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NODAL SOLUTIONS OF SOME NONLINEAR

STURM-LIOUVILLE PROBLEM DEPENDING ON A

PARAMETER

ZIYATKHAN S. ALIYEV AND KONUL H. ALIYEVA

Abstract. In this paper, we consider the nonlinear Sturm-Liouville
problem depending on a parameter. Using bifurcation technique, we
find interval for this parameter, in which this problem has nodal solu-
tions.

1. Introduction

We consider the following nonlinear Sturm-Liouville problem

ℓ(y) ≡ − (p (x)y′(x))′ + q(x)y(x) = χr(x)h(y(x)), x ∈ (0, 1), (1.1)

b0y(0) + d0p (0)y
′(0) = 0, (1.2)

b1y(1) + d1p (1)y
′(1) = 0, (1.3)

where p ∈ C2([0, 1]; (0,+∞)), q ∈ C([0, 1];R), χ is a real parameter, r ∈ C([0, 1];
(0,+∞)), b0, d0, b1 and d1 are real constants such that |b0|+ |d0| > 0 and |b1|+
|d1| > 0. Here the nonlinear term h is a real-valued continuous function on R
that satisfies the following conditions: there exist h0, h∞ ∈ (0,+∞), h0 ̸= h∞,
such that

h0 = lim
|s|→0

h(s)

s
, h∞ = lim

|s|→+∞

h(s)

s
. (1.4)

The purpose of this paper is to determine the interval for χ in which the
problem (1.1)-(1.3) has nodal solutions.

Let E be a Banach space C1[0, 1]∩ (b.c.) with the usual norm ||y||1 = ||y||∞ +
||y′||∞, where (b.c.) denotes the set of functions satisfying the boundary conditions
(1.2) and (1.3), and ||y||∞ = max

x∈[ 0, 1]
|y (x)|.

From now on ν will denote an element of {+ , −} that is, either ν = + or
ν = − .

For each k ∈ N and each ν by Sν
k we denote the set of functions y ∈ E such

that (i) y has only simple nodal zeros in [0, 1] and exactly k− 1 such zeros in the
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interval (0, 1); (ii) νy is positive in a deleted neighborhood of x = 0. Moreover,
let Sk = S+

k ∪ S−
k , k ∈ N (see [10]).

It is well known (see, e.g., [2]) that the eigenvalues of the linear Sturm-Liouville
problem {

ℓ(y)(x) = λr(x)y(x), x ∈ (0, 1),
y ∈ (b.c.),

(1.5)

are real and simple and form an infinitely increasing sequence {λk}∞k=1; the eigen-
function yk(x), k ∈ N, corresponding to the eigenvalue λk, lies in Sk.

The following theorems are the main results of this paper.
Theorem 1.1. Let for some k ∈ N one of the following conditions holds:

(i) λk
h0

< χ < λk
h∞

;

(ii) λk
h∞

< χ < λk
h0
.

Then problem (1.1)-(1.3) has solutions y+k and y−k such that y+k ∈ S+
k and y−k ∈

S−
k , respectively.

Theorem 1.2. Let for some k ∈ N one of the following conditions holds:

(i)
λk+1

h0
< χ < λk

h∞
;

(ii)
λk+1

h∞
< χ < λk

h0
.

Then problem (1.1)-(1.3) has solutions y+k , y
−
k , y

+
k+1 and y−k+1 such that y+k ∈ S+

k ,

y−k ∈ S−
k , y

+
k+1 ∈ S+

k+1 and y−k+1 ∈ S−
k+1, respectively.

The problem (1.1)-(1.3) in a particular case was considered in [1, 4-7, 9] and
in the general case in [3, 8]. In these papers, it was shown the existence of nodal
solutions of considered problems under the condition sh(s) > 0, s ∈ R, as well
as under the conditions q ≥ 0 and b0, d0, b1, d1 ∈ [0,+∞), b0d1 − b1d0 + b0b1 >
0. Note that the last three conditions guarantee the positivity of the smallest
eigenvalue of problem (1.5). As can be seen from Theorems 1.1 and 1.2, we
prove existence of nodal solutions to problem (1.1)-(1.3) without these conditions.
It should be noted that only in [1] problem (1.1)-(1.3) is considered under the
conditions that the first eigenvalue of problem (1.5) is positive.

The rest of this paper is organized as follows. In Section 2, we consider an aux-
iliary nonlinear eigenvalue problem and study the global bifurcation of nontrivial
solutions from zero and from infinity to this problem. We prove the existence of
two families of unbounded continua of nontrivial solutions, branching from the
line of trivial solutions and contained in the classes R× S+

k and R× S−
k , k ∈ N.

Here we also show the existence of two families of global continua of solutions,
branching from the line R×{∞} and containing in the classes R×S+

k and R×S−
k ,

k ∈ N, in some neighborhood of the asymptotic bifurcation points. Moreover,
these continua either meet another bifurcation points, or meet the line R× {0},
or have unbounded projections onto R × {0}. In Section 3, we show that the
global continua bifurcating from R × {∞} are contained in the classes R × S+

k

and R × S−
k , k ∈ N and meet the line R × {0}. Here we also prove that the

global continua bifurcating from zero and from infinity, contained in the same
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oscillating classes, coincide. Next, using this statement, we define an interval for
a parameter χ, in which there exist solutions to problem (1.1)-(1.3) with fixed
oscillation count.

2. Global bifurcation from zero and infinity in some nonlinear
Sturm-Liouville problems

By (1.4) we have

h(s) = h0s+ h0(s) and h(s) = h∞s+ h∞(s), s ∈ R, (2.1)

where
h0(s) = o(|s|) as |s| → 0 and h∞(s) = o(|s|) as |s| → ∞, (2.2)

respectively.
Remark 2.1. Throughout what follows we will assume that χ is contained in
some bounded interval not containing 0.

We consider the following nonlinear eigenvalue problem{
ℓ(y)(x) = λχh0r(x)y(x) + χr(x)h0(y(x)), x ∈ (0, 1),
y ∈ (b.c.).

(2.3)

which can be rewritten in the form{
ℓ(y)(x) = λχh0r(x)y(x) + g0(x, y(x), y

′(x), λ), x ∈ (0, 1),
y ∈ (b.c.),

where
g0(x, s, t, λ) = χr(x)h0(s), (x, s, t, λ) ∈ [0, 1]× R3.

It is obvious that g0 ∈ C([0, 1] × R3). Moreover, by the first relation of (2.2)
and Remark 2.1, from the relation

|h0(s)|
|s|+ |t|

≤ |h0(s)|
|s|

it follows that
g0(x, s, t, λ) = o(|s|+ |t|) as |s|+ |t| → 0, (2.4)

uniformly for (x, λ) ∈ [0, 1] × R. Consequently, to problem (2.3) is applicable
[10, Theorem 2.3] in view of (2.4). Then, by Theorem 2.3 of [10], we have the
following result.
Theorem 2.1. For each k ∈ N and each ν there exists a continuum Cν

k of the

set of nontrivial solutions of problem (2.3) which meets (λ̃k, 0), is contained in

R× Sν
k and is unbounded in R× E, where λ̃k is the kth eigenvalue of the linear

Sturm-Liouville problem{
ℓ(y)(x) = λχh0r(x)y(x), x ∈ (0, 1),
y ∈ (b.c.).

(2.5)

It is seen from (2.5) that

λ̃k =
λk

χh0
. (2.6)

By (2.1) we get

h0(s) = h(s)− h0s = (h∞ − h0)s+ h∞(s), s ∈ R. (2.7)
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Then (2.3) takes the following form{
ℓ(y) = λχh0r(x)y + χ(h∞ − h0)r(x)y + χr(x)h∞(y), x ∈ (0, 1),
y ∈ (b.c.).

(2.8)

Obviously, problem (2.8) can be rewritten as follows:{
ℓ(y) = λχh0r(x)y + χ(h∞ − h0)r(x)y + g∞(x, y, y′, λ), x ∈ (0, 1),
y ∈ (b.c.),

where continuous on [0, 1]× R3 function g∞(x, s, t, λ) is defined by

g∞(x, s, t, λ) = χr(x)h∞(s).

By the second relation of (2.2) we get for any sufficiently small ε > 0 there is
a sufficiently large Kε > 0 such that

|h∞(s)|
|s|

< ε for |s| > Kε. (2.9)

In view of the first relation from (2.2), there is a sufficiently small κε > 0 such
that

|h0(s)|
|s|

< ε for 0 < |s| < κε,

whence, by (2.7), implies that

|h∞(s)|
|s|

< |h∞ − h0|+ ε for 0 < |s| < κε. (2.10)

The condition h ∈ C(R;R) ensures the existence of a positive constants Mε

and Nε such that

|h∞(s)| ≤ Mε for |s| ≤ Kε and
|h∞(s)|

|s|
≤ Nε for κε ≤ |s| ≤ Kε. (2.11)

Let N1
ε = max {Nε, |h∞ − h0|+ ε}. Then by (2.10) and the second relation of

(2.11), we get
|h∞(s)|

|s|
≤ N1

ε for 0 < |s| ≤ Kε. (2.12)

We denote by K1
ε a positive number satisfying the following conditions:

K1
ε > Kε, Mε < εK1

ε . (2.13)

If (s, t) ∈ R2 such that |s|+ |t| > K1
ε , then by (2.9), (2.13) and the first relation

of (2.11) we obtain

|h∞(s)|
|s|+ |t|

≤ |h∞(s)|
|s|

< ε if |s| > Kε,

|h∞(s)|
|s|+ |t|

<
Mε

K1
ε

< ε if |s| ≤ Kε.

By Remark 2.1 from the last relations we get

g∞(x, s, t, λ) = o(|s|+ |t|) as |s|+ |t| → ∞, (2.14)

uniformly in (x, λ) ∈ [0, 1] × R. Therefore, to problem (2.8) are applicable [11,
Theorem 2.4] and [12, Theorem 3.1] in view of (2.14). Then, by these theorems,
we have the following result.
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Theorem 2.2. For each k ∈ N and each ν there exists connected component Dν
k

of the set of nontrivial solutions of problem (2.8) which meets (λ̂k,∞) and either

(i) the set Dν
k meets (λ̂k′ ,∞) with respect to R × Sν′

k′ for some (k′, ν ′) ̸= (k, ν),
or (ii) the set Dν

k meets (λ, 0) for some λ ∈ R, or (iii) the projection of the

set Dν
k onto R × {0} is unbounded, where λ̂k is the kth eigenvalue of the linear

Sturm-Liouville problem{
ℓ(y)(x) =

(
λ+ h∞

h0
− 1

)
χh0r(x)y(x), x ∈ (0, 1),

y ∈ (b.c.).
(2.15)

It follows from (2.15) that(
λ̂k +

h∞
h0

− 1

)
χh0 = λk,

which implies that

λ̂k =
λk

χh0
− h∞

h0
+ 1. (2.16)

3. The connection between the sets Cν
k and Dν

k, k ∈ N, ν ∈ {+ , −}

In this section we explore the connection between global continua of nontrivial
solutions to problem (2.3) (or (2.8)), bifurcating from the line of trivial solutions
and from the line R× {∞}.

The following result holds.
Theorem 3.1. For each k ∈ N and each ν we have the following relation:

Cν
k = Dν

k . (3.1)

Proof. Let (λ, y) ∈ R× ∂Sν
k , k ∈ N, ν ∈ {+ , −}, is a solution of problem (2.8).

Then (λ, y) is also a solution to problem (2.3). By [5, Lemma 2.2], we have y ≡ 0,
and therefore, Dν

k cannot intersect the boundary of the set R×Sν
k . Hence we get

Dν
k ⊂ R× Sν

k . (3.2)

It follows from the last relation that the set Dν
k cannot meets Ik′ × {∞} with

respect to R × Sν′
k′ for any (k′, ν ′) ̸= (k, ν), i.e. alternative (i) of Theorem 2.2

cannot hold.
If alternative (iii) of Theorem 2.2 hold then there exists sequence {(ηn, vn)}∞n=1 ⊂

R× Sν
k such that{

ℓ(vn) = ηnχh0r(x)vn + χ(h∞ − h0)r(x)vn + χr(x)h∞(vn), x ∈ (0, 1),
vn ∈ (b.c.),

(3.3)

and

lim
n→∞

ηn = −∞ or lim
n→∞

ηn = +∞. (3.4)

Let

φ∞
n (x) =

{
h∞(vn(x))

vn(x)
if vn(x) ̸= 0,

0 if vn(x) = 0.
(3.5)
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By (2.9) and (2.12) we get

|h∞(s)|
|s|

≤ N1
1 for s ∈ R, s ̸= 0.

Then it follows from (3.5) that

|φ∞
n (x)| ≤ N1

1 , x ∈ [0, 1]. (3.6)

In view of (3.5) we can rewrite (3.3) in the following form{
ℓ(vn) = ηnχh0r(x)vn + χ(h∞ − h0)r(x)vn + χr(x)φ∞

n (x)vn, x ∈ (0, 1),
vn ∈ (b.c.).

(3.7)
It is clear from (3.7) that (ηn, vn) for each n ∈ N solves the following linear

eigenvalue problem{
ℓ(y) = λχh0r(x)y + χ(h∞ − h0)r(x)y + χr(x)φ∞

n (x)y, x ∈ (0, 1),
y ∈ (b.c.).

(3.8)

By the max-min property of eigenvalues (see [2, pp. 405-406]) we have

λ̂k,nχh0 = max
V (k−1)

min
y ∈B.C.

R̂n [y] :

1∫
0

r(x) y(x)φ(x)dx = 0, φ ∈ V (k−1)

 , (3.9)

where λ̂k, n is the kth eigenvalue of the linear problem (3.8),

R̂n [y] =

1∫
0

{
py′2 + qy2

}
dx− χ(h∞ − h0)

1∫
0

ry2dx− χ
1∫
0

φ∞
n ry2dx+N [y]

1∫
0

ry2dx

,

(3.10)

N [y] =


b0
d0
y2(0) + b1

d1
y2(1) if b0b1 ̸= 0,

b0
d0
y2(0) if b0 ̸= 0, b1 = 0,

b1
d1
y2(1) if b0 = 0, b1 ̸= 0,

0 if b0 = b1 = 0,

and V (k−1) denotes any set of (k−1) linearly independent functions with φj(x) ∈
(b.c.), 1 ≤ j ≤ k − 1.

It should be noted that

λ̂k = max
V (k−1)

min
y ∈B.C.

R̂ [y] :

1∫
0

r(x) y(x)φ(x)dx = 0, φ ∈ V (k−1)

 , (3.11)

where

R̂ [y] =

1∫
0

{
py′2 + qy2

}
dx+ χ(h∞ − h0)

1∫
0

ry2dx+N [y]

1∫
0

ry2dx

, (3.12)
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By (3.12) from (3.10) we get

R̂n [y] = R̂ [y]−
χ

1∫
0

φ∞
n ry2dx

1∫
0

ry2dx

,

which, by (3.6), implies that

R̂ [y]− χN1
1 ≤ R̂n [y] ≤ R̂ [y] + χN1

1 . (3.13)

In view of (3.9), (3.11), by (3.13) we get

λ̂k + χN1
1 ≤ λ̂k,n ≤ λ̂k + χN1

1 . (3.14)

Since ηn = λ̂k,n for each n ∈ N it follows from (3.14) that relation (3.4) is
impossible in view of Remark 2.1. Therefore, alternative (iii) of Theorem 2.2
cannot hold.

Thus, we have shown that only alternative (ii) of Theorem 2.2 holds, and
consequently, Dν

k meets (λ, 0) for some λ ∈ R. Then by (3.2) it follows from

Theorem 2.1 that Dν
k meets only (λ̃k, 0) with respect to the set R× Sν

k .

By following the above arguments we can show that Cν
k meets only (λ̂k,∞)

with respect to the set R × Sν
k . Therefore, we come to the conclusion that for

each k ∈ N and each ν the sets Cν
k and Dν

k coincide. The proof of this theorem
is complete.

4. Proofs of the main results

In this section we prove the main results of this paper.

Proof of Theorem 1.1. Consider two possible cases.
Case 1. Let λk = 0 for some k ∈ N. In this case the result is trivial. Indeed,

the eigenfunction yk ∈ Sk corresponding to λk of the linear Sturm-Liouville (1.5)
is a solution of the following problem{

ℓ(y)(x) = 0, x ∈ (0, 1),
y ∈ (b.c.).

This eigenfunction yk is made unique by requiring that yk ∈ S+
k and ||yk||1 = 1.

Consequently, for χ = 0 problem (1.1)-(1.3) has solutions y+k = yk ∈ S+
k and

y−k = − yk ∈ S−
k .

Case 2. Let λk ̸= 0 for some k ∈ N. We suppose that λk < 0 and the condition
(i) of Theorem 1.1 holds, i.e., let

λk

h0
< χ <

λk

h∞
.

Then it follows from the left hand side of this relation that

λ̃k =
λk

χh0
> 1.
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Moreover, from the right hand side of this relation we obtain

h∞ >
λk

χ
,

whence implies that

λ̂k =
λk

χh0
− h∞

h0
+ 1 <

λk

χh0
− λk

χh0
+ 1 = 1.

Thus we have

λ̂k < 1 < λ̃k. (4.1)

In view of (3.2) for each ν the set Dν
k lies in R×Sν

k and by (3.1) meets (λ̃k, 0)

and (λ̂k,∞) and is connected in R× E. Then it follows from (4.1) that for each
ν there exists a solution (1, yνk) of problem (2.3) such that yνk ∈ Sν

k . Then yνk for
each ν solves problem (1.1)-(1.3).

The remainder cases are considered similarly. The proof of this theorem is
complete.

Proof of Theorem 1.2. We suppose that the condition (i) of Theorem 1.2
holds, i.e., let

λk+1

h0
< χ <

λk

h∞
Then the following cases are possible: (a) λk < λk+1 < 0; (b) 0 < λk < λk+1.

Consider case (a). In this case it follows from the proof of Theorem 1.1 that

λ̂k+1 < 1 < λ̃k,

and consequently,

λ̂k < λ̂k+1 < 1 < λ̃k < λ̃k+1. (4.2)

By following the arguments at the end of the proof of Theorem 1.1, from
relation (4.2) we obtain the statement of Theorem 1.2.

The remaining cases are treated similarly. The proof of this theorem is com-
plete.
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