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ANALYSIS OF A DOUBLE NONLINEAR PARABOLIC

EQUATION WITH A SOURCE IN AN INHOMOGENEOUS

MEDIUM

MERSAID ARIPOV AND MAKHMUD BOBOKANDOV

Abstract. This paper studies the properties of solutions for a double
nonlinear parabolic equation with variable density, not in divergence
form with a source. The problem is formulated as a partial differen-
tial equation with a nonlinear term. The main results are the existence
of weak solutions in suitable function spaces; regularity and positivity
of solutions; asymptotic behaviour of solutions as time goes to infin-
ity; comparison principles; and maximum principles for solutions. The
proofs are based on the energy method, comparison methods, and as-
ymptotic techniques.

1. Introduction

We study a double nonlinear, non-divergent parabolic equation with a source
in an inhomogeneous medium in Q =

{
(x, t) |x ∈ RN , t > 0

}
ρ1 (x)ut = uq∇

(
ρ2 (x)u

m−1
∣∣∣∇uk∣∣∣p−2

∇u
)
+ ρ3 (x)u

β; (x, t) ∈ Q, (1.1)

u (x, 0) = u0 (x) , x ∈ RN , (1.2)

where q < 1, m ≥ 1, k > 0, p ≥ 2, β > q +m + k (p− 2) > 1, N ≥ 1, n2 ̸= p +

n1, 0 ≤ n1 ≤ n3 <
β−q−m−k(p−2)
q+m+k(p−2)−1N - are given numerical parameters, ρi (x) =

|x|ni , i = 1, 2, 3, and u0 (x) is a non-negative bounded and continuous function in
RN . Here we mean by a solution, a function u(x, t) is nonnegative and continuous
in Q \ (0, 0), satisfying (1.1)-(1.2) in the distribution sense.
The equation (1.1) included many known equations, such as the porous medium
equation, p-Laplacian equation, heat equation, Leibenson equation, Boussinesq
equation in filtration of liquid and gas, and so on [37]. To simulate a broad
variety of physical processes, equation (1.1) is important. For example, curve
shortening flow, resistive diffusion phenomena in force-free magnetic fields, dif-
fusive processes found in biological species, and the spread of infectious diseases
are among the many applications of equation (1.1) (see references [36, 6, 30]).
The problem (1.1) in the particular value of the numerical parameters is inten-
sively studied by many authors [1, 5, 29].
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Zhaoyin Xiang, Chunlai Mu, and Xuegang Hu [38] investigated the properties of
spatial localization, existence and non-existence of global solutions for problem
(1.1)-(1.2) where the density function has the form

|x|−k , (1 + |x|)−k.

Qualitative properties of solutions of a doubly nonlinear reaction-diffusion, self-
similar profiles of solutions, global existence, and blow-up solutions studied in
[25, 31, 41]. Asymptotic behaviour of solutions of the nonlinear diffusion equation
with absorption at a critical exponent considered in the works [13, 17]. In [24, 22]
the Cauchy problem for the following two equations with variable coefficients is
studied:

ρ (x)
∂u

∂t
= div

(
um−1 |∇u|p−2∇u

)
+ ρ0 (x)u

β, x ∈ RN , t > 0,

where p > 1,m + p > 3, β > m + p − 2, ρ (x) =

{
|x|−n ,

(1 + |x|)−n , ρ0 (x) = ρ (x)

or ρ0 (x) = 1. Any nontrivial Cauchy problem solution blows up in a finite time,
it has been shown, under particular parameter constraints. Furthermore, the
authors found a sharp approximation of the solution that is universal near the
blow-up point.
R. Gianni, A. Tedeev and V. Vespri studied the asymptotic behaviour of non-
negative solutions of the following equation [18]{

∂u
∂t =

∑N
i,j=1

∂
∂xj

(
aij (x, t)u

m−1 |Du|p−2 ∂u
∂xi

)
,

u (x, 0) = u0 (x) , x ∈ RN

where aij (x, t) = aji (x, t) , i, j = 1, N are measurable functions. They showed
when the initial datum has a finite mass, the asymptotic expansion of the solution
for a large time, uniformly in whole space, is established.
Galaktionov V.A. and Vazquez J.L. investigated [16] the nonlinear case of the
Laplace equation with critical exponents

ut = ∆
(
uσ+1

)
− uβ; (x, t) ∈ RN × (0,∞) ,

u (x, 0) = u0 (x) ≥ 0, x ∈ RN (1.3)

where N ≥ 1, σ > 0, β = σ + 1 + 2/N . The authors show that, the long-term
asymptotic behaviour of the solution for the critical exponent in the following
form

u (t, x) = ((T + t) ln (T + t))−k F (ξ, a) , ξ = |x| (T + t)−
k
N (ln (T + t))

kσ
2 ,

F (ξ, a) = C0

(
a2 − ξ2

) 1
σ

+
, k =

1

σ + 2/N
,C0 =

[
kσ

2N (σ + 1)

] 1
σ

, T > 1. (1.4)

By creating sub- and super-solutions, they showed that solution (1.4) is the long-
time asymptotic of the solution to problems (1.3). The sub- and super-solutions
with variables are as follows:

((T + t) ln (T + t))−k F (ξ, a−) ≤ u (t, x) ≤ ((T + t) ln (T + t))−k F (ξ, a+) ,

0 < a− < a+.
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H. Brezis and A. Friedman [10] showed that the equation (1.1)-(1.2) has no (sin-
gular [21]) solution if the β ≥ 1 + 2

N when the equality (1.6) is equal to zero in
the case m = k = 1, p = 2, q = ni = 0, (i = 1, 2, 3).
Furthermore, H. Brezis, L.A. Peletier, and D. Terman [11] found a different type
of singular solution or very singular solution and it has a stronger singularity
than the fundamental solutions at (0, 0), i.e., such that

lim
t→0

∫
|x|<r

u(x, t) = ∞.

for every r > 0.
Moreover, F. Nicolosi et al. [26], and K.M. Hui [19] showed removable singularities
with point-wise and Schauder estimates under suitable conditions.
The source term ρ3 (x)u

β can lead to a finite time blow-up, where solutions
become unbounded in finite time. Analyzing the blow-up behaviour and the con-
ditions under which it occurs is difficult, especially in inhomogeneous conditions.
Additionally, studying the asymptotic behaviour for large time requires special-
ized techniques, as standard tools may not apply due to the nonlinearity and
inhomogeneity of the equation (1.1). Furthermore, the equation (1.1) is doubly
singular and therefore does not have a classical solution in general cases [2]. As
a result, we need to define a weak solution to address this issue.

Definition 1.1. A non-negative function u (x, t) defined in Q is called a weak so-
lution of Cauchy problem (1.1)-(1.2), if for every bounded open set Ω with smooth

boundary ∂Ω, u ∈ L∞
loc (Ω× (0, T ))∩C

(
(0, T ) , L2

|x|n1 ,loc (Ω)
)
∩Lβ

|x|n3 ,loc
(Ω× (0, T )) ,

um−1
∣∣∇uk∣∣p ∈ L1

loc (Ω× (0, T )) and the following integral identity fulfils∫
Ω
ρ1 (x)u (x, t) η (x, t) dx−

∫
Ω
ρ1 (x)u (x, t0) η (x, t0) dx =

∫ t

0

∫
Ω
ρ3 (x)u

βηdxdτ

+

∫ t

0

∫
Ω

(
ρ1 (x)u · ∂η(x, τ)

∂τ
− ρ2 (x)u

m−1
∣∣∣∇uk∣∣∣p−2

∇u · ∇ (uqη)

)
dxdτ (1.5)

for all 0 ≤ t ≤ T and for any test function η ∈ C1
0 (Ω× (0, T )) . Moreover,

lim
t→0

∫
Ω
u (x, t) ζ (x) dx =

∫
Ω
u (x, 0) ζ (x) dx (1.6)

for any ζ (x) ∈ C1
0 (Ω) (see, [10], Chapter 5, page 77 [37]).

Let us denote

T∗ = sup
{
T > 0; sup

t∈[0,T )
∥u (x, t)∥∞ <∞

}
,

then T∗ is called ”the life span” of the solution u (x, t) . If T∗ = ∞, then the
solution u (x, t) is global in time mean. On the other side, if T∗ < ∞, the
solution u (x, t) is called ”blow-up” in finite time T ∗ .
Due to the non-standard growth conditions, obtaining existence and uniqueness
results for weak solutions is challenging. The solutions often have limited regu-
larity and may only be defined in the weak or distributional sense, which requires
careful functional analysis and compactness methods [35, 37, 2].
The Cauchy problem for equation (1.1) has been extensively studied in the lit-
erature, specifically in reference [8, 39, 40], where it has been studied for the
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particular case q = n2 = 0, k = 1. Also, they found the second critical exponent
value. This paper aims to present the primary findings by using the techniques
proposed by [34] and utilizing the methodologies outlined in the aforementioned
literature. We express our sincere gratitude to the authors for their invaluable
contributions to this field of research. Their work has enabled us to delve deeper
into this subject matter and apply their established theorems and methods to
shed light on new insights.
The main objective of our study is to investigate the behaviour of the solution
u (x, t) to problems (1.1)-(1.2), when the initial data u0 (x) has slow decay in
proximity to x = ∞. For instance, consider the following case:

u0 (x) ∼=M |x|−a with a > 0 and M > 0, (1.7)

we are investigating whether solutions to equations (1.1)-(1.2) exist globally or
not by analyzing them in relation to the variables denoted by M and a.

Throughout the paper, we denote by Cb

(
RN
)
the space of all bounded continuous

functions in RN . For a ≥ 0, we define

Fa =

{
ρ (x) ∈ Cb

(
RN
)
| ρ (x) ≥ 0 and lim

|x|→∞
inf |x|a ρ (x) > 0

}
,

F a =

{
ρ (x) ∈ Cb

(
RN
)
| ρ (x) ≥ 0 and lim

|x|→∞
sup |x|a ρ (x) <∞

}
.

In addition, let

β > βc = q +m+ k (p− 2) +
(1− q) (p− n2 + n3)

N + n1
, ac =

p+ n3 − n2
β − q −m− k (p− 2)

.

2. Global existence of the solution

Within this section, we will be discussing the condition for global existence as
well as the behaviour of the global solution over a large time.

Theorem 2.1. Suppose that u0 (x) = λφ (x) , λ > 0 and φ (x) ∈ F a for some
a ∈ (ac, N + n1) , then there exists λ0 = λ0 (φ) > 0 such that the solution u (x, t)
of the problem (1.1)-(1.2) exists globally for all λ < λ0. Furthermore, the solution
has the following estimate:

∥u (x, t)∥∞ ≤ Ct
− a

a(q+m+k(p−2)−1)+p+n1−n2 , t > 0 (2.1)

Theorem 2.2. Let a ∈ (ac, N + n1) , φ (x) ∈ F a and u0 (x) = λφ (x) , λ > 0
fulfill the following identity,

lim
|x|→∞

|x|a φ (x) =M > 0, (2.2)

then there exists λ0 = λ0 (φ) > 0 such that for λ < λ0, the solution u (x, t) fulfils

t
a

a(q+m+k(p−2)−1)+p+n1−n2 |u (x, t)− UλM,a (x, t)| → 0, as t→ ∞ (2.3)

uniformly in compact set of RN , where UλM,a (x, t) is the solution to the following
Cauchy problem{

ρ1 (x)ut = uq∇
(
ρ2 (x)u

m−1
∣∣∇uk∣∣p−2∇u

)
, (x, t) ∈ Q,

u (x, 0) = λM |x|−a , x ∈ RN .
(2.4)



ANALYSIS OF A DOUBLE NONLINEAR PARABOLIC EQUATION . . . 5

Proof. We introduce the radially symmetric self-similar solution UM,a (x, t) ,
to the following Cauchy problem to prove theorems 2.1-2.2{

ρ1 (x)ut = uq∇
(
ρ2 (x)u

m−1
∣∣∇uk∣∣p−2∇u

)
, (x, t) ∈ Q,

u (x, 0) = u0 (x) =M |x|−a , x ∈ RN .
(2.5)

It is widely acknowledged that, under specific suitable conditions, the local time
existence of a solution to equation (2.5) has been firmly established in research
articles [22, 23]. Additionally, the uniqueness of the solution to (2.5) can be
proven by using the same method described in Chapter 5 of the research article
[28]. Due to the symmetric properties of (2.5), the solution UM,a (x, t) , can be
expressed in the following form:

UM,a (x, t) = t−aαfM (r) , with r = |x| t−α,

α =
1

a (q +m+ k (p− 2)− 1) + p+ n1 − n2
(2.6)

where the positive function fM is the solution of the following problem
(
fm−1
M

∣∣∣(fkM)′∣∣∣p−2
f ′M

)′
+ N+n2−1

r fm−1
M

∣∣∣(fkM)′∣∣∣p−2
(fM )′ + αrn1−n2+1f−q

M f ′M

+aαrn1−n2f1−q
M = 0, r > 0,

fM (r) ≥ 0, r ≥ 0, f
′
M (0) = 0, lim

r→+∞
rafM (r) =M.

(2.7)

We will use the following ordinary differential equation to show the existence
of the solution fM (r) to (2.7). In addition, we will derive the non-increasing
property of fM (r).

Initially, given a fixed η > 0, we consider the following Cauchy problem
(
gm−1

∣∣∣(gk)′∣∣∣p−2
g′
)′

+ N+n2−1
r gm−1

∣∣∣(gk)′∣∣∣p−2
g′ + αrn1−n2+1g−qg′

+aαrn1−n2g1−q = 0, r > 0,

g (0) = η, g′ (0) = 0.

(2.8)

Using the standard approach for solving Cauchy problem to Ordinary Differential
Equations and following the techniques described in references [34] and [14], we

may deduce that the solution g (r) of the problem (2.8) is positive, and g (r)
r→∞−→

0, furthermore,

lim
r→+∞

rag (r) =M,

for some M =M (η) > 0.
Next, we aim to prove that there is a one-to-one correspondence between M ∈
(0, +∞)and η ∈ (0,+∞) . Indeed, this can be seen from the following relation,

gη (r) = ηg1 (η
σr) , σ = −q +m+ k (p− 2)− 1

p+ n1 − n2
< 0, (2.9)

where g1 (r) is the solution of (2.8) for η = 1 and a ̸= 1/σ. Hence,

M (η) = η1−aσM (1) , with M (1) = lim
r→+∞

rag1 (r) . (2.10)
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Consequently, we can deduce that for each M > 0, there exists a positive,
bounded, and global solution fM (r) satisfying (2.7).
Finally, we will especially prove that the solution g (r) will be non-increasing. It
means that fM (r)is also non-increasing. We divide the proof into several lemmas.

Lemma 2.1. Let g (r) be the solution (2.8), then

lim
r→+∞

N + n2
r

gm−1 (r)

∣∣∣∣(gk (r))′∣∣∣∣p−2

g′ (r) = 0. (2.11)

Proof. We multiply the equation (2.8) by a smooth sequence of test function
χn (x) such that lim

n→∞
χn (x) = 1 if r ∈ [0, ε] and lim

n→∞
χn (x) = 0, otherwise, for

some ε > 0. After integrating, letting n→ ∞, we have(
gm−1

∣∣∣∣(gk)′∣∣∣∣p−2

g′

)
(ε) +

∫ ε

0

N + n2 − 1

r
gm−1

∣∣∣∣(gk)′∣∣∣∣p−2

g′dr

+ α

∫ ε

0
rn1−n2+1g−qg′dr + aα

∫ ε

0
rn1−n2g1−qdr = 0. (2.12)

Dividing by ε and taking ε→ 0 in (2.12), we obtain,

lim
r→+∞

gm−1
∣∣∣(gk)′∣∣∣p−2

g′ (ε)

ε
+
N + n2 − 1

ε
gm−1

∣∣∣∣(gk)′∣∣∣∣p−2

g′ (ε)

 = 0, (2.13)

which implies that (2.11) holds. We have finished proving Lemma 2.1.

Lemma 2.2. If there exists r0 ∈ [0,+∞) such that g (r0) = 0, then g (r) = 0 for
all r ≥ r0.

Proof. We will prove this through contradiction. Suppose that Lemma 2.2 does
not hold, it is clear that there is ε > 0 such that

g (r) > 0 and g′ (r) > 0 in (r0, r0 + ε) . (2.14)

Multiplying equation (2.8) by r1−N−n2 , and integrating over (r0, r) with r ∈
(r0, r0 + ε) ,we obtain

rN+n2−1gm−1

∣∣∣∣(gk)′∣∣∣∣p−2

g′ (r) +
αrN+n1

1− q
g1−q (r)

=
α (N + n1)

1− q

∫ r

r0

rN+n1−1g1−qdr − αa

∫ r

r0

rN+n1−1g1−qdr. (2.15)

It follows from (2.14)-(2.15) that

αrN+n1

1− q
g1−q (r) ≤ α

(
N + n1
1− q

− a

)
g1−q (r)

(
rN+n1 − rN+n1

0

)
,

or equivalently

1 ≤ (N + n1 − a (1− q))

(
1−

(r0
r

)N+n1
)
. (2.16)

Let r → r0 in (2.16), we obtain the inequality 1 ≤ 0, which is a contradiction.
We have finished proving Lemma 2.2.
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Lemma 2.3. The solution g (r) of (2.8) is monotone non-increasing in [0,+∞) .

Proof. We use the contradiction argument one more time. Assume that for some
r0 > 0, g′ (r) > 0, by Lemmas 2.1-2.2, there exists r1 ∈ (0, r0) such that

g (r1) > 0, and
(
gm−1

∣∣∣ (gk)′ ∣∣∣p−2
g′
)
(r1) > 0. (2.17)

Using the similar argument in Lemma 2.1, we deduce that

lim
r→r1

N + n2
r − r1

(
gm−1

∣∣∣ (gk)′ ∣∣∣p−2
g′
)
(r) = 0, (2.18)

which is a contradiction with (2.17). We have finished proving Lemma 2.3.
Next, we apply the monotone properties of fM (r) to infer the condition on the
global existence of the solution to (1.1)-(1.2).
Proof of Theorem 2.1. We present a proof of Theorem 2.1 using a series of steps.
By doing these steps systematically, we can prove the theorem 2.2.
Step 1. Since φ (x) ∈ F a with ac < a < N +n1, there exists a constant K > 0
such that

φ (x) ≤ K (1 + |x|)−a , ∀x ∈ RN .

Taking M > K and the self-similar solution UM,a (x, t) of (2.5) defined as (2.6),
since lim

r→+∞
rafM (r) =M > K, there exists a positive constant R0 such that

rafM (r) > K for r ≥ R0.

Set ℓ = fM (R0) = min {fM (r) | r ∈ [0, R0]} > 0, it is easy to verify that φ (x) ≤
UM,a (x, t0) for all x ∈ RN , where t0 ∈ (0, 1) and t−aα

0 ℓ > ∥φ∥∞ .

Let λ > 0, then w (x, t) = λUM,a

(
x, λq+m+k(p−2)−1t+ t0

)−aα
is the solution of

the following problem{
ρ1 (x)wt = wq∇

(
ρ2 (x)w

m−1
∣∣∇wk

∣∣p−2∇w
)
, (x, t) ∈ Q,

w (x, 0) = λUM,a (x, t0) ≥ λφ (x) , x ∈ RN .
(2.19)

Taking η = fM (0) and noting that fM (r) is non-increasing, we have

∥w (x, t)∥∞ = ηλ
(
λq+m+k(p−2)−1t+ t0

)−aα
.

Extracting that

|x|
n3−n1
β−1 UM,a (x, t) = t

−α
(
a−n3−n1

β−1

)(
|x|
tα

)n3−n1
β−1

fM

(
|x|
tα

)
, (2.20)

Then we could infer from lim
r→+∞

rafM (r) =M and n3−n1
β−1 < ac < a that

∥w (x, t)∥∞,n1,n3
≡ sup

x∈RN

|x|
n3−n1
β−1 |w (x, t)| ≤ Cλ

(
λq+m+k(p−2)−1t+ t0

)−α
(
a−n3−n1

β−1

)
,

(2.21)
where C is a positive constant.
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Step 2. Set Z (x, t) = I (t)w (x, J (t)) , where I (t) and J (t) are solutions of
the following problem

I ′ (t) = Cβ−1λβ−1
[
λq+m+k(p−2)−1J (t) + t0

]− a(β−1)+n1−n3
a(q+m+k(p−2)−1)+p+n1−n2 Iβ (t) ,

J ′ (t) = Iq+m+k(p−2)−1 (t) , , t ∈ (0,∞) ,

I (0) = 1, J (0) = 0.

(2.22)

By performing a direct calculation, we can obtain from equation (2.21) that
Z (x, t) fulfils{

ρ1 (x)Zt ≥ Zq∇
(
ρ2 (x)Z

m−1
∣∣∇Zk

∣∣p−2∇Z
)
+ ρ3 (x)Z

β, (x, t) ∈ Q,

Z (x, 0) = w (x, 0) = λUM,a (x, t0) ≥ λφ (x) , x ∈ RN .

(2.23)

Step 3. We will prove that there exists a positive constant λ0 = λ0 (φ) such
that the problem (2.22) has a global solution (I (t) , J (t)) with I (t) bounded
in [0, +∞) if λ ∈ [0, λ0) . According to the standard theory of ODE, the local
existence and uniqueness of solution (I (t) , J (t)) of (2.22) holds (see Theorem
II.3.2 in [32] and [9]). By (2.22), we have I ′ (t) > 0, I (t) > 1 for t > 0; moreover,
the solution is continuous as long as the solution exists and I ′ (t) is finite.
From (2.22), while I (t) exists in [0, t] , then J (t) is uniquely defined by

J (t) =

∫ t

0
Iq+m+k(p−2)−1 (s) ds.

Since q +m+ k (p− 2) > 1 and I (t) is increasing, we can deduce that

J (s) =

∫ s

0
Iq+m+k(p−2)−1 (τ) dτ ≥ Iq+m+k(p−2)−1 (0) s = s for all s ∈ [0, t] .

(2.24)
By (2.22), (2.24) and a > ac =

p+n3−n2

β−q−m−k(p−2) , implies that

1− I1−β(t) = (β − 1)(Cλ)β−1

∫ t

0
[λq+m+k(p−2)−1J(s) + t0]

− a(β−1)+n1−n3
a(q+m+k(p−2)−1)+p+n1−n2 ds

≤ (β − 1)Cβ−1λβ−1

∫ t

0

[
λq+m+k(p−2)−1s+ t0

]− a(β−1)+n1−n3
a(q+m+k(p−2)−1)+p+n1−n2 ds

≤ (β − 1)Cβ−1λβ−q−m−k(p−2)

a(β−1)+n1−n3

a(q+m+k(p−2)−1)+p+n1−n2
− 1

t
1− a(β−1)+n1−n3

a(q+m+k(p−2)−1)+p+n1−n2
0 . (2.25)

Let λ0 = λ0 (φ) be a positive constant defined by

(β − 1)Cβ−1λβ−q−m−k(p−2)

a(β−1)+n1−n3

a(q+m+k(p−2)−1)+p+n1−n2
− 1

t
1− a(β−1)+n1−n3

a(q+m+k(p−2)−1)+p+n1−n2
0 =

1

2
, (2.26)

then it follows from (2.25), β > βc > q +m+ k (p− 2) + (1−q)(p−n2−n3)
N+n1

> 1 that

1 ≤ I (t) ≤ 2
1

β−1 for any λ ∈ (0, λ0] , as long as I (t) exists globally.
On the other side, by (2.22) and (2.24), we have

t ≤ J (t) ≤ 2
q+m+k(p−2)−1

β−1 t for all t ≥ 0. (2.27)
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Moreover, J (t) is also global.
Step 4. For any λ ∈ (0, λ0] , where λ0 = λ0 (φ) is defined as (2.26), the solu-
tion u (x, t) of (1.1)-(1.2) with initial value u0 (x) = λφ (x) exists globally, and
u (x, t) ≤ Z (x, t) in Q. Therefore, there exists a positive constant C such that

∥u (., t) ∥∞ ≤ ∥Z (., t) ∥∞ ≤ 2
1

β−1 ηλ(λq+m+k(p−2)−1J (t)+t0)
−aα ≤ Ct−aα, ∀ t > 0.

(2.28)
The proof of Theorem 2.1 is complete.
Proof of Theorem 2.2. Let

un (x, t) = nau
(
nx, n1/αt

)
, n > 1,

then it is easy to see that un (x, t) is the solution to the following Cauchy problem
|x|n1 unt = uqn∇

(
|x|n2 um−1

n

∣∣∇ukn∣∣p−2∇un
)

+np−n2+n3−(β−q−m−k(p−2))a |x|n3 uβn, (x, t) ∈ Q,

un (x, 0) = λnaφ (nx) , x ∈ RN .

(2.29)

It follows from (2.28) that

∥un (x, t)∥∞ = na
∥∥∥u(nx, n1/αt)∥∥∥

∞
≤ Cna

(
n1/αt

)−aα
= Ct−aα. (2.30)

Therefore, {un (x, t)} is uniformly bounded in RN × [δ,∞) for any δ > 0. Hence,
we can apply the idea in Chapter 9 in [15] and [33], to conclude that the family
{un (x, t)} is relatively compact in L∞

loc (Q) . Then using the Ascoli-Arzela theorem
and a diagonal sequence method in δ, we see that for any sequence nj → ∞, there
exists a subsequence n′j → ∞ and a function w (x, t) ∈ C (Q) such that

un′
j
(x, t) → w (x, t) as n′j → ∞,

local uniformly in Q. We will prove that

w (x, t) = UλM,a (x, t) .

According to the definition of weak solution, un (x, t) being a weak solution to
equation (2.29) implies that the integral identity∫
RN

|x|n1 un (x, t) η (x, t) dx−
∫
RN

|x|n1 un (x, 0) η (x, 0) dx =

∫ t

0

∫
RN

(
|x|n1 unητ

− |x|n2 um−1
n

∣∣∣∇ukn∣∣∣p−2
∇un · ∇ (uqnη) + np−n2+n3−(β−q−m−k(p−2))a |x|n3 uβnη

)
dxdτ

(2.31)

is satisfied for any non-negative η ∈ C∞
0

(
RN × [0,∞)

)
.

Under the assumption lim
|x|→∞

|x|a φ (x) =M > 0, implies that∫
RN

|x|n1 un (x, 0) η (x, 0) dx =

∫
RN

λna |x|n1 φ (nx) η (x, 0) dx

→ λM

∫
RN

|x|n1 |x|−a η (x, 0) dx, as n = n′j → ∞. (2.32)
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On the other hand, we can obtain∫ t

0

∫
RN

np−n2+n3−(β−q−m−k(p−2))a |x|n3 uβnηdxdτ

=

∫ n1/αt

0

∫
RN

na+n3−n1 |x|n3 uβ (nx, τ) η
(
x, n−1/ατ

)
dxdτ. (2.33)

It follows from the proof Theorem 2.1 that Z (x, t) is the super solution to (1.1)-
(1.2); thus, we have

na+n3−n1 |x|n3 uβ (nx, t) ≤ na+n3−n1 |x|n3 Zβ (nx, t) ≤

≤ |nx|a Z (nx, t)
(
nn3−n1 |x|n3−a Zβ−1 (nx, t)

)
. (2.34)

It is easy to see that |nx|a Z (nx, t) is bounded by some constant independent of
n, x, and t; therefore, we deduce

nn3−n1 |x|n3−a Zβ−1 (nx, t) = |x|−(a−n1)
[
|nx|

n3−n1
β−1 Z (nx, t)

]β−1

≤ Cλβ−1 |x|−(a−n1)
[(

|nx|
(λq+m+k(p−2)−1J(t)+t0)

α

)n3−n1
β−1 ·(

λq+m+k(p−2)−1J (t) + t0
)−α

(
a−n3−n1

β−1

)
fM

(
|nx|

(λq+m+k(p−2)−1J(t)+t0)
α

)]β−1

≤ Cλβ−1 |x|−(a−n1)
(
λq+m+k(p−2)−1J (t) + t0

)−α(a(β−1)−(n3−n1))[(
|nx|

(λq+m+k(p−2)−1J(t)+t0)
α

)n3−n1
β−1

fM

(
|nx|

(λq+m+k(p−2)−1J(t)+t0)
α

)]β−1
.

(2.35)
Using the assumption lim

r→+∞
|x|a fM (r) =M and a > n3−n1

β−1 , then for some x ̸= 0

we have( |nx|(
λq+m+k(p−2)−1J(t) + t0

)α)n3−n1
β−1

fM

( |nx|(
λq+m+k(p−2)−1J(t) + t0

)α)→ 0 as n→ ∞.

(2.36)
Using the Lebesgue dominated convergence theorem and aggregating (2.33)-
(2.36), we get∫ t

0

∫
RN

np−n2+n3−(β−q−m−k(p−2))a |x|n3 uβnηdxdτ → 0 as n = n′j → ∞. (2.37)

Moreover, letting n = n′j → ∞ in (2.31), we obtain∫
RN

|x|n1 w (x, t) η (x, t) dx− λM

∫
RN

|x|n1 |x|−a η (x, 0) dx

=

∫ t

0

∫
RN

(
|x|n1 wητ − |x|n2 wm−1

∣∣∣∇wk
∣∣∣p−2

∇w · ∇ (wqη)

)
dxdτ,

(2.38)

which implies that w (x, t) is the weak solution to the following problem{
ρ1 (x)wt = uq∇

(
ρ2 (x)w

m−1
∣∣∇wk

∣∣p−2∇w
)
, (x, t) ∈ Q,

w (x, 0) = λM |x|−a , x ∈ RN .
(2.39)
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By the uniqueness of the weak solution of (2.39), we obtain w (x, t) = UλM,a (x, t) .
Consequently, we have proven that

un (x, t) → UλM,a (x, t) as n→ ∞, (2.40)

uniformly in a compact set of Q. Let t = 1 in (2.40), we deduce

un (x, 1) → UλM,a (x, 1) as n→ ∞, (2.41)

that is

nau
(
nx, n1/α

)
→ fλM (|x|) as n→ ∞, (2.42)

uniformly in compact set of RN . We denote y = nx and s = n1/α in (2.42), we
obtain

saαu (y, s) → fλM
(
|y| s−α

)
as s→ ∞, (2.43)

which is

saα |u (y, s)− UλM,a (y, s) | → 0 as s→ ∞, (2.44)

uniformly in a compact set of RN . The proof of Theorem 2.2 is concluded.

3. Blow-up

We introduce a notation v = u1−q and put this into problem (1.1)-(1.2)

L (v) ≡ v
q

1−q

[
ρ1 (x) vt −∇

(
ρ2 (x) v

m2−1
∣∣∣∇vk2∣∣∣p−2

∇v
)
− (1− q) ρ3 (x) v

β2

]
= 0,

(3.1)

v|t=0 = v0 (x) = [u0 (x)]
1−q , (3.2)

where m2 =
m
1−q , k2 =

k
1−q , β2 =

β−q
1−q .

We note that if q(q−1) > 0, then the equation (3.1) has a nontrivial solution and
v = 0 a trivial solution; otherwise, only a nontrivial solution exists. Therefore,
we consider only nontrivial solutions.

Theorem 3.1. Let 0 < a < ac, u0 (x) ∈ Fa and β < βc, then the solution v (x, t)
of the problem (3.1)-(3.2) blows up in a finite time.

Proof. To obtain conditions for blow-up related to the problem (1.1)-(1.2), we
will employ the energy method. To accomplish this, it is necessary to select a
suitable test function as follows:

ψc (x) = AcNe−c|x| with A =

(∫
RN

e−|x|dx

)−1

, ∇ψc = −c x
|x|
ψc, c > 0.

Suppose that v (x, t) is the solution of the Cauchy problem (3.1)-(3.2) and T is
the blow-up time. Let

E (t) =
1

s

∫
RN

ρ1 (x) v
s (x, t)ψc (x) dx, t ∈ [0, T ) , (3.3)
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where 0 < s < min
{

1
p − q, β−q−m−k(p−2)

n3

(
N −

(
1− 1

q+m+k(p−2)

)
n3
)}
, hence, we

get

E′ (t) =

∫
RN

ρ1 (x) vtv
s−1ψc (x) dx =

∫
RN

∇
(
ρ2 (x) v

m2−1
∣∣∣∇vk2∣∣∣p−2

∇v
)
vs−1·

ψc (x) dx+ (1− q)

∫
RN

ρ3 (x) v
β2+s−1ψc (x) dx ≥ (1− s) kp−2

2

∫
RN

ρ2 (x) ·

vs+m2+k2(p−2)−p |∇v|p ψc (x) dx− ckp−2
2

∫
RN

ρ2 (x) v
s+m2+k2(p−2)−p+1 |∇v|p−1 ·

ψc (x) dx+ (1− q)

∫
RN

ρ3 (x) v
β2+s−1ψc (x) dx.

(3.4)

By making use of Young’s inequality, we can obtain the following result

c

∫
RN

ρ2 (x) v
s+m2+k2(p−2)−p+1 |∇v|p−1 ψc (x) dx ≤ p− 1

p
·∫

RN

ρ2(x)v
s+m2+k2(p−2)−p |∇v|p ψc(x)dx+

cp

p

∫
RN

ρ2(x)v
s+m2+k2(p−2)ψc(x)dx

(3.5)
Given that s < 1/p− q, we can infer from (3.4)- (3.5) that

E′(t) ≥ (1−q)
∫
RN

ρ3(x)v
β2+s−1ψc(x)dx−

cpkp−2
2

p

∫
RN

ρ2(x)v
s+m2+k2(p−2)−1ψc(x)dx

(3.6)

By s < β−q−m−k(p−2)
n3

(
N −

(
1− 1

q+m+k(p−2)

)
n3

)
,
∫
RN ψc (x) dx = 1 and using

Holder’s inequality, we obtain∫
RN ρ2v

s+m2+k2(p−2)−1ψc (x) dx =
∫
RN ρ

1/p′

3 (x) v(β2+s−1)/p′·ψ
1/p′
c ·(

ρ2ρ
−1/p′

3 ψ
1/q′
c

)
dx ≤

[∫
RN ρ3 (x) v

β2+s−1ψcdx
] 1
p′
[∫

RN ρ
q′

2 ρ
−q′/p′

3 ψcdx
] 1

q′ ≤

C1c
n3/p′−n2

[∫
RN ρ3 (x) v

β2+s−1ψcdx
] 1
p′ ,

(3.7)

where p′ = β2+s−1
s+m2+k2(p−2)−1 , q

′ = β2+s−1
β2−m2−k2(p−2) ,

C1 =

[
A
∫
RN |x|q

′n2− q′
p′ n3 e−|x|dx

] 1
q′

> 0.

Using (3.6)-(3.7), we can derive the following

E′ (t) ≥
[∫

RN

ρ3 (x) v
β2+s−1ψcdx

] 1
p′ [

(1− q)

[∫
RN

ρ3 (x) v
β2+s−1ψc (x) dx

] 1
q′

− C1k
p−2
2 cp+n3/p′−n2

p

]
. (3.8)

By using Holder’s inequality once more, we can derive the following
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∫
RN

ρ1 (x) v
sψcdx ≤

[∫
RN

ρ3 (x) v
β2+s−1ψcdx

] 1
p′′
[∫

RN

ρq
′′

1 ρ
−q′′/p′′

3 ψcdx

] 1
q′′

≤

C2c
n3/p′′−n1

[∫
RN

ρ3 (x) v
β2+s−1ψcdx

] 1
p′′

,

where p′′ = β2+s−1
s , q′′ = β2+s−1

β2−1 , C2 =

[
A
∫
RN |x|q

′′n1− q′′
p′′ n3 e−|x|dx

] 1
q′′

> 0,

Using formula (3.3) and the last inequality, we can conclude that∫
RN

ρ3 (x) v
β2+s−1ψcdx ≥

(
s

C2

)p′′

cp
′′n1−n3 [E (t)]p

′′
. (3.9)

According to expressions (3.8) - (3.9), it can be inferred that

E′ (t) ≥ (1− q)

(
s

C2

)p′′

cp
′′n1−n3 [E (t)]p

′′/p′
[
[E (t)]p

′′/q′ −

C1k
p−2
2 cp+n3−n2−p′′n1/q′

p (1− q)

(
C2

s

)p′′/q
′
]

(3.10)

Therefore, we can deduct from equation (3.10) that

E′ (t) ≥ 1

2

(
s

C2

)p′′

cp
′′n1−n3 [E (t)]p

′′
, (3.11)

while

E (0) ≥ C2

s

[
2C1k

p−2
2 cp+n3−n2−p′′n1/q′

p (1− q)

]q′/p′′
. (3.12)

Integrating (3.11), on the interval [0, t] , we have

E (t) ≥
[
(E (0))1−p′′ − C3t

]− 1
p′′−1

, (3.13)

where C3 =
p′′−1
2

(
s
C2

)p′′
cp

′′n1−n3 > 0.

Therefore, from (3.12)-(3.13), we obtain that v (x, t) blows up in finite time T =

(E (0))1−p′′

C3
and get an estimate on the blow-up time of the solution v (x, t) as

follows:

T ≤ 21+q′(1−p′′)/p′′cn3−n1+q′(1−p′′)(p+n3−n2)/p′′

p′′ − 1

C2

s

[
C1k

p−2
2

p (1− q)

]q′(1−p′′)/p′′

.

Ultimately, we need to verify the blow-up condition which is stated in equation
(3.12). Since u0 (x) ∈ Fa for some 0 < a < ac, there exist two positive constants
M and R0 > 1 such that u0 (x) ≥ M |x|−a for all |x| ≥ R0, and we have the
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following inequality:

E (0) =
1

s

∫
RN

ρ1 (x) v
s
0 (x)ψc (x) dx ≥ AM s(1−q)cN

s

∫
|x|≥R0

|x|n1−s(1−q)a e−c|x|dx

=
AM s(1−q)cs(1−q)a−n1

s

∫
|x|≥cR0

|x|n1−s(1−q)a e−|x|dx. (3.14)

By the definition of A and 0 < a < ac, we could choose 0 < c ≤
1

R0
so small that

(3.12) holds. The proof of Theorem 3.1 is complete.

4. Life span of the solution

Within this section, we will give estimates of the life span T ∗
λ of solution to

(1.1)-(1.2) both from below and above.

Theorem 4.1. Assume that u0 (x) = λφ (x) for some λ > 0.

• Let φ (x) ∈ Fa with a ∈ (0, ac) , then there exist λ1 = λ1 (φ) > 0 and
C0 > 0 such that

T ∗
λ ≤ C0λ

− 2β−2+(β−m−k(p−2))n1+(q+m+k(p−2)−1)n3
p−n2+n3−(q+m+k(p−2))a for all λ < λ1.

• Let φ (x) ∈ F a with a ∈
(
n3−n1
β−1 , ac

)
, then there exist λ1 = λ1 (φ) > 0

and c0 > 0 such that

T ∗
λ ≥ c0λ

− 2β−2+(β−m−k(p−2))n1+(q+m+k(p−2)−1)n3
p−n2+n3−(q+m+k(p−2))a for all λ < λ1.

Proof. In order to obtain an upper estimate of T ∗
λ , we introduce ul (x, t) , as

follows

ul (x, t) = lu

(
l1/acx, l

2β−2+(β−m−k(p−2))n1+(q+m+k(p−2)−1)n3
p−n2+n3−(q+m+k(p−2))a t

)
, (4.1)

where l > 0 and u (x, t) is the solution to (1.1)-(1.2) with u0 (x) = λφ (x) , then
ul (x, t) solves the following problem

ρ1 (x) ∂tul = uql∇
(
ρ2 (x)u

m−1
l

∣∣∣∇ukl ∣∣∣p−2
∇ul

)
+ ρ3 (x)u

β
l , (x, t) ∈ Q, (4.2)

ul (x, 0) = λlφ
(
l1/acx

)
, x ∈ RN , (4.3)

We use the notation vl = u1−q
l , then (4.2)-(4.3) problem becomes to the next

form

ρ1 (x) ∂tvl = ∇
(
ρ2 (x) v

m2
l−1

∣∣∣∇vk2l ∣∣∣p−2
∇vl

)
+ (1− q) ρ3 (x) v

β2

l , (4.4)

vl|t=0 =
[
λlφ

(
l1/acx

)]1−q
, x ∈ RN , (4.5)

where m2, k2, β2 defined above.
Let T ∗

l , be the life span of vl (x, t) , it is easy to see that

T ∗
λ = l

2β−2+(β−m−k(p−2))n1+(q+m+k(p−2)−1)n3
p−n2+n3−(q+m+k(p−2))a

(1−q)
T ∗
l
1−q. (4.6)
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We define

Ec (t, vl) =
1

s

∫
RN

ρ1 (x) v
s
l (x, t)ψc (x) dx, t ∈ [0, T ∗

λ ) , (4.7)

where ψc (x) defined above.
We deduce from the arguments in Blow-up section 3 that if

Ec (0, vl (x, 0)) ≥
C2

s

[
2C1k

p−2
2 cp+n3−n2−p′′n1/q′

p (1− q)

]q′/p′′
, (4.8)

then

E′
c (t, vl) ≥

1

2

(
s

C2

)p′′

cp
′′n1−n3 [Ec (t, vl)]

p′′ . (4.9)

Integrating the above inequality over an interval (0, t) , yields

T ∗
l ≤ 2

p′′ − 1

(
C2

s

)p′′

cn3−p′′n1 [Ec (0, vl (x, 0))]
1−p′′ . (4.10)

It needs to confirm the blow-up condition (4.8). Notice that φ (x) ∈ Fa with
a ∈ (0, ac) and choose

λl = la/ac , (4.11)

then

Ec (0, vl (x, 0)) =
(λl)s(1−q)

s

∫
RN

|x|n1

[
φ
(
l1/acx

)]s(1−q)
ψc (x) dx =

=
A

s
las(1−q)/acc−n1

∫
RN

|x|n1

[
φ
(
l1/acc−1x

)]s(1−q)
e−|x|dx.

Since lim
x→∞

|x|a φ (x) > M, for some M > 0, there exists a positive constant l0

such that

las(1−q)/acc−as(1−q) |x|as(1−q)
[
φ
(
l1/acc−1x

)]s(1−q)
> M s(1−q) for l > l0. (4.12)

Furthermore, we obtain

lim
l→∞

inf Ec (0, vl (x, 0)) ≥
AM s(1−q)

s
cas(1−q)−n1

∫
RN

|x|n1−as(1−q) e−|x|dx =

C0c
as(1−q)−n1 (4.13)

Since a ∈ (0, ac) , it follows from (4.13) that (4.7) holds if c is small enough.
Finally, we see that l → ∞ as λ → 0 and apply (4.5), (4.9), (4.10) to conclude
the upper bound of life span T ∗

λ .
To establish a lower bound of life span T ∗

λ , we will construct a suitable super
solution to (4.4). As demonstrated in the section on the global existence of the
solution, for each φ ∈ F a, there exist M0 > 0 and t0 such that

φ (x) ≤ UM0,a (x, t0) . (4.14)

Let zl be the solution to the Cauchy problem

ρ1 (x) ∂tzl = zql ∇
(
ρ2 (x) z

m−1
l

∣∣∣∇zkl ∣∣∣p−2
∇zl

)
; (x, t) ∈ Q, (4.15)

zl (x, 0) = λlφ
(
l1/acx

)
, x ∈ RN . (4.16)
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Using the similarity of UM0,a (x, t0) , we have

λlUM0,a

(
l1/acx, t0

)
= UM0,a

(
x, l−

1
acα t

)
, (4.17)

where λ, α defined above. Using the comparison principle, we infer

zl (x, t) ≤ UM0,a

(
x, t+ l−

1
acα t0

)
. (4.18)

Applying the assumption n3−n1
β−1 < a and using the similar arguments for (2.21),

we obtain

∥zl (x, t)∥∞,n1,n3
≡ sup

x∈RN

|x|
n3−n1
β−1 |zl (x, t)| ≤ sup

x∈RN

|x|
n3−n1
β−1 UM0,a

(
x, t+ l−

1
acα t0

)
≤ Cλ

(
t+ l−

1
acα t0

)−α
(
a−n3−n1

β−1

)
. (4.19)

Let h (t) be defined by

h (t) =

[
1− (β − 1)

∫ t

0

(
s+ l−

1
acα t0

)−α((β−1)a−n3+n1)
ds

]− 1
β−1

, (4.20)

then h (t) fulfills the following problemh′ (t) = Cβ−1
(
t+ l−

1
acα t0

)−α((β−1)a−n3+n1)
hβ (t) ,

h (0) = 1.
(4.21)

Set

ul (x, t) = h (t) zl (x, τ (t)) , with τ (t) =

∫ t

0
hq+m+k(p−2)−1 (s) ds. (4.22)

Next, we will show that ul (x, t) is a super solution to (4.4)-(4.5). Recall that

τ (t) =

∫ t

0
hq+m+k(p−2)−1 (s) ds ≥

∫ t

0
hq+m+k(p−2)−1 (0) ds = t,

Based on equation (4.19), it can be inferred that{
ρ1 (x) ∂tul ≥ uql∇

(
ρ2 (x)u

m−1
l

∣∣∇ukl ∣∣p−2∇ul
)
+ ρ3 (x)u

β
l ; (x, t) ∈ Q,

ul (x, 0) = zl (x, 0) = λlφ
(
l1/acx

)
= ul (x, 0) , x ∈ RN ,

(4.23)
According to the principle of comparison, we obtain

T ∗
l ≥ T ∗

h , (4.24)

where T ∗
h is the life span of h(t). Since, a ∈ (0, ac), we obtain
a (β − 1) + n1 − n3

a(q +m+ k (p− 2)− 1) + p+ n1 − n2
< 1. Furthermore, from (4.19), we can

deduce that T ∗
h fulfills

(β − 1)Cβ−1
(
T ∗
h + l−

1
acα t0

)1− a(β−1)+n1−n3
a(q+m+k(p−2)−1)+p+n1−n2

1− a(β−1)+n1−n3

a(q+m+k(p−2)−1)+p+n1−n2

≥ 1 (4.25)
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Moreover, we obtain that l → ∞ as λ→ 0 and apply (4.6), (4.11), (4.24), (4.25)
to obtain the lower bound of life span T ∗

λ . The proof of Theorem 4.1 has been
concluded.
Corollary. If u0 (x) = λφ (x) , λ > 0 and φ ∈ Fa ∩ F a with a ∈

(
n3−n1
β−1 , ac

)
,

then we have the following an estimate of T ∗
λ :

c0λ
− 2β−2+(β−m−k(p−2))n1+(q+m+k(p−2)−1)n3

p−n2+n3−(q+m+k(p−2))a ≤ T ∗
λ ≤

C0λ
− 2β−2+(β−m−k(p−2))n1+(q+m+k(p−2)−1)n3

p−n2+n3−(q+m+k(p−2))a , for all λ < λ1.

5. The self-similar analysis

In this section, we construct the Barenblatt-type self-similar solution. The
problem (2.1)-(2.2) is an equivalent form of the problem (1.1)-(1.2). First, we
rewrite the equation (2.1) as follows

rn1vt = r1−N ∂

∂r

(
rN−1+n2vm2−1

∣∣∣∣∂vk2∂r

∣∣∣∣p−2
∂v

∂r

)
+ (1− q) rn3vβ2 , (5.1)

where r = |x| .
Then, we look v (t, r) , as follows

v (t, r) = (T1 + t)−α1 f (φ (r) (T1 + t)α2) , (5.2)

where φ (r) =

{
rp2
p2
, p2 =

p−n2+n1

p ̸= 0,

ln r, p2 = 0,

α1 =
p+n3/p2

∆α
, α2 =

β2−m2−k2(p−2)
∆α

, ∆α = p (β2 − 1)+ n3
p2
(m2+k2(p− 2)− 1) ̸= 0.

We consider the case p2 ̸= 0, then the equation (5.1) transforms into the following
form

ξ1−n d

dξ

(
ξn−1fm2−1

∣∣∣∣dfk2dξ

∣∣∣∣p−2
df

dξ

)
+ α2ξ

df

dξ
+ α1f + (1− q) p

n3/p2
2 ξn3fβ2 = 0,

(5.3)

where n = N+n1
p2

, ξ = φ (r) (T1 + t)α2 .

Let us introduce new notations

U (x, t) = (T1 + t)−α1 f̄ (ξ) , f̄ (ξ) = B
(
b− ξ

p
p−1

)γ
+
, (5.4)

where γ = p−1
m2+k2(p−2)−1 , B =

[
γ(p−1)

p

(
α2

kp−2
2

) 1
p−1

]γ
, b = const ≥ 0, (a)+ =

max {a, 0} .

Theorem 5.1. Let us p2 > 0, u (x, 0) ≤ U (x, 0) , x ∈ RN , and of the following
inequalities satisfy

n3 > max
(
(N + n1) (β2 −m2 − k2 (p− 2))− pp2, − pp2(β2−1)

m2+k2(p−2)−1

)
,

n3 < min
(
(N + n1) (β2 −m2 − k2 (p− 2))− pp2, − pp2(β2−1)

m2+k2(p−2)−1

)
,

(5.5)

Then for solution of the problem (1.1)-(1.2) an estimate

u (x, t) ≤ U (x, t) in Q,
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hold.

Proof. We prove Theorem 5.1 by applying the comparing solution technique
outlined in [2]. The function U (x, t) is used to compare solutions. Substituting
(5.4) into (2.1) yields the following:

L (U) = − (T1 + t)−α1

[
ξ1−n d

dξ

(
ξn−1f̄m2−1

∣∣∣∣df̄k2dξ

∣∣∣∣p−2
df̄

dξ

)
+ α2ξ

df̄

dξ
+ α1f̄+

(1− q) p
n3/p2
2 ξn3 f̄β2

]
. (5.6)

Now to prove the theorem we should show that

L (U) ≤ 0 in D =

{
(x, t) | |x| <

(
p2b

(p−1)/p (T + t)α2

)1/p2
, t > 0

}
.

For this purpose, we need to show that

ξ1−n d

dξ

(
ξn−1f̄m2−1

∣∣∣∣df̄k2dξ

∣∣∣∣p−2
df̄

dξ

)
+ α2ξ

df̄

dξ
+ α1f̄ + (1− q) p

n3/p2
2 ξn3 f̄β2 ≥ 0.

(5.7)
It is easy to show that the inequality (5.7) can be rewritten as follows, for the
function f̄ (ξ)

f̄
[
α1 − α2n+ (1− q) p

n3/p2
2 ξn3 f̄β2−1

]
≥ 0.

Since f̄ and ξ have a non-negative property, we have

α1 − α2n ≥ 0 in ξ
p

p−1 < b.

To fulfil the last inequality, it is necessary that

0 ≤ α1 − α2n =
pp2 + n3 + (N + n1) (m2 + k2 (p− 2))− β2 (N + n1)

pp2β2 + n3 (m2 + k2 (p− 2))− pp2 − n3
.

Since one of the inequalities in (5.5) holds, the last inequality is satisfied.
The proof of the Theorem 5.1 is complete.

5.1. Asymptotic of compactly supported weak solution. Let us introduce
a new notation

g (ξ) = B
(
b+ ξ

p
p−1

)γ
,

where b, B, γ and ξ defined above.
We shall investigate nontrivial, non-negative solutions to the equation (5.3) that
fulfil the following conditions:

f(0) = c1 > 0, f(a1) = 0, a1 <∞. (5.8)

f (∞) = f ′(0) = 0. (5.9)

Theorem 5.2. Let m2+k2 (p− 2) > 1, β > βc, and γ (1− β2) < 1, then a finite
solution of the problem (5.3), (5.8) has an asymptotic representation

f (ξ) = f̄ (ξ) (1 + o (1)) , at ξ → b
p−1
p

− .

Theorem 5.3. Let m2 + k2 (p− 2) < 1, β > βc, and γ (1− β2) < 1, then the
solution of the problem (5.3), (5.9) has an asymptotic representation

f (ξ) = g (ξ) (1 + o (1)) , at ξ → +∞.
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Proof. Theorems 5.2 and 5.3 could be proved in the same manner as it was done
in [3].
Note that the singular(critical) casesm2+k2 (p− 2) = 1, p = n2−n1, and ∆α = 0
were studied in the work [3, 4].

5.2. Fundamental solution. In βc = q+m+ k (p− 2) + (1−q)(p−n2+n3)
N+n1

, value

of b can be obtained if the initial condition (3.2) is the equivalent to the condition
v0 (x) = E0δ (x) , where δ (x) - Dirac delta function E0 =

∫
RN ρ2 (x) v (x, t) dx.

To determine the value of b, we use the method outlined in [7]. Let the constant b
satisfy the Dirac condition, then we say that the function v (t, x) is the generalized
(weak) fundamental solution of the problem (3.1)-(3.2).
In particular, the source-less form of (3.1)-(3.2), in the case q = n1 = 0, k =
1, p = 2 the authors of the work [35], in q = n2 = 0, k = 1, p = 2 S. Kamin and
P. Rosenau [20], and in q = n1 = n2 = n3 = 0, k = 1, p = 2, V. Galaktionov, J.
Vazquez [16] determined the value of b.
Consider the following integrals:

IN (γ, γ1) =

∫
RN

(bγ10 − ξγ1)
γ
+ dξ, (5.10)

JN (γ, γ1, γ2) =

∫
RN

(cγ10 − ξγ1)
γ
+ ξ

γ2dξ. (5.11)

In [3] the authors showed that IN (γ, γ1) and JN (γ, γ1, γ2) have the following
relation:

JN (γ, γ1, γ2) =
( 1

γ2 + 1

)N
IN

(
γ,

γ1
γ2 + 1

)
.

Therefore, it is enough to consider the integral (5.10). Introduce the following
notations:

θi = (ξ1, . . . , ξi), χi =
(
bγ10 −

i∑
j=1

ξγ1j

) 1
γ1 , i = N − 1, 1.

Then we can rewrite (5.10) as follows:

IN (γ, γ1) =
∫
RN (b

γ1
0 − ξγ1)γ+dξ =

∫
RN−1 dθN−1

∫
R(χ

γ1
N−1 − ξγ1N )γ+dξN∫

RN−1 dθN−1

∫ χN−1

−χN−1
(χγ1

N−1 − ξγ1N )γ+dξN =

∣∣∣∣ξN = χN−1z
1
γ1
N

∣∣∣∣
= 2

γ1

∫
RN−1 χ

γγ1+1
N−1 dθN−1

∫ 1
0 (1− zN )γ+ z

1
γ1

−1

N dzN = 2
γ1
B
(
γ + 1, 1

γ1

)
IN−1

(
γ + 1

γ1

)
= . . . = I1

(
γ + N−1

γ1

)∏N−1
i=1

(
2
γ1
B
(
γ + 1 + i−1

γ1
, 1
γ1

))
= bN+γγ1

0

∏N
i=1

[
2Γ

(
1
γ1

)
γ1

·
Γ
(
γ+1+ i−1

γ1

)
Γ
(
γ+1+ i

γ1

)
]
= bN+γγ1

0
Γ(γ+1)

Γ
(
γ+1+ N

γ1

) ( 2
γ1
Γ
(

1
γ1

))N
.

(5.12)
Given that b = bγ10 , γ1 = p−n2+n1

p−1 , γ2 = n1 and put that to (5.12), then we have

the following equation:

E0
B = J (γ, γ1, γ2) =

(
1

γ2+1

)N
IN

(
γ, γ1

γ2+1

)
= b

N(p−1)
p−n2+n1

+γ
Γ(γ+1)

Γ
(
γ+1+N

(
(p−1)(1+n1)
(p−n2+n1)

))(
2(p−1)

p−n2+n1
Γ
(
(p−1)(1+n1)
(p−n2+n1)

))N
.
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Hence

b = b (E0) =

[
E0
B

Γ
(
γ+1+N

(
(p−1)(1+n1)
(p−n2+n1)

))
Γ(γ+1)

(
p−n2+n1

2(p−1)Γ
(

(p−1)(1+n1)
(p−n2+n1)

))N] 1
N(p−1)

p−n2+n1
+γ
.

6. Conclusion

In this paper, we have studied the global existence and blow-up phenomena of a
double nonlinear parabolic equation with a source in an inhomogeneous medium.
By using the energy method, we have proved that the solution of the problem
blows up in a finite time. We have also shown the global existence of the solu-
tions and provided lower and upper estimates of the life span. In addition, we
have constructed a self-similar Barenblatt-type solution and obtained an upper
estimate of the solution to the problem. Using the Beta function, we have cal-
culated the exact value of the Barenblatt-type solution parameter b, when the
initial energy is given.
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