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POWER BOUNDED OPERATORS ON HILBERT SPACE AND

HELSON SET

HEYBETKULU S. MUSTAFAYEV

Abstract. Let T be a power bounded operator on a Hilbert space H
and assume that local unitary spectrum of T at x ∈ H is contained in a
Helson set. If lim|m−n|→∞ |⟨Tmx, Tnx⟩| = 0, then limn→∞ ∥Tnx∥ = 0.

1. Introduction and preliminaries

Let X be a complex Banach space and let B (X) be the algebra of all bounded,
linear operators on X. As usual, by σ (T ) we denote the spectrum of T ∈ B (X)

and by R (z, T ) := (zI − T )−1 (z /∈ σ (T )) , the resolvent of T . The unit circle in
the complex plane will be denoted by T, whereas D indicates the open unit disc.

An operator T ∈ B (X) is said to be power bounded if there exists a constant
C > 0 such that supn≥0 ∥Tn∥ < ∞. By changing to an equivalent norm given by

∥x∥1 := sup
n≥0

∥Tnx∥ (x ∈ X)

a power bounded operator T can be made contractive, that is, ∥T∥ ≤ 1. If T is
a contraction on X, then for every x ∈ X, the limit limn→∞ ∥Tnx∥ exists and is
equal to infn≥0 ∥Tnx∥. If T ∈ B (X) is power bounded, then σ (T ) ⊂ D. The set
σu (T ) := σ (T ) ∩ T is called unitary spectrum of T .

For an arbitrary T ∈ B (X) and x ∈ X, we define ρT (x) to be the set of all
λ ∈ C for which there exists a neighborhood Uλ of λ with u (z) analytic on Uλ

having values in X, such that (zI − T )u (z) = x for all z ∈ Uλ. This set is open
and contains the resolvent set ρ (T ) of T . By definition, the local spectrum of
T at x, denoted by σT (x) is the complement of ρT (x), so it is a closed subset
of σ (T ) . Notice that local spectrum of an operator may be ”very small” with
respect to its usual spectrum. To see this, let T ∈ B (X) and assume that σ is a
”very small” clopen part of σ (T ). Let Pσ be the spectral projection associated
with σ and let Xσ := PσX. Then, Xσ is a closed T -invariant subspace of X and
σ (T |Xσ) = σ, where T |Xσ is the restriction of T to Xσ. It is easy to check that
σT (x) ⊂ σ for every x ∈ Xσ.

The set σT (x)∩T will be called local unitary spectrum of T ∈ B (X) at x ∈ X.
Notice that if T is power bounded, then σT (x)∩T consists of all ξ ∈ T such that
the function R (z, T )x (|z| > 1) has no analytic extension to a neighborhood of
ξ. Consider the case where U is a unitary operator on a Hilbert space H. Let
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E (·) be the spectral measure of U . For a given x ∈ H, let µx be the vector-
measure defined on the Borel subsets of T by µx (∆) = E (∆)x. One can see that
σU (x) = suppµx.

An operator T ∈ B (X) is called strongly stable if limn→∞ ∥Tnx∥ = 0 for all x ∈
X.Generally speaking, the asymptotic behavior of the orbits {Tnx : n = 0, 1, 2, ...}
is frequently related to unitary spectrum of underlying operator. This is well
illustrated by the following result of Arendt-Batty-Lyubich-Phóng (ABLP) [1,
Theorem 5.15]. A power bounded operator T on a Banach space is strongly
stable if the unitary spectrum of T is at most countable and T ∗ has no unitary
eigenvalues.

Recall that a contraction on a Hilbert space is said to be completely nonunitary
if it has no proper reducing subspace on which it acts as a unitary operator. It
follows from the Sz.-Nagy-Foiaş theorem [2, Ch.II, Theorem 3.9] that if T is a
completely nonunitary contraction on a Hilbert space H, then T is weakly stable,
that is, limn→∞⟨Tnx, y⟩ = 0 for all x, y ∈ H. The another result of Sz.-Nagy-Foias
[6, Ch.2, Proposition 6.7] asserts that if the unitary spectrum of the completely
non-unitary contraction T is of Lebesgue measure zero, then T is strongly stable.
For related results see, [2, 4, 5, 6, 8].

Let H be a Hilbert space. In this note, for the individual stability of T ∈ B (H)
at x ∈ H, some sufficient conditions on the local unitary spectrum of T at x will
be given.

2. The main result

For a closed subset S of T, we denote by C (S) the space of all continuous
functions on S. The classical Wiener algebra A (T) is defined by

A (T) =

{
f ∈ C (T) : ∥f∥1 =

∑
n∈Z

∣∣∣f̂ (n)
∣∣∣ < ∞

}
,

where f̂ (n) is the n′th Fourier coefficient of f. We denote by A (S) the algebra
of all functions on S which are the restrictions to S of functions in A (T), with
the norm

∥f∥A(S) = inf {∥g∥1 : g |S= f, g ∈ A (T)} .

Recall that S is called a Helson set if every continuous function on S can be
represented as an absolutely convergent Fourier series. Thus, S is a Helson set if
A (S) = C (S). Note that a Helson set is of Lebesgue measure zero. The examples
of Helson sets can be found in [3] and [9, Chapter 5]. For example, countable
compact independent subset of T is a Helson set [9, Chapter 5].

Let M (T) denote the space of all finite regular complex Borel measures on T.
The n′th Fourier coefficient of µ ∈ M (T) is defined by

µ̂ (n) =

2π∫
0

e−intdµ (t) (n ∈ Z) .

It is well known that if µ̂ (n) = 0 for all n ∈ Z, then µ = 0.
The Helson Theorem [9, Theorem 5.6.10] asserts the following.
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Theorem 2.1. Assume that the support of the measure µ ∈ M (T) is contained
in a Helson set. If lim|n|→∞ |µ̂ (n)| = 0, then µ = 0.

As an application of the Helson theorem, we have the following.

Theorem 2.2. Let T be a power bounded operator on a Hilbert space H and
assume that σT (x) ∩ T is contained in a Helson set for some x ∈ H. If

lim
|m−n|→∞

|⟨Tmx, Tnx⟩| = 0,

then limn→∞ ∥Tnx∥ = 0.

Let S be the unilateral shift operator on the Hardy space H2 := H2 (D) ;
Sf = zf. Then we have

|⟨Smf, Snf⟩| =
∣∣∣∣∫ 2π

0
ei|m−n|t |f (t)|2 dt

∣∣∣∣ for all f ∈ H2.

Since S is an isometry on H2, it is not strongly stable. On the other hand, since
|f |2 ∈ L1 [0, 2π] , by the Riemann-Lebesgue lemma,

lim
|m−n|→∞

|⟨Smf, Snf⟩| = 0.

We can say more.

Proposition 2.1. If V is a completely nonunitary isometry on a Hilbert space
H, then

lim
|m−n|→∞

|⟨V mx, V nx⟩| = 0 for all x ∈ H.

Proof. It follows from the Wold’s Decomposition Theorem [6, Ch.1, Theorem 1.1]
that a completely nonunitary isometry is unitary equivalent to the unilateral shift
operator and therefore,

lim
n→∞

∥V ∗nx∥ = 0 for all x ∈ H.

Now, it follows from the identity

|⟨V mx, V nx⟩| =
∣∣∣⟨V ∗|m−n|x, x⟩

∣∣∣
that lim|m−n|→∞ |⟨V mx, V nx⟩| = 0. □

Recall that a unitary operator U on a Hilbert space H is said to be absolutely
continuous (resp. singular) if the spectral measure E (·) of U is absolutely con-
tinuous (resp. singular) with respect to the Lebesgue measure on T. There exist
direct sum decomposition H = Hac ⊕ Hs and U = Uac ⊕ Us of H and U such
that Hac and Hs are U -reducing subspaces with Uac = U |Hac and Us = U |Hs

respectively, absolutely continuous and singular. For x ∈ H, let µx be the scalar
measure defined on the Borel subsets of T by

µx (∆) = ⟨E (∆)x, x⟩ = ∥E (∆)x∥2 .
If U is absolutely continuous, then for an arbitrary x ∈ H, there is fx ∈ L1 [0, 2π]
such that dµx (t) = fx (t) dt. Then, we can write

|⟨Umx, Unx⟩| =
∣∣∣∣∫ 2π

0
ei|m−n|tdµx (t)

∣∣∣∣ = ∣∣∣∣∫ 2π

0
ei|m−n|tfx (t) dt

∣∣∣∣ .
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From the last identity and from the Riemann-Lebesgue lemma, we have

lim
|m−n|→∞

|⟨Umx, Unx⟩| = 0.

For the proof of Theorem 2.2, we need some preliminary results.
For convenience, by TE we will denote the restriction of T ∈ B (H) to the

invariant subspace E of T. The following lemma was proved in [5, Lemma 2.1].

Lemma 2.1. Let T be a contraction on a Hilbert space H and let E be a (closed)
T -invariant subspace of H. Then, for every x ∈ E, we have

σTE
(x) ∩ T = σT (x) ∩ T.

As an illustration of Lemma 2.1, consider the following example. Let K be a
Hilbert space and let H2 (K) be the Hardy space of K-valued analytic functions
on D. By SK , we denote the unilateral shift operator on H2 (K);

(SKf) (z) = zf (z) , f ∈ H2 (K) .

Its adjoint, the backward shift, is given by

(S∗
Kf) (z) =

f (z)− f (0)

z
, f ∈ H2 (K) .

It is easy to verify that for every f ∈ H2 (K) and λ ∈ C with |λ| > 1,

(λI − S∗
K)−1 f (z) =

λ−1f
(
λ−1

)
− zf (z)

1− λz
.

It follows that σS∗
K
(f) ∩ T consists of all ξ ∈ T such that the function f has no

analytic extension to a neighborhood of ξ.
Now, let T be a contraction on a Hilbert space H such that limn→∞ ∥Tnx∥ = 0

for every x ∈ H. Let

D := (I − T ∗T )
1
2 and K := DH.

By the well-known Model Theorem of Sz.-Nagy-Foias (see [6] and [7]), there exists
S∗
K−invariant subspace E of H2 (K) and a unitary operator U : H 7→ E such

that

T = U−1 (S∗
K |E)U,

where

Ux =

∞∑
n=0

znDTnx, x ∈ H.

It follows from Lemma 2.1 that if x ∈ H, then

σT (x) ∩ T = σS∗
K |E (Ux) ∩ T = σS∗

K
(Ux) ∩ T.

Hence, σT (x)∩T consists of all ξ ∈ T such that Ux has no an analytic extension
to a neighborhood of ξ.

Recall that V ∈ B (X) is called an isometry if ∥V x∥ = ∥x∥ for all x ∈ X. It is
well known that if V is a non-unitary isometry, then σ (V ) = D. A vector x ∈ X
is a cyclic vector of T ∈ B (X) if the smallest closed subspace of X containing
{Tnx, n = 0, 1, 2, ...} is the whole space X.

The following result for the Banach space isometries was proved in [1, Lemma
1.3]. For the Hilbert space isometries we present more elementary proof.
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Lemma 2.2. Let V be an isometry on a Hilbert space H. If x ∈ H is a cyclic
vector of V , then

σu (V ) = σV (x) ∩ T.
Proof. Assume that V is a unitary operator. We must show that σ (V ) = σV (x).
By Spectral Theorem, there exists a positive measure µ on T such that the
operator M on L2 (T, µ) defined by Mf = eitf is unitary equivalent to V . Let
χ∆ denote the characteristic function of any Borel subset ∆ of T and let 1 be the
constant one function on T. Then, we have σ (V ) = suppµ and σV (x) = suppν,
where ν is a vector measure on T defined by ν (∆) = χ∆1. Since ∥ν (∆)∥ = µ (∆) ,
we have suppµ = suppν and therefore, σ (V ) = σV (x).

Now, assume that V H ̸= H. In this case, σ (V ) = D. Let us show that
σV (x) = D. Let K = H ⊖ V H. By Wold’s Decomposition Theorem [6, Ch.1,
Theorem 1.1], there exists a decomposition H = H0 ⊕ H1 such that H0 and
H1 reduce V , V0 = V |H0 is unitary and V1 = V |H1 is unitary equivalent
to the unilateral shift operator SK on H2 (K). Notice that σSK

(f) = D for
every nonzero f ∈ H2 (K) . It follows that if x = x0 + x1, where x0 ∈ H0 and
x1 ∈ H1⧹ {0}, then σV1 (x1) = D. On the other hand, it is easy to verify that
σV1 (x1) ⊂ σV (x). So, we have σV (x) = D. □

In the following result we use the method of [1, 4, 8] to construct an isometry
on a different Hilbert space.

Lemma 2.3. If T is a contraction on a Hilbert space H, then there exists a
Hilbert space K, a linear contraction J : H → K with dense range, and an
isometry V on K with the following properties:

(a) ⟨Jx, Jy⟩ = limn→∞⟨Tnx, Tny⟩ for all x, y ∈ H.
(b) V J = JT .
(c) σ (V ) ⊂ σ (T ) .

The triple (K,J, V ) will be called limit isometry associated with T .

Lemma 2.4. Let T be a contractions on a Hilbert space H and let (K,J,V) be
the limit isometry associated with T. The following assertions hold:

(a) σV (Jx) ⊂ σT (x) for all x ∈ H.
(b) If x ∈ H is a cyclic vector of T , then Jx is a cyclic vector of V.

Proof. (a) If x ∈ H and λ ∈ ρT (x) , then there is a neighborhood Uλ of λ with
u (z) analytic on Uλ having values in H such that (zI − T )u (z) = x for all
z ∈ Uλ. Since (zJ − JT )u (z) = Jx and by Lemma 2.3 (b), JT = V J , we
have (zI − V ) Ju (z) = Jx. As Ju (z) is a function analytic on Uλ, we get that
λ ∈ ρV (Jx) .

(b) Let x ∈ H be a cyclic vector of T and let y ∈ H. Then, for any ε > 0 there
are constants c1, ..., ck and non-negative integers n1, ..., nk such that

∥y − c1T
n1x− ...− ckT

nkx∥ < ε,

which implies

∥Jy − c1JT
n1x− ...− ckJT

nkx∥ < ε.

By Lemma 2.3 (b), since JTn = V nJ (∀n ∈ N) , we have

∥Jy − c1V
n1Jx− ...− ckV

nkJx∥ < ε.
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Since the operator J has dense range, it follows from the preceding inequality
that Jx is a cyclic vector of V. □

Next, we have the following.

Lemma 2.5. Let U be a unitary operator on a Hilbert space H and assume that
lim|n|→∞ |⟨Unx, x⟩| = 0 for some x ∈ H. If σU (x) is contained in a Helson set,
then x = 0.

Proof. Let E (·) be the spectral measure of U . For x ∈ H, let µx be the scalar
measure defined on the Borel subsets of T by

µx (∆) = ⟨E (∆)x, x⟩ = ∥E (∆)x∥2 .

Then, σU (x) = suppµx and therefore suppµx is contained in a Helson set. From
the spectral decomposition of U, we can write

⟨Unx, x⟩ =

2π∫
0

eintd⟨Etx, x⟩

=

2π∫
0

eintdµx (t) = µ̂x (n) (n ∈ Z) .

So we have

lim
|n|→∞

|µ̂x (n)| = 0.

Since suppµx is contained in a Helson set, by Theorem 2.1, µx = 0. This clearly
implies that x = 0. □

Now, we are in a position to prove Theorem 2.2.

Proof of Theorem 2.2. It is no restriction to assume that T is a contraction
(renorming does not change the spectral assumptions). Let E be the closed linear
span of {Tnx : n ≥ 0} . Then, E is a T -invariant subspace of H. Let (K,J, V ) be
the limit isometry associated with TE . By Lemma 2.4 (a), σV (Jx) ⊂ σTE

(x),
which implies

σV (Jx) ∩ T ⊂ σTE
(x) ∩ T.

Taking into account Lemma 2.1, we have

σV (Jx) ∩ T ⊂ σT (x) ∩ T.

On the other hand, since Jx is a cyclic vector of V (Lemma 2.4 (b)), by Lemma
2.2 we obtain that

σ (V ) ∩ T = σV (Jx) ∩ T ⊂ σT (x) ∩ T.

Consequently, V is a unitary operator and σ (V ) is contained in a Helson set.
From Lemma 2.3 we can write V nJx = JTnx (∀n ∈ N), which implies

⟨V mJx, V nJx⟩ = ⟨JTmx, JTnx⟩ = lim
k→∞

⟨Tm+kx, Tn+kx⟩.
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By hypothesis, for an arbitrary ε > 0, there is a natural number N such that for
all natural numbers m,n with |m− n| > N, we have |⟨Tmx, Tnx⟩| ≤ ε. Therefore,∣∣∣⟨Tm+kx, Tn+kx⟩

∣∣∣ ≤ ε for all m,n with |m− n| > N and for all k ∈ N.

It follows that |⟨V mJx, V nJx⟩| < ε for all m,n with |m− n| > N. This means
that

lim
|m−n|→∞

∣∣∣⟨V |m−n|Jx, Jx⟩
∣∣∣ = 0.

By Lemma 2.5, Jx = 0. Taking into account Lemma 2.3 (a), finally we obtain

lim
n→∞

∥Tnx∥ = 0.

□
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