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BEREZIN NORM AND BEREZIN RADIUS INEQUALITIES OF

PRODUCTS AND SUMS WITH SELBERG OPERATOR

MEHMET GÜRDAL, GAMZE GÜL ERKAN, AND MUBARIZ GARAYEV

Abstract. We prove new inequalities related to the Berezin norm and
Berezin radius of some products and sums with the Selberg operator on
a reproducing kernel Hilbert space.

1. Introduction

By a reproducing kernel Hilbert space (briefly, RKHS) we mean a Hilbert space
H = H(X) of complex-valued functions on some set X such that evaluation at
any point ofX is a continuous functional onH. The Riesz representation theorem
ensures that the Hilbert function space H has a reproducing kernel, that is, for
each λ ∈ X there exists a function kλ (z) ∈ H such that ⟨f, kλ⟩ = f (λ) for
each f ∈ H and λ ∈ X. This function is called reproducing kernel of the space

H. We denote by k̂λ := kλ
||kλ||H the normalized reproducing kernel of H. The

prototypical RKHSs are the Hardy space H2(D), the Bergman space L2
a(D), the

Dirichlet space D2(D), where D = {z ∈ C : |z| < 1} is the unit disc, and the Fock
space F(C). A detailed presentation of the theory of reproducing kernels and
RKHSs is given, for instance in Aronzajn [1]. Reproducing kernels play important
role in many branches of pure and applied mathematics including frame theory,
wavelets, signals, fractals theories (see for instance, Jorgensen’s book [27] and its
references).

For every bounded linear operator P on H (i.e., for P ∈ B(H) its Berezin

symbol P̃ is defined by (see, Berezin [6] and Nordgren and Rosenthal [29])

P̃ (λ) := ⟨P k̂λ, k̂λ⟩, λ ∈ X.

This is s scalar valued function which is bounded on X since by Cauchy-

Schwarz inequality
∣∣∣P̃ (λ)

∣∣∣ ≤ ∥∥∥P k̂λ

∥∥∥ ≤ ∥P∥ for all λ ∈ X. The Berezin symbol

of an operator provides important information about the operator. For instance,
it is well-known that on the RKHSs of analytic functions (including the Hardy,
Bergmam, Dirichlet and Fock spaces), the Berezin symbol uniquely determines

the operator, i.e., P1 = P2 if and only if P̃1 = P̃2 (see, for example, Englǐs [12]
and Zhu [34]).
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The Berezin set of operator P ∈ B(H) is defined by

Ber(P ) := Range(P̃ )

and Berezin radius of P is the number defined by

ber(P ) := sup {|µ| : µ ∈ Ber(P )} .

(see Karaev [22, 23]). The Berezin norms of P ∈ B(H) is defined by

∥P∥B,1 := sup
λ∈X

∥∥∥P k̂λ

∥∥∥
H

and ∥P∥B,2 := sup
λ,µ∈X

∣∣∣〈P k̂λ, k̂µ

〉∣∣∣ .
Clearly, ∥P∥B,1 ≤ ∥P∥B,2. Here, if P ≥ 0 then ∥P∥B,2 = ber (P ), but the equality

does not hold for general self adjoint operators, see [9].
Let W (P ) and w(P ) denote the numerical range and numerical radius of P ,

respectively:

W (P ) := {⟨Pf, f⟩ : f ∈ H and ∥f∥H = 1}

w(P ) := sup {|⟨Pf, f⟩| : f ∈ H and ∥f∥H = 1} .
It is obvious that Ber(P ) ⊆ W (P ), ber(P ) ≤ ∥P∥B,i ≤ ∥P∥ for i = 1, 2 and

ber(P ) ≤ w(P ). Also, it is well-known that (see Halmos [26])

1

2
∥P∥ ≤ w(P ).

So, the study of the new numerical characteristics Ber(P ), ber(P ) and ∥P∥B,i

is important firstly for the deep study of the numerical range and the numerical
radius of operators on the RKHSs.

Recall that a function θ ∈ H∞ (D) (the Hardy space of bounded analytic
functions f on the unit disc D = {z ∈ C : |z| < 1} with infinite sup-norm ∥f∥∞ :=
supz∈D |f (z)| < +∞) is called inner if its boundary function is unimodular on the
unit circle ∂D = {ξ ∈ C : |ξ| = 1} . For example, f (z) = zn is an inner function
for each n ≥ 1.

Let θ be an inner function. We set

Nθ := Tθ

(
I − TθTθ

)
= TθPθ,

where Tθ is an analytic Toeplitz operator, Tθf = θf, Tθ is a co-analytic Toeplitz

operator on the Hardy space H2 = H2 (D) defined by Tθf = P+ (φf) , f ∈ H2,

here P+ : L2 (∂D) → H2 is the Riesz projector, and Pθ : H2 →
(
θH2

)⊥
is an

orthogonal projection. It is elementary that ∥Nθ∥ = 1, N2
θ = Θ, i.e., Nθ is a

square zero operator. It is also easy to verify that

Ñθ (λ) = θ (λ)
(
1− |θ (λ)|2

)
, λ ∈ D.

We set f (x) := x
(
1− x2

)
, 0 ≤ x < 1. Clearly f ′ (x) = 1−3x2, which shows that

if f ′ (x) = 0 then x = 1/
√
3. Since f ′′ (x) = −6x, and f ′′ (1/√3

)
< 0, we deduce

that sup0<x<1 f (x) = f
(
1/
√
3
)
= 1/

√
3
(
1− 1

3

)
= 2

3
√
3
. Since θ (D) is always an

open dense connected subset of D, this implies that

sup
D

|θ (λ)|
(
1− |θ (λ)|2

)
=

2

3
√
3
,
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that is ber (Nθ) =
2

3
√
3
. Now it is clear that ber (Nθ) <

∥Nθ∥
2 = 1

2 . This example

shows that the inequality 1
2 ∥P∥ ≤ ber (P ) does not hold in general for general

bounded linear operators on reproducing kernel Hilbert spaces.
On the other hand, for θ (z) = z we consider the operator Nz = S (I − SS∗)

on H2, Nzx = S (I − SS∗)x = x̂ (0) z for any x ∈ H2. Then we have that

⟨Nzx, x⟩ =

〈
x̂ (0) z,

∞∑
k=0

x̂ (k) zk

〉
= x̂ (0) x̂ (1)

for any x ∈ H2 with ∥x∥2 = 1. This shows that

W (Nz) =

x̂ (0) x̂ (1) :

[ ∞∑
k=0

|x̂ (k)|2
]1/2

= 1

 . (1.1)

Since Nz is a one dimensional square zero operator (nilpotent operator) on the
Hardy space H2, it is clear from (1.1) that w (Nz) = 1

2 and W (Nθ) = D1/2

(see Karaev and Iskenderov [24]). On the other hand, we know that ber (Nz) =
2

3
√
3
which strictly less than w(Nz)

2 = 1
4 . This example shows that in general the

inequality 1
2w(P ) ≤ ber(P ) is not true.

Thus, the following questions are natural.
Question 1. Under which conditions the inequality 1

2 ∥P∥ ≤ ber(P ) holds?

Question 2. Is it true that 1
2 ∥P∥B,1 ≤ ber(P )?

Question 3. Under which conditions the inequality 1
2w(P ) ≤ ber(P ) holds?

There are a large literature devoted to the investigation of the above mentioned
numerical characteristics of operators and to their relationship, see, for instance,
[4, 5, 7, 8, 10, 11, 14, 15, 16, 17, 18, 19, 20, 30, 31, 32, 33].

Given Z = {zi : i = 1, 2, ..., n} ⊂ H, we define the so-called Selberg operator
associated to Z as follows:

SZ =

n∑
i=1

zi ⊗ zj∑n
j=1 |⟨zi, zj⟩|

∈ B(H),

where T := x ⊗ y is the rank one operator defined by T (z) = ⟨z, y⟩x with
x, y, z ∈ H.

It can be shown that 0 ≤ SZ ≤ I, i.e., SZ is a positive contraction (see, for
instance, [2]).

Also, it is shown in [2] that w(I − SZ) = ∥I − SZ∥ ≤ 1.
We recall that Selberg determined the following important inequality (see [28])

for given nonzero vectors Z = {zi : i = 1, ..., n} ,
n∑

i=1

|⟨x, zi⟩|2∑n
j=1 |⟨zi, zj⟩|

≤ ∥x∥2 , (1.2)

which holds for all x ∈ H. This inequality is known as the Selberg inequality. The
inequality in (1.2) holds if and only if x =

∑n
i=1 aizi for some complex numbers

a1, ..., an such that for any i ̸= j, ⟨zi, zj⟩ = 0 or |ai| = |aj | with ⟨aizi, ajzj⟩ ≥ 0
(see [13, Theorem 1]). It is relevant to notice that, from inequality (1.2), one
can derive other well-known inequalities including Cauchy-Schwarz inequality
(⟨x, y⟩ ≤ ∥x∥ ∥y∥) , Buzano inequality (|⟨x, z⟩ ⟨z, y⟩| ≤ 1

2 (|⟨x, y⟩|+ ∥x∥ ∥y∥ ∥z∥)2),
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Bessel inequality
(∑n

i=1 |⟨x, li⟩|
2 ≤ ∥x∥2

)
and Bombieri inequality (

∑n
i=1 |⟨x, zi⟩|

2 ≤
∥x∥2max1≤i≤n

∑n
j=1 |⟨zi, zj⟩|).

In the present paper, which is motivated by the paper [2], we focus on es-
tablishing appropriate bounds for the Berezin norm and the Berezin radius of
the product of three bounded linear operators on a RKHS, one of them being a
Selberg operator which shed some light to the above stating questions 1, 2 and 3
(Section 2). In Section 3, we prove some new Berezin radius inequalities for sums
with the Selberg operator.

2. Berezin norm and Berezin radius inequalities for the products
of operators

In the present section, we obtain upper estimates for both the Berezin norm
and the Berezin radius of the product of three operators, one of which is the
Selberg operator. For the proofs of our results in this section, we will use the
following lemma found in [3].

Lemma 2.1. Let H = H(X) be a RKHS over some suitable set X. For any
x, y ∈ X, the following inequalities hold:

|⟨SZx, y⟩| ≤
∣∣∣∣⟨SZx, y⟩ −

1

2
⟨x, y⟩

∣∣∣∣+ 1

2
|⟨x, y⟩| ≤ 1

2
(|⟨x, y⟩|+ ∥x∥ ∥y∥) (2.1)

and ∣∣∣∣〈(SZ − 1

2
I

)
x, y

〉∣∣∣∣ ≤ 1

2
∥x∥ ∥y∥ . (2.2)

Now we can present our results.

Proposition 2.1. Let P,R ∈ B(H) be two operators on the RKHS H = H(X).
Then we have:

∥RSZP∥B,2 ≤
1

2

(
∥RP∥B,2 + ∥P∥B,1 ∥R

∗∥B,1

)
(2.3)

and ∥∥∥∥R(SZ − 1

2
I

)
P

∥∥∥∥
B,2

≤ 1

2
∥P∥B,1 ∥R

∗∥B,1 , (2.4)

where SZ is, as before, the Selberg operator on H.
Also, we have the following Berezin radius inequalities:

ber (RSZP ) ≤ 1

2

[
ber (RP ) +

1

2

∥∥∥|P |2 + |R∗|2
∥∥∥
B,1

]
(2.5)

and

ber

(
R

(
SZ − 1

2
I

)
P

)
≤ 1

4

∥∥∥|P |2 + |R∗|2
∥∥∥
B,1

. (2.6)

Proof. If we replace x by P k̂λ and y by R∗k̂µ, it follows from (2.1) in Lemma 2.1
that ∣∣∣〈RSZP k̂λ, k̂µ

〉∣∣∣ ≤ 1

2

[∣∣∣〈RPk̂λ, k̂µ

〉∣∣∣+ ∥∥∥P k̂λ

∥∥∥∥∥∥R∗k̂µ

∥∥∥] (2.7)
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and ∣∣∣∣〈R(SZ − 1

2
I

)
P k̂λ, k̂µ

〉∣∣∣∣ ≤ 1

2

∥∥∥P k̂λ

∥∥∥∥∥∥R∗k̂λ

∥∥∥ (2.8)

for every λ, µ ∈ X. Therefore by taking the supremum over all λ and µ in (2.7)
and (2.8), we have

∥RSZP∥B,2 ≤
1

2

[
∥RP∥B,2 + ∥P∥B,1 ∥R

∗∥B,1

]
and ∥∥∥∥R(SZ − 1

2
I

)
P

∥∥∥∥
B,2

≤ 1

2
∥P∥B,1 ∥R

∗∥B,1 ,

which prove (2.3) and (2.4).
From (2.7), for µ = λ, we obtain that∣∣∣〈RSZP k̂λ, k̂λ

〉∣∣∣ ≤ 1

2

(∣∣∣〈RPk̂λ, k̂λ

〉∣∣∣+ ∥∥∥P k̂λ

∥∥∥∥∥∥R∗k̂λ

∥∥∥)
≤ 1

2

(∣∣∣R̃P (λ)
∣∣∣+ 1

2

(∥∥∥P k̂λ

∥∥∥2 + ∥∥∥R∗k̂λ

∥∥∥2))
=

1

2

(∣∣∣R̃P (λ)
∣∣∣+ 1

2

(〈
P ∗P k̂λ, k̂λ

〉
+
〈
RR∗k̂λ, k̂λ

〉))
=

1

2

(∣∣∣R̃P (λ)
∣∣∣+ 1

2

(
|̃P |2(λ) + |̃R∗|2(λ)

))
for all λ ∈ X. By taking the supremum over all λ, we get

ber (RSZP ) ≤ 1

2

[
ber (RP ) +

1

2
ber

(
|P |2 + |R∗|2

)]
,

as desired to prove.
Now from (2.8) for µ = λ we have that∣∣∣∣〈R(SZ − 1

2
I

)
P k̂λ, k̂λ

〉∣∣∣∣ ≤ 1

2

∥∥∥P k̂λ

∥∥∥∥∥∥R∗k̂λ

∥∥∥ ≤ 1

4

(∥∥∥P k̂λ

∥∥∥2 + ∥∥∥R∗k̂λ

∥∥∥2) ,

whence ∣∣∣∣∣ ˜
R

(
SZ − 1

2
I

)
P (λ)

∣∣∣∣∣ ≤ 1

4

˜(
|P |2 + |R∗|2

)
(λ)

for all λ ∈ X, which implies that

ber

(
R

(
SZ − 1

2
I

)
P

)
≤ 1

4
ber

(
|P |2 + |R∗|2

)
,

as desired. This completes the proof. □

If P is isometry and R is unitary in Proposition 2.1, then we have the following
bounds:

1) ∥RSZP∥B,2 ≤
1
2

(
∥RP∥B,2 + 1

)
2)
∥∥R (SZ − 1

2I
)
P
∥∥
B,2

≤ 1
2

3) ber (RSZP ) ≤ 1
2 [ber (RP ) + 1]

4) ber
(
R
(
SZ − 1

2I
)
P
)
≤ 1

2 .
The following corollaries can be established as direct applications based on

Proposition 2.1 :
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Corollary 2.1. Let SZ be the Selberg operator defined above and P,R ∈ B(H).
Then

ber (RSZP ) ≤ 1

2

ber (RP ) +
1

2

∥∥∥∥∥∥R∥B,1

∥P∥B,1

|P |2 +
∥P∥B,1

∥R∥B,1

|R∗|2
∥∥∥∥∥
B,1


≤ 1

2

∥∥∥∥∥∥R∥B,1

∥P∥B,1

|P |2 +
∥P∥B,1

∥R∥B,1

|R∗|2
∥∥∥∥∥
B,1

≤ 1

2

(
∥RP∥B,1 + ∥P∥B,1 ∥R∥B,1

)
.

Proof. Replacing P by P
∥P∥B,1

and R
∥R∥B,1

in (2.5), respectively, we obtain the first

inequality. On the other hand, we have:

ber (RP ) ≤ 1

2

∥∥∥∥∥∥R∥B,1

∥P∥B,1

|P |2 +
∥P∥B,1

∥R∥B,1

|R∗|2
∥∥∥∥∥
B,1

.

Hence,

1

2

ber (RP ) +
1

2

∥∥∥∥∥∥R∥B,1

∥P∥B,1

|P |2 +
∥P∥B,1

∥R∥B,1

|R∗|2
∥∥∥∥∥
B,1


≤ 1

2

∥∥∥∥∥∥R∥B,1

∥P∥B,1

|P |2 +
∥P∥B,1

∥R∥B,1

|R∗|2
∥∥∥∥∥
B,1

. (2.9)

By considering that
∥R∥B,1

∥P∥B,1
|P |2 and

∥P∥B,1

∥R∥B,1
|R∗|2 are positive operators, it can be

easily seen that

1

2

∥∥∥∥∥∥R∥B,1

∥P∥B,1

|P |2 +
∥P∥B,1

∥R∥B,1

|R∗|2
∥∥∥∥∥
B,1

≤ 1

2

(
∥RP∥B,1 + ∥P∥B,1 ∥R∥B,1

)
. (2.10)

Thus, by combining (2.9) and (2.10), we obtain the desired result. □

The following result generalize the inequalities (2.3) and (2.4) presented in
Proposition 2.1.

Theorem 2.1. Let SZ be the Selberg operator defined above with r ≥ 1 and
P,R ∈ B(H). Then for p, q > 1 with 1

p + 1
q = 1,

ber (RSZP ) ≤ 1

2
1
r

(
berr (RP ) +

∥∥∥∥1p |P |rp + 1

q
|R∗|rq

∥∥∥∥
B,1

) 1
r

, (2.11)

provided that rp ≥ 2, rq ≥ 2; and for s > 0,

ber

(
R

(
SZ − 1

2
I

)
P

)
≤ 1

2

∥∥∥∥1p |P |sp + 1

q
|R∗|sq

∥∥∥∥
1
s

B,1

(2.12)

for sp ≥ 2 and sq ≥ 2.

Proof. It follows from the proof of Proposition 2.1 that∣∣∣〈RSZP k̂λ, k̂λ

〉∣∣∣ ≤ 1

2

(∣∣∣〈RPk̂λ, k̂λ

〉∣∣∣+ ∥∥∥P k̂λ

∥∥∥∥∥∥R∗k̂λ

∥∥∥) (2.13)
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If we take the power r ≥ 1 in (2.13), we have, by the convexity of power functions,
that ∣∣∣〈RSZP k̂λ, k̂λ

〉∣∣∣r ≤

∣∣∣〈RPk̂λ, k̂λ

〉∣∣∣+ ∥∥∥P k̂λ

∥∥∥∥∥∥R∗k̂λ

∥∥∥
2

r

,

for all λ ∈ X, so, we infer that

∣∣∣〈RSZP k̂λ, k̂λ

〉∣∣∣r ≤
∣∣∣〈RPk̂λ, k̂λ

〉∣∣∣r + ∥∥∥P k̂λ

∥∥∥r ∥∥∥R∗k̂λ

∥∥∥r
2

(2.14)

for all λ ∈ X. From Young’s inequality

ab ≤ 1

p
ap +

1

q
bq, a, b ≥ 0, p, q > 1 with

1

p
+

1

q
= 1,

we have ∥∥∥P k̂λ

∥∥∥r ∥∥∥R∗k̂λ

∥∥∥r ≤ 1

p

∥∥∥P k̂λ

∥∥∥rp + 1

q

∥∥∥R∗k̂λ

∥∥∥rq
=

1

p

∥∥∥P k̂λ

∥∥∥ 2rp

2
+

1

q

∥∥∥R∗k̂λ

∥∥∥ 2rq
2

=
1

p

〈
|P |2 k̂λ, k̂λ

〉 rp

2
+

1

q

〈
|R∗|2 k̂λ, k̂λ

〉 rq
2

for all λ ∈ X. On the other hand, by McCarthy’s inequality [27], ⟨Px, x⟩s ≤
⟨P sx, x⟩ , s ≥ 1 for x ∈ H, ∥x∥ = 1, we have that

1

p

〈
|P |2 k̂λ, k̂λ

〉 rp

2
+

1

q

〈
|R∗|2 k̂λ, k̂λ

〉 rq
2 ≤ 1

p

〈
|P |rp k̂λ, k̂λ

〉
+

1

q

〈
|R∗|

rq

k̂λ, k̂λ

〉
for all λ ∈ X. Hence, we deduce that

1

p

〈
|P |2 k̂λ, k̂λ

〉 rp

2
+

1

q

〈
|R∗|2 k̂λ, k̂λ

〉 rq
2 ≤

〈(
1

p
|P |rp + 1

q
|R∗|

rq

)
k̂λ, k̂λ

〉
(2.15)

for all λ ∈ X. By using (2.14) and (2.15), we obtain∣∣∣〈RSZP k̂λ, k̂λ

〉∣∣∣r ≤ 1

2

[∣∣∣〈RPk̂λ, k̂λ

〉∣∣∣r +〈(1

p
|P |rp + 1

q
|R∗|

rq

)
k̂λ, k̂λ

〉]
for all λ ∈ X, and by taking the supremum over all λ ∈ X, we have

berr (RSZP ) ≤ 1

2

[
berr (RP ) +

∥∥∥∥1p |P |rp + 1

q
|R∗|rq

∥∥∥∥
B,1

]
which gives (2.11). As it was proved (see the proof of Proposition 2.1),

ber

(
R

(
SZ − 1

2
I

)
P

)
≤ 1

4
ber

(
|P |2 + |R∗|2

)
.

Then we have, ∣∣∣∣〈R(SZ − 1

2
I

)
P k̂λ, k̂λ

〉∣∣∣∣s ≤ 1

2s

∥∥∥P k̂λ

∥∥∥s ∥∥∥R∗k̂λ

∥∥∥s (2.16)
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for all λ ∈ X. By Young’s inequality and McCarthy’s inequality for
sp

2 ≥ 1,
sq

2 ≥ 1
we also have that∥∥∥P k̂λ

∥∥∥s ∥∥∥R∗k̂λ

∥∥∥s ≤ 1

p

∥∥∥P k̂λ

∥∥∥sp + 1

q

∥∥∥R∗k̂λ

∥∥∥sq
=

1

p

∥∥∥P k̂λ

∥∥∥ 2sp
2

+
1

q

∥∥∥R∗k̂λ

∥∥∥ 2sq
2

=
1

p

〈
|P |2 k̂λ, k̂λ

〉 sp

2
+

1

q

〈
|R∗|2 k̂λ, k̂λ

〉 sq
2

≤ 1

p

〈
|P |sp k̂λ, k̂λ

〉
+

1

q

〈
|R∗|sq k̂λ, k̂λ

〉
for all λ ∈ X. Thus, we get∥∥∥P k̂λ

∥∥∥s ∥∥∥R∗k̂λ

∥∥∥s ≤ 〈(1

p
|P |sp + 1

q
|R∗|sq

)
k̂λ, k̂λ

〉
(2.17)

for all λ ∈ X. By making use of (2.16) and (2.17), we have that∣∣∣∣〈R(SZ − 1

2
I

)
P k̂λ, k̂λ

〉∣∣∣∣s ≤ 1

2s

〈(
1

p
|P |sp + 1

q
|R∗|sq

)
k̂λ, k̂λ

〉
,

for all λ ∈ X, and finally by taking the supremum over all λ ∈ X, we obtain the
inequality (2.12)

ber

(
R

(
SZ − 1

2
I

)
P

)
≤ 1

2

∥∥∥∥1p |P |sp + 1

q
|R∗|sq

∥∥∥∥
1
s

B,1

,

as desired. □

If we put H = H2 (D) , R = S∗ and P = S, where Sf (z) = zf (z) is the shift
operator on H2, then we have the following bounds in Theorem 2.1:

1) ber (S∗SZS) ≤ 1

2) ber
(
S∗ (SZ − 1

2I
)
S
)
≤ 2

1
s
−1 for sp ≥ 2 and sq ≥ 2.

Corollary 2.2. If r ≥ 1 and P ∈ B(H), then, for p, q ≥ 1 with 1
p + 1

q = 1,

ber (PSZP ) ≤ 1

2
1
r

(
berr

(
P 2
)
+

∥∥∥∥1p |P |rp + 1

q
|P ∗|rq

∥∥∥∥
B,1

) 1
r

,

provided that rp ≥ 2, rq ≥ 2; and for s > 0,

ber

(
P

(
SZ − 1

2
I

)
P

)
≤ 1

2

∥∥∥∥1p |P |sp + 1

q
|P ∗|sq

∥∥∥∥ 1
s

B,1

,

provided that sp ≥ 2, sq ≥ 2.

Using a convex combination of |P | and |R∗|, we prove an upper bound for the
Berezin number in the following theorem.
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Theorem 2.2. Let SZ be the Selberg operator defined above and P,R ∈ B(H).
Then for α ∈ [0, 1] ,

ber2 (RSZP ) ≤ 1

2

(
ber2 (RP ) +

∥∥∥(1− α) |P |2 + α |R∗|2
∥∥∥
B,2

∥P∥2α
B,1

∥R∥2(1−α)
B,1

)
(2.18)

and

ber2
(
R

(
SZ − 1

2
I

)
P

)
≤ 1

4

∥∥∥(1− α) |P |2 + α |R∗|2
∥∥∥
B,2

∥P∥2α
B,1

∥R∥2(1−α)
B,1

(2.19)
In particular, we obtain

ber2 (RSZP ) ≤ 1

2

(
ber2 (RP ) +

1

2

∥∥∥|P |2 + |R∗|2
∥∥∥
B,1

∥P∥
B,1

∥R∥
B,1

)
and

ber2
(
R

(
SZ − 1

2
I

)
P

)
≤ 1

8

∥∥∥|P |2 + |R∗|2
∥∥∥
B,1

∥P∥
B,1

∥R∥
B,1

Proof. We have from (2.14) for r = 2 that∣∣∣〈RSZP k̂λ, k̂λ

〉∣∣∣2
≤ 1

2

(∣∣∣〈RPk̂λ, k̂λ

〉∣∣∣2 + ∥∥∥P k̂λ

∥∥∥2 ∥∥∥R∗k̂λ

∥∥∥2)
=

1

2

(∣∣∣〈RPk̂λ, k̂λ

〉∣∣∣2 + 〈|P |2 k̂λ, k̂λ
〉〈

|R∗|2 k̂λ, k̂λ
〉)

=
1

2

(∣∣∣〈RPk̂λ, k̂λ

〉∣∣∣+ 〈|P |2 k̂λ, k̂λ
〉1−α 〈

|R∗|2 k̂λ, k̂λ
〉α 〈

|P |2 k̂λ, k̂λ
〉α 〈

|R∗|2 k̂λ, k̂λ
〉1−α

)
≤ 1

2

(∣∣∣〈RPk̂λ, k̂λ

〉∣∣∣+ (1− α)
〈
|P |2 k̂λ, k̂λ

〉
+ α

〈
|R∗|2 k̂λ, k̂λ

〉∥∥∥P k̂λ

∥∥∥2α ∥∥∥R∗k̂λ

∥∥∥2(1−α)
)

=
1

2

(∣∣∣〈RPk̂λ, k̂λ

〉∣∣∣+ 〈[(1− α) |P |2 + α |R∗|2
]
k̂λ, k̂λ

〉∥∥∥P k̂λ

∥∥∥2α ∥∥∥R∗k̂λ

∥∥∥2(1−α)
)
,

for all λ ∈ X. Hence it follows that

ber2 (RSZP )

= sup
λ∈X

∣∣∣〈RSZP k̂λ, k̂λ

〉∣∣∣2
≤ 1

2
sup
λ∈X

(∣∣∣〈RPk̂λ, k̂λ

〉∣∣∣2 + 〈[(1− α) |P |2 + α |R∗|2
]
k̂λ, k̂λ

〉∥∥∥P k̂λ

∥∥∥2α ∥∥∥R∗k̂λ

∥∥∥2(1−α)
)

Hence,

ber2 (RSZP ) ≤ 1

2
sup
λ∈X

∣∣∣〈RPk̂λ, k̂λ

〉∣∣∣2
+

1

2
sup
λ∈X

(〈[
(1− α) |P |2 + α |R∗|2

]
k̂λ, k̂λ

〉∥∥∥P k̂λ

∥∥∥2α ∥∥∥R∗k̂λ

∥∥∥2(1−α)
)

(2.20)
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and by using that

sup
λ∈X

(〈[
(1− α) |P |2 + α |R∗|2

]
k̂λ, k̂λ

〉∥∥∥P k̂λ

∥∥∥2α ∥∥∥R∗k̂λ

∥∥∥2(1−α)
)

≤ sup
λ∈X

〈[
(1− α) |P |2 + α |R∗|2

]
k̂λ, k̂λ

〉
sup
λ∈X

∥∥∥P k̂λ

∥∥∥2α sup
λ∈X

∥∥∥R∗k̂λ

∥∥∥2(1−α)

≤ sup
λ,µ∈X

〈[
(1− α) |P |2 + α |R∗|2

]
k̂λ, k̂µ

〉
=
∥∥∥(1− α) |P |2 + α |R∗|2

∥∥∥
B,2

∥P∥2αB,1 ∥R∥2(1−α)
B,1 ,

by (2.20), we get the required result (2.18).
By (2.16), we obtain for s = 2 and for all λ ∈ X that∣∣∣∣〈R(SZ − 1

2
I

)
P k̂λ, k̂λ

〉∣∣∣∣2 ≤ 1

4

∥∥∥P k̂λ

∥∥∥2 ∥∥∥R∗k̂λ

∥∥∥2
=

1

4

〈
|P |2 k̂λ, k̂λ

〉〈
|R∗|2 k̂λ, k̂λ

〉
≤ 1

4

〈[
(1− α) |P |2 + α |R∗|2

]
k̂λ, k̂λ

〉∥∥∥P k̂λ

∥∥∥2α ∥∥∥R∗k̂λ

∥∥∥2(1−α)

,

which obviously implies (2.19). □

3. Berezin number inequalities for summations with Selberg
operator

In the present section, we prove some new bounds related to the summations
with the Selberg operator. The initial statement in this section offers an expanded
interpretation of the inequality defined in Proposition 2.1, which is as follows:∥∥∥∥RSZP − 1

2
RP

∥∥∥∥2
B,2

=

∥∥∥∥R(SZ − 1

2
I

)
P

∥∥∥∥2
B,2

≤ 1

4
∥P∥2B,1 ∥R∥2B,1 =

1

4

∥∥∥|P |2
∥∥∥
B,1

∥∥∥|R∗|2
∥∥∥
B,1

for every P,R ∈ B(H).

Theorem 3.1. We suppose that SZ is the Selberg operator defined above, Pi, Ri ∈
B(H), i ∈ {1, ...,m} and Qi ≥ 0, i ∈ {1, ...,m} with

∑m
i=1Qi = 1. Then∥∥∥∥∥

m∑
i=1

QiRiSZPi −
1

2

m∑
i=1

QiRiPi

∥∥∥∥∥
2

B,2

≤ 1

4

∥∥∥∥∥
m∑
i=1

Qi |Pi|2
∥∥∥∥∥
B,1

∥∥∥∥∥
m∑
i=1

Qi |R∗
i |
2

∥∥∥∥∥
B,1

and

ber

(
m∑
i=1

QiRiSZPi −
1

2

m∑
i=1

QiRiPi

)
≤

∥∥∥∥∥
m∑
i=1

Qi
|Pi|2 + |R∗

i |
2

4

∥∥∥∥∥
B,1

. (3.1)

Proof. We will use inequality (2.8) in the proof of Proposition 2.1. We have for
any λ, µ ∈ X that

m∑
i=1

Qi

∣∣∣∣〈(RiSZPi −
1

2
RiPi

)
k̂λ, k̂µ

〉∣∣∣∣ ≤ 1

2

m∑
i=1

Qi

∥∥∥Pik̂λ

∥∥∥∥∥∥R∗k̂µ

∥∥∥ (3.2)
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The generalized triangle inequality implies that

m∑
i=1

Qi

∣∣∣∣〈(RiSZPi −
1

2
RiPi

)
k̂λ, k̂µ

〉∣∣∣∣ ≥
∣∣∣∣∣

m∑
i=1

Qi

〈(
RiSZPi −

1

2
RiPi

)
k̂λ, k̂µ

〉∣∣∣∣∣
=

∣∣∣∣∣
〈(

m∑
i=1

QiRiSZPi −
1

2

m∑
i=1

QiRiPi

)
k̂λ, k̂µ

〉∣∣∣∣∣
for all λ, µ ∈ X.
Now applying Cauchy-Bunyakovski-Schwarz inequality, we have:

m∑
i=1

Qi

∥∥∥Pik̂λ

∥∥∥∥∥∥R∗
i k̂µ

∥∥∥ ≤

(
m∑
i=1

Qi

∥∥∥Pik̂λ

∥∥∥2) 1
2
(

m∑
i=1

Qi

∥∥∥R∗
i k̂µ

∥∥∥2) 1
2

=

(
m∑
i=1

Qi

〈
|Pi|2 k̂λ, k̂λ

〉) 1
2
(

m∑
i=1

Qi

〈
|R∗

i |
2 k̂µ, k̂µ

〉) 1
2

for λ, µ ∈ X, which implies that

m∑
i=1

Qi

∥∥∥Pik̂λ

∥∥∥∥∥∥R∗
i k̂µ

∥∥∥ ≤

〈
m∑
i=1

Qi |Pi|2 k̂λ, k̂λ

〉 1
2
〈

m∑
i=1

Qi |R∗
i |
2 k̂µ, k̂µ

〉 1
2

(3.3)

for all λ, µ ∈ X. Using (3.2) and (3.3), we obtain for all λ, µ ∈ X that∣∣∣∣∣
〈(

m∑
i=1

QiRiSZPi −
1

2

m∑
i=1

QiRiPi

)
k̂λ, k̂µ

〉∣∣∣∣∣ (3.4)

≤ 1

2

〈
m∑
i=1

Qi |Pi|2 k̂λ, k̂λ

〉 1
2
〈

m∑
i=1

Qi |R∗
i |
2 k̂µ, k̂µ

〉 1
2

.

After taking the supremum over all λ, µ ∈ X, we have that∥∥∥∥∥
m∑
i=1

QiRiSZPi −
1

2

m∑
i=1

QiRiPi

∥∥∥∥∥
B,2

= sup
λ,µ∈X

∣∣∣∣∣
〈(

m∑
i=1

QiRiSZPi −
1

2

m∑
i=1

QiRiPi

)
k̂λ, k̂µ

〉∣∣∣∣∣
≤ 1

2
sup

λ,µ∈X

〈 m∑
i=1

Qi |Pi|2 k̂λ, k̂λ

〉 1
2

.

〈
m∑
i=1

Qi |R∗
i |
2 k̂µ, k̂µ

〉 1
2


=

1

2
sup
λ∈X

〈
m∑
i=1

Qi |Pi|2 k̂λ, k̂λ

〉 1
2

. sup
µ∈X

〈
m∑
i=1

Qi |R∗
i |
2 k̂µ, k̂µ

〉 1
2

=
1

2

∥∥∥∥∥
m∑
i=1

Qi |Pi|2
∥∥∥∥∥

1
2

B,1

∥∥∥∥∥
m∑
i=1

Qi |R∗
i |
2

∥∥∥∥∥
1
2

B,1

which proves (2.20).
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We have from (3.4) that∣∣∣∣∣
〈(

m∑
i=1

QiRiSZPi −
1

2

m∑
i=1

QiRiPi

)
k̂λ, k̂λ

〉∣∣∣∣∣
≤ 1

2

〈
m∑
i=1

Qi |Pi|2 k̂λ, k̂λ

〉 1
2
〈

m∑
i=1

Qi |R∗
i |
2 k̂λ, k̂λ

〉 1
2

≤ 1

4

(〈
m∑
i=1

Qi |Pi|2 k̂λ, k̂λ

〉
+

〈
m∑
i=1

Qi |R∗
i |
2 k̂λ, k̂λ

〉)

=
1

4

〈(
m∑
i=1

Qi |Pi|2 +
m∑
i=1

Qi |R∗
i |
2

)
k̂λ, k̂λ

〉

=

〈(
m∑
i=1

Qi
|Pi|2 + |R∗

i |
2

4

)
k̂λ, k̂λ

〉
,

and

sup
λ∈X

∣∣∣∣∣
〈(

m∑
i=1

QiRiSZPi −
1

2

m∑
i=1

QiRiPi

)
k̂λ, k̂λ

〉∣∣∣∣∣
≤ sup

λ∈X

〈(
m∑
i=1

Qi
|Pi|2 + |R∗

i |
2

4

)
k̂λ, k̂λ

〉
which is equivalent to

ber

(
m∑
i=1

QiRiSZPi −
1

2

m∑
i=1

QiRiPi

)
≤

∥∥∥∥∥
m∑
i=1

Qi
|Pi|2 + |R∗

i |
2

4

∥∥∥∥∥
B,1

.

The evidence is now complete. □

Theorem 3.2. With the assumptions of Theorem 2.2, we have

ber2

(
m∑
i=1

QiRiSZPi −
1

2

m∑
i=1

QiRiPi

)
(3.5)

≤ 1

2

∥∥∥∥∥∥ 1Q
(

m∑
i=1

Qi |Pi|2
)Q

+
1

q

(
m∑
i=1

Qi |R∗
i |
2

)q
∥∥∥∥∥∥
B,1

for Q, q > 1 with 1
Q + 1

q = 1 and

ber2

(
m∑
i=1

QiRiSZPi −
1

2

m∑
i=1

QiRiPi

)
(3.6)

≤ 1

4

ber

(
m∑
i=1

Qi |R∗
i |
2

m∑
i=1

Qi |Pi|2
)

+

∥∥∥∥∥
m∑
i=1

Qi |Pi|2
∥∥∥∥∥
B,1

∥∥∥∥∥
m∑
i=1

Qi |R∗
i |
2

∥∥∥∥∥
B,1

 .
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Proof. By virtue of (3.4), taking µ = λ, we have that∣∣∣∣∣
〈(

m∑
i=1

QiRiSZPi −
1

2

m∑
i=1

QiRiPi

)
k̂λ, k̂λ

〉∣∣∣∣∣
2

(3.7)

≤ 1

2

〈
m∑
i=1

Qi |Pi|2 k̂λ, k̂λ

〉〈
m∑
i=1

Qi |R∗
i |
2 k̂λ, k̂λ

〉
.

By applying Young inequality we obtain〈
m∑
i=1

Qi |Pi|2 k̂λ, k̂λ

〉〈
m∑
i=1

Qi |R∗
i |
2 k̂λ, k̂λ

〉

≤ 1

Q

〈
m∑
i=1

Qi |Pi|2 k̂λ, k̂λ

〉p

+
1

q

〈
m∑
i=1

Qi |R∗
i |
2 k̂λ, k̂λ

〉q

for all λ ∈ X and Q, q > 1 with 1
Q + 1

q = 1. By the McCarthy inequality, we also

have

1

Q

〈
m∑
i=1

Qi |Pi|2 k̂λ, k̂λ

〉p

+
1

q

〈
m∑
i=1

Qi |R∗
i |
2 k̂λ, k̂λ

〉q

≤ 1

p

〈(
m∑
i=1

Qi |Pi|2
)p

k̂λ, k̂λ

〉
+

1

q

〈(
m∑
i=1

Qi |R∗
i |
2

)q

k̂λ, k̂λ

〉

for all λ ∈ X, which yields that

1

p

〈
m∑
i=1

Qi |Pi|2 k̂λ, k̂λ

〉p

+
1

q

〈
m∑
i=1

Qi |R∗
i |
2 k̂λ, k̂λ

〉q

≤

〈[
1

p

(
m∑
i=1

Qi |Pi|2
)p

+
1

q

(
m∑
i=1

Qi |R∗
i |
2

)q]
k̂λ, k̂λ

〉
, (3.8)

for all λ ∈ X. Hence, according to (3.7) and (3.8), we have∣∣∣∣∣
〈(

m∑
i=1

QiRiSZPi −
1

2

m∑
i=1

QiRiPi

)
k̂λ, k̂λ

〉∣∣∣∣∣
2

≤ 1

2

〈[
1

p

(
m∑
i=1

Qi |Pi|2
)p

+
1

q

(
m∑
i=1

Qi |R∗
i |
2

)q]
k̂λ, k̂λ

〉

for all λ ∈ X, this implies the desired inequality (3.5).
By using Buzano’s inequality

|⟨u, e⟩ ⟨e, v⟩| ≤ 1

2
(|⟨u, v⟩|+ ∥u∥ ∥v∥) ,
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where ∥e∥ = 1, we have〈
m∑
i=1

Qi |Pi|2 k̂λ, k̂λ

〉〈
k̂λ,

m∑
i=1

Qi |R∗
i |
2 k̂λ

〉

≤ 1

2

(∣∣∣∣∣
〈

m∑
i=1

Qi |Pi|2 k̂λ,
m∑
i=1

Qi |R∗
i |
2 k̂λ

〉∣∣∣∣∣+
∥∥∥∥∥

m∑
i=1

Qi |Pi|2 k̂λ

∥∥∥∥∥
∥∥∥∥∥

m∑
i=1

Qi |R∗
i |
2 k̂λ

∥∥∥∥∥
)

=
1

2

(∣∣∣∣∣
〈

m∑
i=1

Qi |R∗
i |
2

m∑
i=1

Qi |Pi|2 k̂λ, k̂λ

〉∣∣∣∣∣+
∥∥∥∥∥

m∑
i=1

Qi |Pi|2 k̂λ

∥∥∥∥∥
∥∥∥∥∥

m∑
i=1

Qi |R∗
i |
2 k̂λ

∥∥∥∥∥
)

for all λ ∈ X.
Now, by (3.6), we get for all λ ∈ X that∣∣∣∣∣
〈(

m∑
i=1

QiRiSZPi −
1

2

m∑
i=1

QiRiPi

)
k̂λ, k̂λ

〉∣∣∣∣∣
2

≤ 1

4

(∣∣∣∣∣
〈

m∑
i=1

Qi |R∗
i |
2

m∑
i=1

Qi |Pi|2 k̂λ, k̂λ

〉∣∣∣∣∣+
∥∥∥∥∥

m∑
i=1

Qi |Pi|2 k̂λ

∥∥∥∥∥
∥∥∥∥∥

m∑
i=1

Qi |R∗
i |
2 k̂λ

∥∥∥∥∥
)
,

and

sup
λ∈X

∣∣∣∣∣
〈(

m∑
i=1

QiRiSZPi −
1

2

m∑
i=1

QiRiPi

)
k̂λ, k̂λ

〉∣∣∣∣∣
2

≤ 1

4
sup
λ∈X

∣∣∣∣∣
〈

m∑
i=1

Qi |R∗
i |

2
m∑
i=1

Qi |Pi|2 k̂λ, k̂λ

〉∣∣∣∣∣+
∥∥∥∥∥

m∑
i=1

Qi |Pi|2 k̂λ

∥∥∥∥∥
B,1

∥∥∥∥∥
m∑
i=1

Qi |R∗
i |

2
k̂λ

∥∥∥∥∥
B,1

 .

Thus, we deduce that

ber2

(
m∑
i=1

QiRiSZPi −
1

2

m∑
i=1

QiRiPi

)

≤ 1

4

ber

(
m∑
i=1

Qi |R∗
i |
2

m∑
i=1

Qi |Pi|2
)

+

∥∥∥∥∥
m∑
i=1

Qi |Pi|2
∥∥∥∥∥
B,1

∥∥∥∥∥
m∑
i=1

Qi |R∗
i |
2

∥∥∥∥∥
B,1

 .

which implies the desired result (3.6). The theorem is proved. □
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References

[1] N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950),
337–404.

[2] N. Altwaijry, C. Conde, S.S. Dragomir and K. Feki, Norm and numerical ra-
dius inequalities related to the Selberg operator, Symmetry (2023), 15, 1860.
https://doi.org/10.3390/sym15101860.

[3] N. Altwaijry, C. Conde, S.S. Dragomir and K. Feki, Some Refinements
of Selberg Inequality and Related Results. Symmetry (2023), 15, 1486.
https://doi.org/10.3390/sym15081486.



BEREZIN NORM AND BEREZIN RADIUS INEQUALITIES . . . 15
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torovich type, Schwarz and Berezin numbers inequalities, Extracta Math. 35 (2020),
no. 1, 1–20.
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