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ON THE REPRESENTABILITY OF A SMOOTH FUNCTION

BY SUMS OF GENERALIZED RIDGE FUNCTIONS

ASIM A. AKBAROV AND FIDAN M. ISGANDARLI

Abstract. In this paper, for the case d = n−1, we give a criterion under
which a smooth function of n variables can be represented as a sum of
generalized ridge functions of d variables and provide a partial solution
to the smoothness problem in generalized ridge function representation.

1. Introduction

A multivariate function F : Rn → R of the form

F (x) = f(a1 · x, ...,ad · x)

is called a generalized ridge function, where x = (x1, ..., xn) ∈ Rn, f : Rd → R is

a real-valued function of d variables (1 ≤ d < n) and aj = (aj1, ..., a
j
n) ∈ Rn \ {0},

j = 1, ..., d are fixed vectors (directions). For d = 1 a generalized ridge function
is called a ridge function. Ridge functions and generalized ridge functions arise
naturally in various fields. They arise in computerized tomography (see, e.g.,
[22, 23, 26, 29, 30]), statistics (see, e.g., [9, 13, 14, 18]), large-scale data analysis
(see, e.g., [10, 12, 27, 34]) and neural networks (see, e.g., [19, 21, 28, 31]). These
functions are also used in modern approximation theory as an effective tool for
approximating complicated multivariate functions (see, e.g., [15, 16, 17, 24]). We
refer the reader to the monographs of A.Pinkus [33] and V.Ismailov [20] for a
detailed and systematic study of ridge functions.

One of the basic problems concerning the approximation by sums of ridge
functions and generalized ridge functions is the problem of verifying the repre-
sentability of a given multivariate function F as a sum of ridge functions and
generalized ridge functions. Assume we are given a function F : Rn → R, and
fixed pairwise linearly independent directions ak,j ∈ Rn, k = 1, ...,m, j = 1, ..., d.
It is required to find a condition under which the function F can be represented
as

F (x) =

m∑
k=1

fk(a
k,1 · x, ...,ak,d · x),
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where fk : Rd → R, k = 1, ...,m are arbitrarily behaved real-valued functions of
d variables.

For ridge functions this problem was solved by P.Diaconis and M.Shahshahani
[11].

Theorem 1.1 (P.Diaconis, M.Shahshahani [11]). Let ak ∈ Rn, k = 1, ...,m,
be pairwise linearly independent vectors in Rn. Denote by Hk, k = 1, ...,m, the
hyperplane {c ∈ Rn : c·ak = 0}. Then a function F ∈ Cm(Rn) can be represented
in the form

F (x) =
m∑
k=1

fk(a
k · x) + P (x),

where fk ∈ Cm(R), k = 1, ...,m and P (x) is a polynomial of degree less than m,
if and only if

m∏
k=1

n∑
s=1

cks
∂F

∂xs
= 0

for all vectors ck = (ck1, ..., c
k
n) ∈ Hk, k = 1, ...,m.

Remark 1.1. There are examples showing that one cannot simply dispense with
the polynomial P (x) in the above theorem.

In this paper, for the case d = n − 1, we give a criterion under which a
smooth function of n variables can be represented as a sum of generalized ridge
functions of d variables and provide a partial solution to the smoothness problem
in generalized ridge function representation for this case.

2. On the representability of a smooth function by a sum of
generalized ridge functions

Definition 2.1. Let {a1, ...,ad} and {b1, ...,bd} be linear independent vector
systems in Rn (1 ≤ d < n). If

span{a1, ...,ad} = span{b1, ...,bd},

then the systems {a1, ...,ad} and {b1, ...,bd} are called equivalent, otherwise, if

span{a1, ...,ad} ≠ span{b1, ...,bd},

then the systems {a1, ...,ad} and {b1, ...,bd} are called non-equivalent.

Remark 2.1. Obviously, if the systems {a1, ...,ad} and {b1, ...,bd} are equivalent,
then any generalized ridge function of the form F (x) = f(a1 ·x, ...,ad ·x) also has

the form F (x) = g(b1 ·x, ...,bd ·x). Therefore, when defining a generalized ridge
function, without loss of generality, we can assume that the vectors a1, ...,ad are
unit and mutually perpendicular.

Let’s consider the following problem: assume we are given a function F : Rn →
R, and fixed pairwise non-equivalent vector systems {a1,1, ...,a1,d},...,{am,1, ...,am,d}
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in Rn. It is required to find a condition under which the function F can be rep-
resented as

F (x) =

m∑
k=1

fk(a
k,1 · x, ...,ak,d · x),

where fk : Rd → R, k = 1, ...,m are arbitrarily behaved real-valued functions of
d variables.

In this section we give a solution of this problem in case d = n− 1.

Theorem 2.1. Let {a1,1, ...,a1,n−1},...,{am,1, ...,am,n−1} pairwise non-equivalent
vector systems in Rn. Then the function F ∈ Cm(Rn) can be represented in the
form

F (x) =
m∑
k=1

fk(a
k,1 · x, ...,ak,n−1 · x) (2.1)

if and only if
∂mF

∂l1...∂lm
(x) = 0 (2.2)

for any x ∈ Rn, where lk ∈ Rn is a unit vector, perpendicular to the vectors
ak,1, ...,ak,n−1, k = 1, ...,m.

At first, we prove the auxiliary lemma.

Lemma 2.1. Let a1, ...,an−1 be any linearly independent vectors in Rn and the
vector l ∈ Rn is not perpendicular to the vector space span{a1, ...,an−1}. Then
for any function ϕ(u) = ϕ(u1, ..., un−1) ∈ C1(Rn−1) there exist a continuously
differentiable generalized ridge function of the form Φ(x) = f(a1 · x, ...,an−1 · x)
such that

∂Φ

∂l
(x) = ϕ(a1 · x, ...,an−1 · x) (2.3)

for any x ∈ Rn.

Proof of Lemma 2.1. It follows from Remark 2.1 that without loss of gener-
ality, we can assume that the vectors a1, ...,an−1 are unit and mutually perpen-
dicular. Denote by a0 the unit vector, perpendicular to the vectors a1, ...,an−1.
Let

l =
n−1∑
p=0

αp · ap.

As the vector l ∈ Rn is not perpendicular to the vector space span{a1, ...,an−1},
then

η0 =

n−1∑
p=1

α2
p > 0.

Denote

Φ(x) =
1

η0

∫ ∑n−1
p=1 αpap·x

0
ϕ(s1(t,x), ..., sn−1(t,x))dt,

where

sk(t,x) =
1

η0

αkt+

n−1∑
p=1, p ̸=k

(α2
p · ak − αpαk · ap) · x

 , k = 1, ..., n− 1.
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It follows from equations

∂Φ

∂ak
(x) =

αk

η0
· ϕ(a1 · x, ...,an−1 · x)

+
1

η20

∫ ∑n−1
p=1 αpap·x

0

 n−1∑
j=1, j ̸=k

∂ϕ

∂uj
(s1(t,x), ..., sn−1(t,x)) · (−αkαj)

 dt

+
1

η20

∫ ∑n−1
p=1 αpap·x

0

 ∂ϕ

∂uk
(s1(t,x), ..., sn−1(t,x)) ·

n−1∑
p=1, p ̸=k

α2
p

 dt, k = 1, ..., n− 1,

∂Φ

∂a0
(x) = 0,

that
∂Φ

∂l
(x) =

n−1∑
k=0

αk
∂Φ

∂ak
(x) = ϕ(a1 · x, ...,an−1 · x).

On the other side, it follows from ∂Φ
∂a0 (x) = 0 that the function Φ is of the form

Φ(x) = f(a1 · x, ...,an−1 · x). This completes the proof of the lemma.
Proof of Theorem 2.1. Necessity. Let the function F ∈ Cm(Rn) be of the

form (2.1). For any x ∈ Rn and h ∈ Rn we denote by ∆hF (x) the increment

∆hF (x) = F (x+ h)− F (x)

of the function F . Then it follows from (2.1) that for any x ∈ Rn and for any
t1, ..., tm ∈ R

∆t1l1 ...∆tmlmF (x) = 0, (2.4)

where lk is a unit vector, perpendicular to the vectors ak,1, ...,ak,n−1, k = 1, ...,m.
It follows from (2.4) that for any x ∈ Rn

∂mF

∂l1...∂lm
(x) = lim

t1→0+,...,tm→0+

∆t1l1 ...∆tmlmF (x)

t1 · ... · tm
= 0.

Sufficiency. Let the function F ∈ Cm(Rn) satisfy condition (2.2) for any
x ∈ Rn. Let us write equation (2.2) in the form

∂

∂l1

[
∂m−1F

∂l2...∂lm

]
(x) = 0. (2.5)

It follows from (2.5) that the partial derivative ∂m−1F
∂l2...∂lm

of the function F is

independent of the direction l1. Therefore there exists a function ϕ1 : Rn−1 → R
such that

∂m−1F

∂l2...∂lm
(x) = ϕ1(a

1,1 · x, ...,a1,n−1 · x), x ∈ Rn. (2.6)

From condition F ∈ Cm(Rn) we obtain that ϕ1 ∈ C1(Rn−1). Now let us write
equation (2.6) in the form

∂

∂l2

[
∂m−2F

∂l3...∂lm

]
(x) = ϕ1(a

1,1 · x, ...,a1,n−1 · x), x ∈ Rn. (2.7)

It follows from Lemma 2.1 that there exists a continuously differentiable gener-
alized ridge function of the form

Φ1(x) = g1(a
1,1 · x, ...,a1,n−1 · x), x ∈ Rn (2.8)
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such that
∂Φ1

∂l2
(x) = ϕ1(a

1,1 · x, ...,a1,n−1 · x), x ∈ Rn. (2.9)

It follows from (2.7) and (2.9) that for any x ∈ Rn

∂

∂l2

[
∂m−2F

∂l3...∂lm
− Φ1

]
(x) = 0.

Then the function ∂m−2F
∂l3...∂lm

−Φ1 is independent of the direction l2. Therefore there

exist a function ϕ2 : Rn−1 → R such that

∂m−2F

∂l3...∂lm
(x)− Φ1(x) = ϕ2(a

2,1 · x, ...,a2,n−1 · x), x ∈ Rn. (2.10)

Since the functions ∂m−2F
∂l3...∂lm

and Φ1 are continuously differentiable, then we get

that the function ϕ2 is also continuously differentiable in Rn−1. It follows from
(2.8) and (2.10) that

∂m−2F

∂l3...∂lm
(x) = g1(a

1,1 · x, ...,a1,n−1 · x) + ϕ2(a
2,1 · x, ...,a2,n−1 · x), x ∈ Rn.

Continuing the above process, until it reaches the function F , we obtain the
desired result. This completes the proof of the theorem.

3. The smoothness problem in generalized ridge function
representation

Another problem in the ridge function representation is the smoothness prob-
lem. Assume we are given a function F : Rn → R of the form

F (x) =
m∑
k=1

fk(a
k,1 · x, ...,ak,d · x), (3.1)

where {a1,1, ...,a1,d},...,{am,1, ...,am,d} pairwise non-equivalent vector systems in
Rn, 1 ≤ d < n − 1, f1, ..., fm are arbitrarily behaved real-valued functions of d
variables. Assume, in addition, that F is of a certain smoothness class, that is,
F ∈ Cs(Rn), where s ≥ 0 (with the convention that C0(Rn) = C(Rn)). What can
we say about the smoothness of the functions fk? Do the functions fk necessarily
inherit all the smoothness properties of the F?

If d = 1 and m = 1 or m = 2 the answer to the above question is yes (see
[8]). If d = 1 and m ≥ 3 the picture drastically changes. For d = 1, m = 3,
there are smooth functions which decompose into sums of very badly behaved
ridge functions. This phenomena comes from the classical Cauchy Functional
Equation. This equations,

h(x+ y) = h(x) + h(y), h : R → R,

looks very simple and has a class of simple solutions h(x) = cx, c ∈ R. However,
it easily follows from Hamel basis theory that Cauchy Functional Equation also
has a large class of “wild” solutions. These solutions are called “wild” because
they are extremely pathological. For example, they are not continuous at a point,
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not monotone on an interval, not bounded on any set of positive measure (see
[1]).

Let h1 be any “wild” solution of the Cauchy Functional Equation. Then the
zero function can be represented as

0 = h1(x) + h1(y)− h1(x+ y). (3.2)

Note that the functions involved in (3.2) are bivariate ridge functions with the
directions a1 = (1, 0), a2 = (0, 1) and a3 = (1, 1), respectively. This example
shows that for smoothness of the representation (3.1) one must impose additional
conditions on the representing functions fk, k = 1, ...,m.

In case d = 1 it was first proved by M.Buhmann and A.Pinkus [8] that if in (3.1)
F ∈ Cs(Rn), s ≥ m−1 and fk ∈ L1

loc(R) for each k = 1, ...,m, then fk ∈ Cs(Rn),
k = 1, ...,m. Later, A.Pinkus [32] extensively generalized this result. He solved
this problem for any s ∈ Z+, while imposing weaker conditions on the functions
fk.

In case d ≥ 2 the situation is slightly more problematic. Consider, for example,
the case d = 2, n = 3, m = 2, a1,1 = (1, 0, 0), a1,2 = (0, 1, 0), a2,1 = (0, 1, 0),
a2,2 = (0, 0, 1). Thus

F (x1, x2, x3) = f1(x1, x2) + f2(x2, x3).

Setting f1(x1, x2) = g(x2) and f2(x2, x3) = −g(x2) for any arbitrary univariate
function g, we have

0 = f1(x1, x2) + f2(x2, x3),

and yet f1 and f2 do not exhibit any of the smoothness properties of the left-hand
side of this equation.

Now consider the following natural and interesting question. Assume we are
given a function F ∈ Cs(Rn) of the form (3.1). Is it true that there will always
exist gk ∈ Cs(Rd), k = 1, ...,m such that

F (x) =

m∑
k=1

gk(a
k,1 · x, ...,ak,d · x)?

This question was posed in M.Buhmann and A.Pinkus [8] for ridge function
representation and Pinkus [33] for generalized ridge function representation. In
[2, 3, 4, 6, 25], the authors gave a partial solution to the above representation
problem for ridge function representation. In [7], this problem for ridge function
representation was solved up to a multivariate polynomial:

Theorem 3.1 (R.Aliev, V.Ismailov [7]). Assume a function F ∈ C(Rn) is of the
form

F (x) =
m∑
k=1

fk(a
k · x), (3.3)

where a1,..., am are given pairwise linearly independent directions in Rn, f1, ..., fm
are arbitrarily behaved univariate functions. Then there exist continuous func-
tions gk : R → R, k = 1, ...,m, and a polynomial Pm−1 of degree at most m − 1
such that

F (x) =
m∑
k=1

gk(a
k · x) + Pm−1(x). (3.4)
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Corollary 3.1 (R.Aliev, V.Ismailov [7]). Assume a function F ∈ Cs(Rn), s ∈ N
is of the form (3.3). Then there exist functions gk ∈ Cs(R), k = 1, ...,m, and a
polynomial Pm−1 of degree at most m− 1 such that (3.4) holds.

Corollary 3.2 (R.Aliev, V.Ismailov [7]). Assume a function F ∈ Cs(R2), s ∈
Z+ = N ∪ {0} is of the form (3.3). Then there exist functions gk ∈ Cs(R),
k = 1, ...,m, such that

F (x) =
m∑
k=1

gk(a
k · x).

In [5] a new proof of Theorem 3.1 is given. In this section, we give a partial
solution to the posed problem for generalized ridge function representation.

Theorem 3.2. Assume a function F ∈ Cm(Rn) is of the form

F (x) =
m∑
k=1

fk(a
k,1 · x, ...,ak,n−1 · x), (3.5)

where {a1,1, ...,a1,n−1},...,{am,1, ...,am,n−1} pairwise non-equivalent vector sys-
tems in Rn, f1, ..., fm are arbitrarily behaved real-valued functions of n− 1 vari-
ables. Then there exist functions gk ∈ C1(Rn−1), k = 1, ...,m, such that

F (x) =
m∑
k=1

gk(a
k,1 · x, ...,ak,n−1 · x). (3.6)

Proof. Let the function F ∈ Cm(Rn) is of the form (3.5). Then it follows
from Theorem 2.1 that

∂mF

∂l1...∂lm
(x) = 0

for any x ∈ Rn, where lk ∈ Rn is a unit vector, perpendicular to the vectors
ak,1, ...,ak,n−1, k = 1, ...,m. Then from the proof of the sufficiency of Theorem
2.1 it is clear that there exist continuously differentiable functions gk : Rn−1 → R,
k = 1, ...,m, such that (3.6) is satisfied. This completes the proof of the theorem.
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