
Proceedings of the Institute of Mathematics and Mechanics,
National Academy of Sciences of Azerbaijan
Volume 00, Number 0, XXXX, Pages 000–000

UNIFORM CONVERGENCE OF EXPANSIONS IN THE

FOURIER SERIES IN THE SYSTEM OF ROOT FUNCTIONS

OF SOME FOURTH-ORDER SPECTRAL PROBLEM

VUQAR A. MEHRABOV

Abstract. In this paper we consider an eigenvalue problem for ordi-
nary differential equations of fourth order with a spectral parameter in
three of the boundary conditions. This problem describes small bending
vibrations of a homogeneous Euler-Bernoulli beam of constant rigidity,
in the cross sections of which a longitudinal force acts, at the left end
of which a load is concentrated, and at the right end an inertial load
is concentrated. Sufficient conditions are established for the uniform
convergence of expansions in the Fourier series in the system of root
functions of this spectral problem.

1. Introduction

We consider the following eigenvalue problem

ℓ(y)(x) ≡ y(4)(x) − (q(x)y′(x))′ = λy(x), 0 < x < 1, (1.1)

U1(λ, y) ≡ y′′(0) = 0, (1.2)

U2(λ, y) ≡ Ty(0)− aλy(0) = 0, (1.3)

U3(λ, y) ≡ y′′(1)− bλy′(1) = 0, (1.4)

U4(λ, y) ≡ Ty(1)− cλy(1) = 0, (1.5)

where λ ∈ C is a spectral parameter, Ty ≡ y′′′ − qy′, q is a positive absolutely
continuous function on [0, 1], a, b, c are real constants such that abc ̸= 0.

This problem arises when applying the method of separation of variables to a
boundary value problem for partial differential equations describing small bending
vibrations of a homogeneous Euler-Bernoulli beam of constant rigidity, in the
sections of which a longitudinal force acts. In addition, at the left end of which
either the load is concentrated, or a tracking force acts, and at the right end
either the inertial load is concentrated, or a tracking force acts, and to this
end a load is attached by means of a weightless rod, held in equilibrium by
means of an elastic spring (see, e.g., [7, 22]). Note that in order to justify this
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method in the boundary value problem for partial differential equations, it is
necessary to study the convergence expansions in the Fourier series in the system
of root functions of problem (1.1)-(1.5) in various functional spaces, for example,
in Lp(0, 1), 1 < p <∞, or C[0, 1].

The convergence expansions in the Fourier series in the system of root functions
of eigenvalue problems for ordinary differential equations of second and fourth
order in Lp, 1 < p < ∞, was studied in papers [1-3, 5, 6, 8, 10, 17-19]. Uni-
form convergence of spectral expansions in the system of root functions of such
problems was studied in papers [2, 4, 9, 11, 12, 14-16, 21] (see also bibliography
therein).

Problem (1.1)-(1.5) for a > 0, b > 0 and c < 0 was studied in [5], and for a > 0,
b > 0 and c > 0 in [19]. In the case of a > 0, b > 0 and c < 0 the eigenvalues
of problem (1.1)-(1.5) are nonnegative, simple and forms an infinitely increasing
sequence, in the case a > 0, b > 0 and c > 0 the eigenvalues of this problem are
real, simple, with except, for the case c > 1 and a = c − 1, when the eigenvalue
λ = 0 which has algebraic multiplicity 2, and form an unboundedly nondecreasing
sequence. In [5] and [19] the authors establish sufficient conditions for the system
of root functions of problem (1.1)-(1.5) after removing three functions from this
system, to form a basis in the space Lp, 1 < p < ∞. However, the uniform
convergence of expansions in Fourier series for the system of root functions of
problem (1.1)-(1.5) has not yet been studied.

Note that in [2, 4, 9, 11-15, 19] sufficient conditions were established for the
uniform convergence of the expansion of continuous functions in the subsystem
of root functions of the problems considered there.

The rest of the article is organized as follows. In Section 2, we first refine
the asymptotic formulas for the eigenvalues and eigenfunctions of the fourth-
order spectral problem without the presence of a potential at the first derivative
and with asymptotic boundary conditions. Then we obtain refined asymptotic
formulas for the eigenvalues and eigenfunctions of problem (1.1)-(1.5). In Section
3 using these asymptotic formulas we find sufficient conditions for the uniform
convergence of expansions in the Fourier series of continuous functions in the
system of root functions of problem (1.1)-(1.5) after removing three functions.

2. Refined asymptotic formulas for eigenvalues and
eigenfunctions of problem (1.1)-(1.5) and an auxiliary problem

Recall that problem (1.1)-(1.5) in the case of a > 0, b > 0 and c > 0 was
considered in [18], where it was shown that the eigenvalues of problem (1.1)-(1.5)
are real, simple, with except, for the case c > 1 and a = c−1, when the eigenvalue
0 which has algebraic multiplicity 2, and form an unbounded sequence {λk}∞k=1
such that

λ1 ≤ λ2 < λ3 < . . . < λk < . . . ,

and are located on the real axis in the following order:

λ1 < 0 = λ2 for c ≤ 1 and c > 1, a > c− 1,

λ1 = 0 = λ2 for c > 1 and a = c− 1,
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λ1 = 0 < λ2 for c > 1 and a < c− 1.

Along with the boundary value problem (1.1)-(1.5), we consider the following
spectral problem

y(4)(x) = λy(x), 0 < x < 1, (2.1)

V1(y) ≡ y′′(0) = 0, V2(y) ≡ y(0) = 0,
V3(y) ≡ y′(1) = 0, V4(y) ≡ y(1) = 0,

(2.2)

the eigenvalue of which are positive and simple and form an unboundedly increas-
ing sequence {µk}∞k=1 (see [13]). Moreover, it follows from [13, Theorem 3.1] one
has the following asymptotic formulas

4
√
µk =

(
k +

1

4

)
π +O

(
1

k

)
, (2.3)

ϑk(x) = sin
(
k + 1

4

)
πx− (−1)k

√
2
2 e(k+

1
4)π(1−x) +O

(
1
k

)
, (2.4)

where relation (2.3) holds uniformly for x ∈ [0, 1].
Theorem 2.1. The following asymptotic formulas hold

4
√
µk =

(
k +

1

4

)
π +O

(
1

ekπ

)
, (2.5)

ϑk(x) = sin
(
k + 1

4

)
πx− (−1)k

√
2
2 e(k+

1
4)π(1−x) +O

(
1

ekπ

)
, (2.6)

where relation (2.6) holds uniformly for x ∈ [0, 1].
Proof. In Eq. (2.1) let λ = ρ4, ρ > 0. Note that Eq. (2.1) has the four linearly
independent solutions

ϕj(x, ρ) = eρωj(x), j = 1, 2, 3, 4, (2.7)

where

ω1 = −1, ω2 = − i, ω3 = i, ω4 = 1.

By (2.7) we have

ϕ
(s)
j (x, ρ) = (ρωj)

seρωjx, j = 1, 2, 3, 4, s = 0, 1, 2, 3,

which implies that

ϕ
(s)
j (0, ρ) = (ρωj)

s, ϕ
(s)
j (1, ϱ) = (ϱωj)

seϱωj , j = 1, 2, 3, 4, s = 0, 1, 2, 3. (2.8)

By (2.8) it follows from (2.2) that

V1(ϕj) ≡ ϕ′′j (0, ρ) = ρ2ω2
j , V2(ϕj) ≡ ϕj(0, ϱ) = 1,

V3(ϕj) ≡ ϕ′j(1, ρ) = ρωje
ρωj , V4(ϕj) ≡ ϕj(1, ρ) = eρωj , j = 1, 2, 3, 4.

(2.9)

It is obvious that the eigenvalues of problem (2.1), (2.2) are the zeros of char-
acteristic determinant

∆0(λ) =

∣∣∣∣∣∣∣∣
V1(ϕ1) V1(ϕ2) V1(ϕ3) V1(ϕ4)
V2(ϕ1) V2(ϕ2) V2(ϕ3) V2(ϕ4)
V3(ϕ1) V3(ϕ2) V3(ϕ3) V3(ϕ4)
V4(ϕ1) V4(ϕ2) V4(ϕ3) V4(ϕ4)

∣∣∣∣∣∣∣∣ . (2.10)



4 VUQAR A. MEHRABOV

Taking (2.8) and (2.9) into account from (2.10) we get

∆0(λ) = ρ3

∣∣∣∣∣∣∣∣
1 − 1 − 1 1
1 1 1 1
e−ρ e−iρ eiρ eρ

− e−ρ − ie−iρ ieiρ eρ

∣∣∣∣∣∣∣∣ =
2ρ3eρ

{
(1− i)eiρ − (1 + i)e−iρ +O

(
1

eρ

)}
.

Therefore, the eigenvalues of (2.1), (2.2) are the roots of the equation

e2iρ = i+O

(
1

eρ

)
. (2.11)

In view of (2.3) we get

ρk = 4
√
µk =

(
k +

1

4

)
π + εk, (2.12)

where εk = O
(
1
k

)
. Then it follows from (2.11) that

e2iρk = ie2iεk = i+O

(
1

eρ

)
,

and consequently,

εk = O

(
1

ekπ

)
. (2.13)

Taking into account (2.13) in (2.12) we obtain (2.5).
By (2.5) we have the following relations

eiϱk = (−1)k
√
2

2
(1+ i)+O

(
1

ekπ

)
, e− iϱk = (−1)k

√
2

2
(1− i)+O

(
1

ekπ

)
. (2.14)

Note that the eigenfunction ϑ(x, ϱ) corresponding to the eigenvalue λ = ρ4 of
problem (2.1), (2.2) has the following representation

v(x, ρk) = Bρk

∣∣∣∣∣∣∣∣
ϕ1(x, ρk) ϕ2(x, ρk) ϕ3(x, ρk) ϕ4(x, ρk)
V1(ϕ1) V1(ϕ2) V1(ϕ3) V1(ϕ4)
V2(ϕ1) V2(ϕ2) V2(ϕ3) V2(ϕ4)
V3(ϕ1) V3(ϕ2) V3(ϕ3) V3(ϕ4)

∣∣∣∣∣∣∣∣ , (2.15)

where Bk = Bρk is a nonzero constant depending on ρk.
By (2.7)-(2.9) it follows from (2.15) that

ϑk(x) = ϑ(x, ρk) = Bρkρ
2
ke

ϱk

∣∣∣∣∣∣∣∣
e−ϱkx e−i ϱkx ei ϱkx eϱk(x−1)

1 − 1 − 1 e−ρk

1 1 1 e−ρk

e−ϱk e−iϱk eiϱk 1

∣∣∣∣∣∣∣∣ =
= Bρkρ

2
ke

ρk
∣∣∣∣∣∣∣∣∣

e−(k+
1
4)πxe−i (k+ 1

4)πx ei (k+
1
4)πx e(k+

1
4)π(x−1)

1 − 1 − 1 0
1 1 1 0

0 (−1)k
√
2
2 (1− i) (−1)k

√
2
2 (1 + i) 1

∣∣∣∣∣∣∣∣∣+O

(
1

ekπ

) =
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= 4iBρkρ
2
k e

ρk

{
sin

(
k +

1

4

)
πx− (−1)k

√
2

2
e(k+

1
4)π(x−1) +O

(
1

ekπ

)}
. (2.16)

In view of (2.4) we choose the constant B
k
as follows:

Bk =
1

4iBρkρ
2
ke

ρk
.

Then we have

ϑk(x) = sin

(
k +

1

4

)
πx− (−1)k

√
2

2
e(k+

1
4)π(x−1) +O

(
1

ekπ

)
.

The proof of this theorem is complete.
It follows from (2.6) by a straightforward computation that

||ϑk||22 =
1∫

0

ϑ2k(x) dx = 1 +O

(
1

ekπ

)
. (2.17)

Let
ψk(x) = ϑk(x)||ϑk||−1

2 , k ∈ N.
Then, by (2.6) and (2.17), we obtain

ψk(x) = sin
(
k + 1

4

)
πx− (−1)k

√
2
2 e

(k+ 1
4)π(x−1) +O

(
1

ekπ

)
. (2.18)

We introduce the following notation:

q0 =

1∫
0

q(t) dt, q0(x) =

x∫
0

q(t) dt and q1(x) =

1∫
x

q(t) dt.

Now we demonstrate the refined asymptotic formulas for eigenvalues and eigen-
functions of problem (1.1)-(1.5).
Theorem 2.2. One has the following asymptotic formulas

4
√
λk =

(
k − 11

4

)
π +

q0 + 2/a− 4/c

4kπ
+O

(
1

k2

)
, (2.19)

yk(x) = sin
(
k − 11

4

)
πx− (−1)k+1

√
2
2 e(k−

11
4 )π(x−1)+

2/a
4kπ sin

(
k − 11

4

)
πx + (q0+2/a−4/c)x−(q0(x)+2/a)

4kπ cos
(
k − 11

4

)
πx−

2/a
4kπ e

− (k− 11
4 )πx − (−1)k+1

√
2
2 e(k−

11
4 )π(x−1)×

(q0+2/a−4/c) (x−1)+ (2/a+4/c− q1(x))
4kπ +O

(
1
k2

)
.

(2.20)

where relation (2.20) holds uniformly for x ∈ [0, 1].
Proof. In Eq. (1.1) let λ = ϱ4, where ϱ > 0. By [20, Ch. 2, § 4.5, Theorem 1] this
equation has four linearly independent solutions φj(x, ϱ), j = 1, 2, 3, 4, which
are regular in ϱ (for sufficiently large |ϱ|) and satisfy the following relations

φ
(s)
j (x, ϱ) = (ϱωj)

seϱωjx
{
1 + q0(x)

4ρωj
+O

(
1
ρ2

)}
, j = 1, 2, 3, 4,

s = 0, 1, 2, 3.
(2.21)

where ω1 = −1, ω2 = − i, ω3 = i and ω4 = 1.
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In view of (2.21), by boundary conditions (1.2)-(1.5) we obtain

U1(λ, φj) = 1 +O
(

1
ϱ2

)
,

U2(λ, φj) = − aϱ4
(
1− 1

aϱωj
+O

(
1
ϱ2

))
,

U3(λ, φj) = − bϱ5ωj e
ϱωj

(
1 + q0

4ϱωj
+O

(
1
ϱ2

))
,

U4(λ, φj) = − cϱ4 eϱωj

(
1 + q0−4/c

4ρωj
+O

(
1
ϱ2

))
, j = 1, 2, 3, 4.

(2.22)

Let λ = ρ4 is an eigenvalue of the spectral problem (1.1)-(1.5). Then ϱ is a
zero of the characteristic determinant

∆(λ) =

∣∣∣∣∣∣∣∣
U1(λ, φ1) U1(λ, φ2) U1(λ, φ3) U1(λ, φ4)
U2(λ, φ1) U2(λ, φ2) U2(λ, φ3) U2(λ, φ4)
U3(λ, φ1) U3(λ, φ2) U3(λ, φ3) U3(λ, φ4)
U4(λ, φ1) U4(λ, φ2) U4(λ, φ3) U4(λ, φ4)

∣∣∣∣∣∣∣∣ . (2.23)

By (2.22) it follows from (2.23) that

∆(λ) = − abcϱ15eϱ
(
1 +

q0 − 4/c

4ϱ

)


∣∣∣∣∣∣∣∣∣∣
1 − 1 − 1 0

1 + 1
aϱ 1 + 1

iaϱ 1− 1
iaϱ 0

0 − ie−iρ
(
1− q0

4iρ

)
ieiρ

(
1 + q0

4iρ

)
1

0 e−iρ
(
1− q0−4/c(1+i)

4iρ

)
eiρ

(
1 + q0−4/c(1−i)

4iρ

)
1

∣∣∣∣∣∣∣∣∣∣
+O

(
1

ϱ2

) =

− 2abcϱ15eϱ
(
1 +

q0 − 4/c

4ϱ

)


∣∣∣∣∣∣∣∣
1 + 1

2iaϱ(1 + i) 1− 1
2iaϱ(1− i) 0

− ie−iρ
(
1− q0

4iρ

)
ieiρ

(
1 + q0

4iρ

)
1

e−iρ
(
1− q0−4/c(1+i)

4iρ

)
eiρ

(
1 + q0−4/c(1−i)

4iρ

)
1

∣∣∣∣∣∣∣∣+O

(
1

ϱ2

) =

2abcϱ15eϱ
(
1 +

q0 − 4/c

4ϱ

)
{ ∣∣∣∣∣ 1 + 1

2iaϱ(1 + i) 1− 1
2iaϱ(1− i)

e−iρ(1 + i)
(
1− q0−4/c

4iρ

)
eiρ(1− i)

(
1 + q0−4/c

4iρ

) ∣∣∣∣∣+O

(
1

ϱ2

)}
=

2abcϱ15eϱ
(
1 +

q0 − 4/c

4ϱ

)
{
eiρ(1− i)(1 +

1

2iaϱ
(1 + i))

(
1 +

q0 − 4/c

4iρ

)
− e−iρ(1 + i)(1− 1

2iaϱ
(1− i))

(
1− q0 − 4/c

4iρ

)
+O

(
1

ϱ2

)}
.
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Then it follows from the last relation that the zeros of the characteristic deter-
minant are the roots of the equation

eiρ(1− i)(1 + 1
2iaϱ(1 + i))

(
1 + q0−4/c

4iρ

)
− e−iρ(1 + i)(1− 1

2iaϱ(1− i))×

(
1− q0−4/c

4iρ

)
+O

(
1
ϱ2

)
= 0.

(2.24)

From (2.24) we obtain

e2ϱ = i

(
1− q0 + 2/a − 4/c

2iρ

)
+O

(
1

ϱ2

)
. (2.25)

By [5, formula (3.13)] we have

ϱk = 4
√
λk =

(
k − 11

4

)
π + ϵk, (2.26)

where ϵk = O
(
1
k

)
.

In view of (2.26), by (2.25) we get

e2iρk = i e2iεk = i (1 + 2iεk + o(ε2k)) = i

(
1− q0 + 2/a − 4/c

2ikπ

)
+O

(
1

k2

)
,

whence implies that

εk =
q0 + 2/a − 4/c

4kπ
+O

(
1

k2

)
. (2.27)

Now (2.26) and (2.27) yield (2.19).
By (2.19) we have the following relations

eiϱk = (−1)k+1
√
2
2 (1 + i)

(
1− q0+2/a−4/c

4iϱk
+O

(
1
ϱ2k

))
,

e− iϱk = (−1)k+1
√
2
2 (1− i)

(
1 + q0+2/a−4/c

4iϱk
+O

(
1
ϱ2k

))
.

(2.28)

The eigenfunction y(x, ϱk) corresponding to the eigenvalue λ = ϱ4k of the spec-
tral problem (1.1)-(1.5) has the following form

yk(x) = y(x, ϱk) =

Ck

∣∣∣∣∣∣∣∣
ϕ1(x, ϱk) ϕ2(x, ϱk) ϕ3(x, ϱk) ϕ4(x, ϱk)
U1(λk, ϕ1) U1(λk, ϕ2) U1(λk, ϕ3) U1(λk, ϕ4)
U2(λk, ϕ1) U2(λk, ϕ2) U2(λk, ϕ3) U2(λk, ϕ4)
U3(λk, ϕ1) U3(λk, ϕ2) U3(λk, ϕ3) U3(λk, ϕ4)

∣∣∣∣∣∣∣∣ .
(2.29)

where Ck = Cϱk is a nonzero constant depending on ϱk.
We define the numbers τk, k ∈ N, and the functions qi,k(x), x ∈ [0, 1], i =

1, 2, 3, 4, k ∈ N, as follows:

τk = (−1)k
√
2

2
(1 + i), q1,k(x) = 1− q0(x)

4ϱk
, q2,k(x) = 1− q0(x)

4iϱk
,

q3,k(x) = 1 +
q0(x)

4iϱk
, q4,k,(x) = 1 +

q0(x)

4ϱk
, x ∈ [0, 1]

Then, by (2.21), (2.22) and (2.28), from (2.29) we get

y(x, ϱk) = abϱ11k e
ϱk

(
1 +

q0
4ϱk

)
Cϱk
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∣∣∣∣∣∣∣∣∣
e−ρkxqk, 1(x) e−iρkxq2,k(x) eiρkxq3,k(x) eρk(x−1)q4,k(x)

1 − 1 − 1 0
1 + 1

aϱk
1 + 1

aiϱk
1− 1

aiϱk
0

0
(
1 + 2/a−4/c

4iϱk

)
τk

(
1− 2/a−4/c

4iϱk

)
τk 1

∣∣∣∣∣∣∣∣∣ +

O

(
1

ϱ2k

)}
= 2abϱ11k e

ϱkCϱk

(
1 +

q0
4ϱk

)
×

{
1

aiϱk
e−ρkx −

(
1− q0(x)

4iϱk

) (
1− 1

2aiϱk
(1− i)

)
e−iρkx+(

1 +
q0(x)

4iϱk

)(
1 +

1

2aiϱk
(1 + i)

)
eiϱkx−

(−1)k+1
√
2 i

(
1 +

q0(x)− q0
4ρk

) (
1 +

2/a + 4/c

4ϱk

)
eϱk(x−1) +O

(
1

ϱ2k

)}
=

4iabϱ11k e
ϱkCϱk

(
1 +

q0
4ϱk

)
×{

sin ϱkx− (−1)k+1

√
2

2
eϱk(x−1) +

2/a

4ρk
sin ϱkx− q0(x) + 2/a

4ρk
cos ϱkx−

2/a

4ρk
e− ϱkx − (−1)k+1

√
2

2

2/a + 4/c− q1(x)

4ϱk
eϱk(x−1) +O

(
1

ϱ2k

)}
. (2.30)

In view of (2.19) we can choose Cϱk as follows:

Cϱk =
(1− q0/4ρk)ϱ

− 11
k e− ϱk

4iab
.

Then it follows from (2.30) that

y(x, ϱk) = sin ϱkx− (−1)k+1
√
2
2 eϱk(x−1) + 2/a

4ρk
sin ϱkx− q0(x)+2/a

4ρk
cos ϱkx−

2/a
4ρk

e− ϱkx − (−1)k+1
√
2
2

2/a+4/c−q1(x)
4ϱk

eϱk(x−1) +O
(

1
ϱ2k

)
.

(2.31)
By (2.19) we have the following relations

sin ϱkx = sin

(
k − 11

4

)
πx+

(q0 + 2/a− 4/c)x

4kπ
cos

(
k − 11

4

)
πx+O

(
1

k2

)
,

cos ϱkx = cos

(
k − 11

4

)
πx− (q0 + 2/a− 4/c)x

4kπ
sin

(
k − 11

4

)
πx+O

(
1

k2

)
,

e− ϱkx = e− (k− 11
4 )πx

{
1− (q0 + 2/a− 4/c)x

4kπ

}
+O

(
1

k2

)
,

eϱk(x−1) = e(k−
11
4 )π(x−1)

{
1 +

(q0 + 2/a− 4/c) (x− 1)

4kπ

}
+O

(
1

k2

)
.
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Using these relations from (2.31) we obtain

yk(x) =

sin
(
k − 11

4

)
πx− (−1)k+1

√
2
2 e(k−

11
4 )π(x−1) + 2/a

4kπ sin
(
k − 11

4

)
πx+

(q0+2/a−4/c)x−(q0(x)+2/a)
4kπ cos

(
k − 11

4

)
πx− 2/a

4kπ e
− (k− 11

4 )πx−

(−1)k+1
√
2
2 e(k−

11
4 )π(x−1) (q0+2/a−4/c) (x−1)+ (2/a+4/c−q1(x))

4kπ +O
(

1
k2

)
.

(2.32)

The proof of this theorem is complete.

3. The uniform convergence of expansions in the root functions
system of the spectral problem (1.1)-(1.5)

Asymptotic formulas (2.6) and (2.20) show that for k ≥ 4 the following relation
holds:

yk(x) = ψk−3(x) +
2/a
4kπ sin

(
k − 11

4

)
πx+

(q0+2/a−4/c)x−(q0(x)+2/a)
4kπ cos

(
k − 11

4

)
πx− 2/a

4kπ e
− (k− 11

4 )πx−

(−1)k+1
√
2
2 e(k−

11
4 )π(x−1) (q0+2/a−4/c) (x−1)+ (2/a+4/c− q1(x))

4kπ +O
(

1
k2

)
.

(3.1)

It follows from (2.18), (2.20) and [4, estimate (8.3)] that

ψk(1) = O
(

1
ekπ

)
, yk(0) = − 1

akπ +O
(

1
k2

)
,

yk(1) = O
(

1
k2

)
, y′k(1) = O

(
1
k2

)
.

(3.2)

Moreover, following the corresponding reasoning on pp. 282-284 of [4] we can
show that

||yk||22 = 1 +O

(
1

k2

)
, (3.3)

where || · ||2 is the norm in L2(0, 1).
Let

δk = ||yk||22 + ay2k(0) + by′k
2
(1)− cy2k(1), k ∈ N, k ≥ 2. (3.4)

Then it follows from [19, Lemma 8] that

δk ̸= 0, k ∈ N, k ≥ 2.

We introduce the notations:

vk(x) = δ− 1
k yk(x), x ∈ [0, 1], sk = δ− 1

k ayk(0), tk = δ− 1
k by′k(1),

rk = − δ− 1
k cyk(1), k ∈ N, k ≥ 2.

(3.5)
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Let i, j, l, be arbitrary different fixed positive integers such that i, j, r ≥ 3 and

∆i, j, l =

∣∣∣∣∣∣
si sj sl
ti tj tl
ri rj rl

∣∣∣∣∣∣ . (3.6)

It follows from [19, Theorem 3] that if ∆i, j, l ̸= 0, then the system {yk}∞k=1, k ̸= i,j, l

of root functions of problem (1.1)-(1.5) forms a basis in Lp(0, 1), 1 < p < ∞,
which is an unconditional basis for p = 2. In this case by [1, Theorem 3.1] (see
formula (3.8) in [1]) each element of the system {uk}∞k=1, k ̸= i,j, l conjugate to the

system {yk}∞k=1, k ̸= i,j, l is determined as follows:

uk = vk −
1

∆i,j, l
{vi∆k,j, l − vj∆k,i,l + vl∆k,i,j} . (3.7)

By (3.2)-(3.4) we get

δk = 1 +O

(
1

k2

)
. (3.8)

In view of (3.5) we have

∆i, j, l =

∣∣∣∣∣∣
si sj sl
ti tj tl
ri rj rl

∣∣∣∣∣∣ = − δ−1
i δ−1

j δ−1
l abc

∣∣∣∣∣∣
ys(0) yj(0) yl(0)
y′i(1) y′j(1) y′l(1)

yi(1) yj(1) yl(1)

∣∣∣∣∣∣ . (3.9)

Let

∆̃i, j, l =

∣∣∣∣∣∣
ys(0) yj(0) yl(0)
y′i(1) y′j(1) y′l(1)

yi(1) yj(1) yl(1)

∣∣∣∣∣∣ . (3.10)

Then by (3.2), (3.2), (3.8) and (3.9), from (3.7) we obtain

uk(x) = yk(x)− ∆̃− 1
i,j, l

{
yi(x)∆̃k,j, l − yj(x)∆̃k,i,l + yl(x)∆̃k,i,j

}
+

O
(

1
k2

)
= yk(x)− yk(0) ∆̃

− 1
i,j, l ∆̃i,j, l(x) +O

(
1
k2

)
,

(3.11)

where

∆̃i, j, l(x) =

∣∣∣∣∣∣
yi(x) yj(x) yl(x)
y′i(1) y′j(1) y′l(1)

yi(1) yj(1) yl(1)

∣∣∣∣∣∣ . (3.12)

If ∆̃i, j, l ̸= 0, then by (3.9) and (3.12) it follows from above arguments that for
any function f ∈ C[0, 1] the Fourier series expansion

f(x) =
∞∑

k=1, k ̸=r, l

(f, uk)yk(x), (3.13)

of this function in the system {yk}∞k=1, k ̸= i,j, l of root functions of problem (1.1)-

(1.5) converges in space Lp (0, 1), 1 < p < ∞, which converges unconditionally
for p = 2.

We introduce notation:

∆̃∗
i,j, l =

∣∣∣∣∣∣
(f, yi) (f, yj) (f, yl)
y′i(1) y′j(1) y′l(1)

yi(1) yj(1) yl(1)

∣∣∣∣∣∣ ,
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where ( · , · ) is a scalar product in L2(0, 1).
The following theorem is the main result of this paper.

Theorem 3.1. Let i, j, l, be arbitrary different fixed positive integers such that
i, j, r ≥ 3 and ∆̃i, j, l ̸= 0. Moreover, let the Fourier series expansion of a function
f(x) ∈ C[0, 1] in the system {ϑk}∞k=1 of eigenfunctions of problem (2.1), (2.2)

uniformly converges on the interval [0, 1]. If ∆̃∗
i,j, l ̸= 0, then the series (3.13)

uniformly converges on the interval [0, τ ] for each τ ∈ (0, 1), and if ∆̃∗
i,j, l = 0,

then the series (3.13) uniformly converges on the interval [0, 1].
The proof of this theorem is similar to that of [4, Theorem 8.1] with the use

of Theorems 2.1 and 2.2.
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