2, . . . , q − 1, and tq = t.
Set t = tn+1 in Eq. (4.10), it follows that

u (tn+1)− u(0) = 1−α
M(α)F (tn, u (tn) , v (tn)) +

α
M(α)

∫ tn+1

0 F (s, u(s), v(s))ds.

(4.11)
Set t = tn+1 in Eq. (4.10), it follows that

u (tn)− u(0) = 1−α
M(α)F (tn−1, u (tn−1) , v (tn−1)) +

α
M(α)

∫ tn
0 F (s, u(s), v(s))ds.

(4.12)
From (4.11) and (4.12), we get

u (tn+1)− u (tn) =
1− α

M(α)
[F (tn, u (tn) , v (tn))− F (tn−1, u (tn−1) , v (tn−1))]

+
α

M(α)

∫ tn+1

tn

F (s, u(s), v(s))ds.

(4.13)
Now, we approximate the function F (t, u, v) on the interval [tn, tn+1] through the
Lagrange polynomial as follows:

F (t, u(t), v(t)) ∼=
F (tn, u (tn) , v (tn))

(tn − tn−1) (tn − tn−2)
(t− tn−1) (t− tn−2)

+
F (tn−1, u (tn−1) , v (tn−1))

(tn−1 − tn) (tn−1 − tn−2)
(t− tn) (t− tn−2)

+
F (tn−2, u (tn−2) , v (tn−2))

(tn−2 − tn) (tn−2 − tn−1)
(t− tn) (t− tn−1) .

(4.14)
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Using Eq. (4.14) in the integral term of Eq. (4.13), we get∫ tn+1

tn

F (s, u(s), v(s))ds =

∫ tn+1

tn

[
F (tnu (tn) , v (tn))

(tn − tn−1) (tn − tn−2)
(t− tn−1) (t− tn−2)

+
F (tn−1, u (tn−1) , v (tn−1))

(tn−1 − tn) (tn−1 − tn−2)
(t− tn) (t− tn−2)

+
F (tn−2, u (tn−2) , v (tn−2))

(tn−2 − tn) (tn−2 − tn−1)
(t− tn) (t− tn−1)

]
.

(4.15)
Simplifying Eq. (4.15), we get∫ tn+1

tn

F (s, u(s), v(s))ds =h

[
23

12
F (tn, u (tn) , v (tn))−

4

3
F (tn−1, u (tn−1) , v (tn−1))

+
5

12
F (tn−2, u (tn−2) , v (tn−2))

]
.

(4.16)

Using Eq. (4.16) in Eq. (4.13), we obtain

u (tn+1) = u (tn) +
1

M(α)

[
(1− α) +

23

12
hα

]
F (tn, u (tn) , v (tn))

− 1

M(α)

[
(1− α) +

4

3
hα

]
F (tn−1, u (tn−1) , v (tn−1))

+
5hα

12M(α)
F (tn−2, u (tn−2) , v (tn−2)) .

(4.17)

Similarly, for the 2nd equation of (4.9), we have

v (tn+1) = v (tn) +
1

M(α)

[
(1− α) +

23

12
hα

]
G (tn, u (tn) , v (tn))

− 1

M(α)

[
(1− α) +

4

3
hα

]
G (tn−1, u (tn−1) , v (tn−1))

+
5hα

12M(α)
G (tn−2, u (tn−2) , v (tn−2)) .

(4.18)

4.3. 3-step ABM via ABC derivative.
We defined the proposed model in terms of ABC derivative as:

ABC
0D

α
t u(t) = F (t, u, v),

ABC
0D

α
t v(t) = G(t, u, v).

}
(4.19)

Integration 1st equation of (4.19) in ABC sense, we get

u(t)− u(0) =
1− α

B(α)
F (t, u(t), v(t) +

α

B(α)Γ(α)

∫ t

0
(t− s)α−1F (s, u(s), v(s))ds.

(4.20)
Using h as step size we discretizing the [0, t] and have the sequence t0 = 0,
tn+1 = t0 + (n+ 1)h, n = 0, 1, 2, . . . , q − 1, and tq = t.
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Set t = tn+1 in Eq. (4.20), it follows that

u (tn+1)− u(0) =
1− α

B(α)
F (tn, u (tn) , v (tn))

+
α

B(α)Γ(α)

∫ tn+1

0
(tn+1 − s)α−1 F (s, u(s), v(s))ds.

(4.21)

By using above sequence Eq. (4.21) can be written as:

u (tn+1)− u(0) =
1− α

B(α)
F (tn, u (tn) , v (tn))

+
α

B(α)Γ(α)

n∑
p=0

∫ tp+1

tp

(tn+1 − s)α−1 F (s, u(s), v(s))ds.

(4.22)
In Eq. (4.22) we approximate the function F (t, u, v) on the interval [tp, tp+1]
through the Lagrange polynomial as follows:

u (tn+1) = u(0) +
1− α

B(α)
F (tn, u (tn) , v (tn))

+
α

B(α)Γ(α)

n∑
p=2

∫ tp+1

tp

[
F (tp, u (tp) , v (tp))

2 h2

× ( s− tp−1) (s− tp−2) (tn+1 − s)α−1 ds

−
∫ tp+1

tp

F (tp−1, u (tp−1) , v (tp−1))

h2
( s− tp) (s− tp−2) (tn+1 − s)α−1 ds

+

∫ tp+1

tp

F (tp−2, u (tp−2) , v (tp−2))

2 h2
( s− tp) (s− tp−1) (tn+1 − s)α−1 ds

]
.

(4.23)
Simplifying Eq. (4.23), we get

u(tn+1) = u(0) +
1− α

B(α)
F
(
tn, u(tn), v(tn)

)
+

αhα

2B(α)Γ(α+ 3)

n∑
p=2

[
F
(
tp, u(tp), v(tp)

)
[(n+ 1− p)α{2(n− p)2 + (n− p)(3α+ 10) + 2α2 + 9α+ 12} − (n− p)α

{2(n− p)2 + (n− p)(5α+ 10) + 6α2 + 18α+ 12}]− 2F
(
tp−1, u(tp−1), v(tp−1)

)
[(n+ 1− p)α{2(n− p)2 + (n− p)(2α+ 8) + 2α+ 6} − (n− p)α{2(n− p)2

+ (n− p)(4α+ 8) + 3α2 + 9α+ 6}] + F
(
tp−2, u(tp−2), v(tp−2)

)
[(n+ 1

− p)α{2(n− p)2 + (n− p)(α+ 6) + α+ 4} − (n− p)α{2(n− p)2 + (n

− p)(3α+ 6) + 2α2 + 6α+ 4}]
]
.

(4.24)
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Similarly, for the 2nd equation of (4.19), we can write

v(tn+1) = v(0) +
1− α

B(α)
G
(
tn, u(tn), v(tn)

)
+

αhα

B(α)2Γ(α+ 3)

n∑
p=2

[
G
(
tp, u(tp), v(tp)

)
[(n+ 1− p)α{2(n− p)2 + (n− p)(3α+ 10) + 2α2 + 9α+ 12} − (n− p)α

{2(n− p)2 + (n− p)(5α+ 10) + 6α2 + 18α+ 12}]− 2G
(
tp−1, u(tp−1), v(tp−1)

)
[(n+ 1− p)α{2(n− p)2 + (n− p)(2α+ 8) + 2α+ 6} − (n− p)α{2(n− p)2

+ (n− p)(4α+ 8) + 3α2 + 9α+ 6}] +G
(
tp−2, u(tp−2), v(tp−2)

)
[(n+ 1

− p)α{2(n− p)2 + (n− p)(α+ 6) + α+ 4} − (n− p)α{2(n− p)2 + (n

− p)(3α+ 6) + 2α2 + 6α+ 4}]
]
.

(4.25)

Table 1. Comparison results of fractional two-dimensional predator-prey system
at α = 0.7 defined in described in Caputo, CF and ABC sense.

t uCaputo uCF uABC vCaputo vCF vABC

0 20.0000 20.0000 20.0000 15.0000 15.0000 15.0000
0.2 16.2020 18.3363 14.1058 15.6836 15.2903 15.9845
0.4 14.2680 16.8342 12.8869 16.0031 15.5428 16.1288
0.6 12.8458 15.4491 11.9564 16.2123 15.7643 16.2607
0.8 11.7204 14.1736 11.1943 16.3629 15.9582 16.3418
1 10.7956 13.0004 10.5477 16.4719 16.1256 16.4015

Table 2. Comparison results of fractional two-dimensional predator-prey system
at α = 0.8 defined in described in Caputo, CF and ABC sense.

t uCaputo uCF uABC vCaputo vCF vABC

0 20.0000 20.0000 20.0000 15.0000 15.0000 15.0000
0.2 16.7550 18.1270 15.2133 15.5903 15.3336 15.8295
0.4 14.7169 16.4263 13.6950 15.9358 15.6247 16.0602
0.6 13.1208 14.8744 12.4803 16.1860 15.8778 16.2288
0.8 11.8119 13.4614 11.4625 16.3730 16.0954 16.3562
1 10.7128 12.1772 10.5893 16.5132 16.2798 16.4530

Table 3. Comparison results of fractional two-dimensional predator-prey system
at α = 0.9 defined in described in Caputo, CF and ABC sense.

t uCaputo uCF uABC vCaputo vCF vABC

0 20.0000 20.0000 20.0000 15.0000 15.0000 15.0000
0.2 17.2639 17.9201 16.4332 15.5018 15.3773 15.6388
0.4 15.1877 16.0374 14.6301 15.8629 15.7057 15.9384
0.6 13.4501 14.3358 13.1080 16.1467 15.9881 16.1745
0.8 11.9665 12.8027 11.7958 16.3707 16.2273 16.3618
1 10.6876 11.4254 10.6528 16.5458 16.4264 16.5091
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Figure 1. Graphical behaviour of u(t) with t for
α = 0.7, 0.8, 0.9, 1 via (A) Caputo (B) CF (C) ABC derivative
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Figure 2. Graphical behaviour of v(t) with t for
α = 0.7, 0.8, 0.9, 1 via (A) Caputo (B) CF (C) ABC derivative
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Figure 3. Comparison results of (A) u(t) with t (B) v(t) with t
at α= 1 via Caputo, CF and ABC derivative.

Table 4. Comparison results of fractional two-dimensional predator-prey system
at α = 1 defined in described in Caputo, CF and ABC sense.

t uCaputo uCF uABC vCaputo vCF vABC

0 20.0000 20.0000 20.0000 15.0000 15.0000 15.0000
0.2 17.7203 17.7182 17.7203 15.4206 15.4210 15.4206
0.4 15.6636 15.6644 15.6636 15.7849 15.7852 15.7849
0.6 13.8266 13.8249 13.8266 16.0950 16.0905 16.0950
0.8 12.1858 12.1842 12.1858 16.3543 16.3545 16.3543
1 10.7277 10.7264 10.7277 16.5664 16.5666 16.5664
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5. Numerical simulation results

In this section, we present some graphs and tables to study the effect of frac-
tional order on the population densities of prey (u) and predator (v). Here, we
want to show the applicability, effectiveness and performance of ABM via Ca-
puto, CF and ABC fractional derivatives for distinct values of fractional order
α = 0.7, 0.8, 0.9, 1. We take constant parameter as a1 = 0.05, a2 = 0.05, b1 =
0.04, b2 = 0.01,K1 = 20, λ1 = 20, λ2 = 15 and step-size h = 0.0001. Fig. 1(A-C)
represent the variation of u(t) to t (time) for the distinct value of fractional pa-
rameter α with Caputo, CF and ABC fractional derivative. Fig. 1(A, C) show
that there is a sharp decrease in density of prey species with decrease in value of
α and with increase in value of time. Fig. 2(A-C) represent the variation of v(t)
to t (time) for distinct value of fractional parameter α with Caputo, CF and ABC
fractional derivative. Fig. 2(A, C) show that there is sharp increase in density of
predator species with decrease in value of α and with increase in value of time.
But in case of CF derivative we get different behaviour than Caputo and ABC
fractional derivative as shown in Fig. 1(B) and Fig. 2(B). Fig. 3(A) and 3(B)
show the graphical comparison of result with Caputo, CF and ABC fractional
derivative for α = 1, which shows the efficiency and accuracy of the proposed
numerical technique. Table 1-4 shows the comparison of numerical result with
Caputo, CF and ABC fractional derivative at α = 0.7, 0.8, 0.9, 1 respectively.

6. Conclusion

This work analyzed the nonlinear time-dependent predator-prey model with
carrying capacity with singular and non-singular kernels to check the effects of
the fractional order on the obtained solution by using 3-step ABM. We can easily
use this numerical technique for nonlinear fractional problems. The simulation
results are illustrated in tabular form and graphically. The proposed numerical
technique is more reliable and efficient than the existing numerical approach. We
obtained different asymptotic behaviour for different fractional order derivatives.
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