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ON PRODUCT LIE ALGEBROIDS, AND COLLECTIVE

MOTION

BEGÜM ATEŞLI, OĞUL ESEN, AND SERKAN SÜTLÜ

Abstract. This work explores the geometrical/algebraic framework of
Lie algebroids, with a specific focus on the decoupling and coupling phe-
nomena within the bicocycle double cross product realization. The bic-
ocycle double cross product theory serves as the most general method
for (de)coupling an algebroid into the direct sum of two vector bun-
dles in the presence of mutual representations, along with two twisted
cocycle terms. Consequently, it encompasses unified product, double
cross product (matched pair), semi-direct product, and cocycle exten-
sion frameworks as particular instances. In addition to algebraic con-
structions, the research extends to both reversible and irreversible La-
grangian and Hamiltonian dynamics on (de)coupled Lie algebroids, as
well as Euler-Poincaré-(Herglotz) and Lie-Poisson-(Herglotz) dynamics
on (de)coupled Lie algebras, providing insights into potential physical
applications.

1. Introduction

The problem addressed in the present manuscript, which may be referred as the
“(de)coupling problem”, is to obtain the equations of motion that determine the
collective behavior of two systems in mutual action-reaction relationship. In case
two dynamical systems or two characters of a physical phenomenon (like Magne-
tohydrodynamics, where one considers both Maxwellian and fluid characters of a
continuum) are coupled, they intervene in each other’s independent behavior. As
such, the equations of coupled (matched) motion of these two systems/characters
cannot be achieved by simply juxtaposing the equations of motions of the individ-
ual systems/characters. On the contrary, as a result of the mutual interaction,
the equations that govern the collective motion are expected to contain terms
that cannot be retrieved by the equations of the individual systems/characters.

The (de)coupling process can be examined in two steps. One first needs to de-
termine the extensions of the configuration spaces in a pure algebraic/geometric
way. Then, the equations of motion can be coupled in accordance with the exten-
sions obtained in the first step. We shall hereby confine ourselves to Lie algebroids
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and the associated dynamical equations within this geometric framework [69,71].
Our goal, accordingly, is to establish Lie algebroid extensions from a purely al-
gebraic perspective while at the same time maintaining a close relationship with
physical applications from both Lagrangian and Hamiltonian viewpoints.

There are several works in the present literature that have addressed the
(de)coupling problem in different levels. A quick inspection of the algebraic
or/and geometric foundations of certain physical systems (such as Maxwell-
Vlasov dynamics, magnetohydrodynamics, and compressible fluid dynamics) re-
veals that the underlying configuration spaces are semi-direct product Lie groups
[23,65,75,76]. In such physical systems, the reduced Lagrangian (Euler-Poincaré)
dynamics is available on the semi-direct product Lie algebra, whereas the reduced
Hamiltonian (Lie-Poisson) dynamics are on the dual space. The semi-direct prod-
uct theory is an example of a Lie group/algebra extension theory that allow only
a one-sided (not mutual) action.

There are generalizations of the semi-direct product theory. Double cross prod-
uct (matched pair) theory is one such extension, wherein the mutual interactions
(actions) of two Lie groups / algebras are allowed [72,73]. This theory has found
applications in physics either. Among examples are the matched pair Lagrangian
and Hamiltonian dynamics studied in [49, 50], the higher order Lagrangian dy-
namics in [44], and the dissipative systems in [47] and the discrete dynamics
in [51]. These results then soon applied to areas such as electromagnetic theory
[48], kinetic moments of plasma dynamics, and the algebraic relationship between
plasma and fluid [40,52], as well as the moments in chemical kinetics [7].

We shall further refer the interested reader to [79] for a detailed discussion on
double cross products (matched pairs) within the Lie algebroid framework.

A more general extension theory (than double cross products) is known as the
unified product theory [2–4,6]. From the point of view of coupling, and in the level
of Lie algebra(oids), unified products correspond to compose a Lie algebra(oid)
with a vector bundle in order to construct a Lie algebra(oid). This is achieved in
the presence of a twisted cocycle. As such, a unified product has also been called
a cocycle double cross product in [43]. From the decomposition perspective, a
unified product (a cocycle double cross product) may be interpreted as a recipe
to study the quotient space of an algebroid by a subalgebroid of it. In the Lie
algebra setting, we cite a recent work [86] where unified products are used to
study the dynamics on homogeneous spaces.

Unified products (cocycle double cross products), subsume two independent
avenues of extensions; the double cross products, and 2-cocycle extensions. They
thus offer much more flexibility in (de)coupling a geometric structure, or a phys-
ical phenomena, compared to what might be offered by double cross products or
2-cocycle extensions.

Despite this pliability, the absence of applications (of unified products to La-
grangian and Hamiltonian dynamics as well as any interconnection with physical
phenomena) in the literature stands as a strong motivation for us.

The cocycle double cross products have been upgraded recently in [43] to a
level that requires the use of two twisted cocycles. The new class of extension
was accordingly called bicocycle double cross product, which shall occasionally
be abbreviated as BDCP. In the level of Lie algebroids, a BDCP corresponds to
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couple two vector bundles to arrive at a Lie algebroid on the direct sum vector
bundle. The non-closure of the (induced) brackets on constitutive vector bundles
is accommodated by two (twisted) cocycles, as a manifestation of the name.

BDCPs, by their very nature, thus render the ultimate flexibility for (de)coup-
ling. However, the literature is void in applications, providing another motivation
of the present manuscript.

We shall continue with a brief summary of the families of extensions mentioned
above (explicit definitions will be given in the main body of the text). We shall
next spell out our objectives in detail.

The Hierarchy of Extensions. Let M be a Lie algebroid over a base manifold
M , along with two complementary vector subbundles A and B so that M is the
Whitney sum1, that is,

M ∼= A× B
as vector bundles. The bracket operation [•, •]M : Γ(M) × Γ(M) 7→ Γ(M) on
the space of sections of M, then, induces corresponding operations

Γ(A)× Γ(A) → Γ(M) (1.1)

on A and

Γ(B)× Γ(B) → Γ(M) (1.2)

on B. It follows at once that neither (1.1) nor (1.2) are a priori closed (neither
they satisfy readily the Jacobi or Leibniz identities). Failure in closure of the
induced operations are compensated by two mappings

ψ : Γ(B)× Γ(B) → Γ(A) (1.3)

and

ζ : Γ(A)× Γ(A) → Γ(B), (1.4)

which are usually named (twisted) cocycles, in addition to

ϕ : Γ(A)× Γ(A) → Γ(A) (1.5)

on A and

θ : Γ(B)× Γ(B) → Γ(B) (1.6)

on B.
On the other hand, it follows from the direct (Whitney) sum decomposition

of M, the mixed bracket (within M, of an element in B and an element in A)
yields mutual representations2 of A and B on each other.

The bicocycle double cross product Lie algebroid M ∼= A×B is then denoted
by A ζ ▷◁ψ B, where the indices ψ and ζ highlight the (twisted) cocycles (1.3)
and (1.4), and the triangles ▷ and ◁ emphasize the mutual (weak) actions. While
we will study this more explicitly in the main body of the paper, to clarify the

1By a slight abuse of notation, we shall use × for the Whitney sum of vector bundles over
the same base.

2To be more precise, two mappings Γ(B) × Γ(A) → Γ(A) and Γ(B) × Γ(A) → Γ(B), which
are called weak actions. In order to represent the weak actions, we shall make use of the italic
versions of the notations we adopt for the regular actions.



4 BEGÜM ATEŞLI, OĞUL ESEN, AND SERKAN SÜTLÜ

hierarchical structure that follows, let us write the bicocycle double cross product
Lie bracket:

Γ(A× B)× Γ(A× B) −→ Γ(A× B),

[(X1, Y1), (X2, Y2)]M =
(
ϕ(X1, X2)− ρ(Y2, X1) + ρ(Y1, X2) + ψ(Y1, Y2),

θ(Y1, Y2)− σ(X2, Y1) + σ(X1, Y2) + ζ(X1, X2)
) (1.7)

in terms of the mappings in (1.3)-(1.6) as well as the weak action ρ of B on A,
and the weak action σ of A on B.

In the case one of the (twisted) cocycles ψ in (1.3) or ζ in (1.4) is trivial (that is
identically zero), the Lie algebroid M becomes a unified product (cocycle double
cross product) of A and B, and is denoted by A ζ ▷◁ B if (1.3) is trivial, and
A ▷◁ψ B if (1.4) is trivial.

Let us now consider the unified product (cocycle double cross product) M ∼=
A ▷◁ψ B. In this case the weak action σ of A on B becomes an action.

If, further, the (twisted) cocycle ψ in (1.3) is trivial either, then M happens
to be a double cross product of A and B, and is denoted by M ∼= A ▷◁ B. In
this case, the mutual weak actions of A and B on each other are both genuine
actions, and A and B are both Lie subalgebroids of M.

If, on the other extreme, the action of A on B is trivial, along with the bracket
structure on the space Γ(A) of sections of A, then the product Lie algebroid M
turns out to be a 2-cocycle extension of A by B. In this case we use the notation
M ∼= A⋊ψ B.

It follows from the assumptions of this case that B happens to be a Lie al-
gebroid, and the weak action of B on A is now a proper action. Further, the
mapping (1.3) turns out to be a 2-cocycle in the Lie algebroid cohomology of B,
with coefficients in the vector bundle A. However, B is not a Lie subalgebroid of
M, while A is (albeit a trivial one). Let us note also that if, further, the action of
B on A is assumed to be trivial, then A becomes central (as a Lie subalgebroid)
in M, and the 2-cocycle extension M ∼= A⋊ψ B becomes a central extension.

The common ground of the 2-cocycle extensions and double cross products is
given by semi-direct products. More precisely, if the cocycle (1.3) is assumed to
be trivial in the 2-cocycle extension M ∼= A ⋊ψ B, or if the action of A on B
is taken to be trivial in the double cross product M ∼= A ▷◁ B, then the object
to arrive is a semi-direct product built solely on the action of B on A, which is
denoted by M ∼= A⋊ B.

The whole hierarchy is illustrated in Diagram 1.8, within which we use the
abbreviation BDCP for “Bicocycle Double Cross Product”, the abbreviation UP
for “Unified Product” (cocycle double cross product), the abbreviation DCP for
“Double Cross Product” (matched pair), the abbreviation CE for “Cocycle Ex-
tention”, the abbreviation SDP for “Semi-Direct Product”, and the abbreviation
DP for “Direct Product”.
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A ζ▷◁ψ B,BDCP

One cocycle, ζ=0

��
A ▷◁ψ B, UP

One-sided action

{{

No cocycle, ψ=0

$$
A⋊ψ B, CE

No cocycle, ψ=0

$$

A ▷◁ B,DCP

One-sided action

zz
A⋊ B, SDP

No action
��

A× B, DP

(1.8)

We shall now review the objectives of the manuscript, along the lines of the
product Lie algebroids summarized above.

Goal I: Bicocycle Double Cross Product Lie Algebroids. Various components of
the cross product hierarchy above have been developed for a plethora of algebraic
/ geometric objects (such as Lie groups, Lie algebras, Hopf algebras, etc.), but
not for Lie algebroids. More precisely, the very first objective of the present man-
uscript is to develop the theory of bicocycle double cross product Lie algebroids,
namely the top level in the hierarchy of product Lie algebroids.

We then mean to use the (bicocycle double) cross product theory of Lie al-
gebroids in the investigation of dynamical systems. More precisely, the theory
we cultivate will allow us to decompose a system modelled by a Lie algebroid
into simpler parts. The individual dynamics that are governed by these simpler
components, then, unites to shed light to the dynamics of combined system.

It will thus be proper to include a brief outline of the dynamics on Lie alge-
broids.

Dynamics on Lie Algebroids. Given a Lie algebroid (A, τ,M, aA, [•, •]), the Hamil-
tonian dynamics exist on the dual bundle A∗, [35,56]. Assume a local coordinate
system (xi) on M , along with (xi, yα) on A. In local (dual) coordinates (xi, yα)
on A∗, given a Hamiltonian functionH = H(xi, yα), one has Hamilton’s equations

dxi

dt
= (aA)

i
α

∂H
∂yα

,
dyα
dt

= −Hγαβyγ
∂H
∂yβ

− (aA)
i
α

∂H
∂xi

, (1.9)

where (aA)
i
α is the local realization of the anchor map while Hγαβ denotes the

structure functions of the Lie algebroid.
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If the Lie algebroid is a tangent bundle, (1.9) corresponds to the classical
Hamilton’s equation on the cotangent bundle, arising from the existence of the
canonical symplectic structure.

If, on the other hand, the Lie algebroid is a Lie algebra g (the base manifold
being a singleton, the anchor map is trivial), (1.9) represents the Lie-Poisson
equations on the dual space g∗. More precisely, assuming the local coordinates
(yα) on g∗, and considering a Hamiltonian function h = h(yα), the Lie-Poisson
equations are given by

dyα
dt

= −Hγαβyγ
∂h

∂yβ
, (1.10)

see for instance [1, 61, 77]. Here, Hγαβ are now the structure constants of the Lie

algebra. The Lie-Poisson equations, describing the dynamics on g∗, can also be
derived through the reduction by symmetry method.

The Lie algebroid framework encapsulates the Lagrangian dynamics as well.
In local coordinates (xi, yα) on a Lie algebroid A, the dynamics encoded by a
Lagrangian function L = L(xi, yα) is described by the Euler-Lagrange equations

dxi

dt
= (aA)

i
αy

α,
d

dt

∂L

∂yα
= (aA)

i
α

∂L

∂xi
+ Hγαβy

β ∂L

∂yγ
, (1.11)

see for instance [89].
The coordinate-independent realization of the above formulation was later es-

tablished in [78]. In the particular case where the Lie algebroid is a tangent bun-
dle, the equations (1.11) correspond to the classical Euler-Lagrange equations.
If, on the other extreme, the Lie algebroid is a Lie algebra g with coordinates
(yα), (1.11) transforms into the Euler-Poincaré equations

d

dt

∂l

∂yα
= Hγαβy

β ∂l

∂yγ
, (1.12)

for a Lagrangian function l = l(yα), [77]. In regular cases, the connection be-
tween Lagrangian and Hamiltonian dynamics is established through the Legendre
transformation.

The reversible nature of both (1.9) and (1.11) highlights the limitations in their
applicability to irreversible or/and dissipative processes. The literature points out
that the contact structures provide a suitable avenue for irreversible dynamics,
[18, 20, 22, 29, 30, 38, 45, 46]. This approach has recently amplified the attention
to the field of thermodynamics, [19, 41,42,54,55,57,80,85].

A generic way to arrive at a contact manifold is to extend a symplectic man-
ifold, say T ∗Q, by a copy of the real line. In Darboux’ coordinates (qi, pi, z) on
the product bundle T ∗Q × R, for a Hamiltonian function H = H(xi, pi, z), the
contact Hamilton’s equations are

dxi

dt
=
∂H
∂pi

,
dpi
dt

= −∂H
∂xi

− pi
∂H
∂z

,
dz

dt
= pi

∂H
∂pi

−H. (1.13)

Accordingly, a suitable geometric framework for contact Lagrangian dynamics
(that allows dissipation) may be established through the extension TQ×R of the
tangent bundle TQ by the real line. In induced coordinates (xi, ẋi, z) on TQ×R,
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L = L(xi, ẋi, z) being the Lagrangian function, the corresponding equations

d

dt

∂L

∂ẋi
− ∂L

∂xi
=
∂L

∂ẋi
∂L

∂z
,

dz

dt
= L(xi, ẋi, z) (1.14)

are known as Herglotz equations, or generalized Euler-Lagrange equations, [30].
The strategy of extending by the real line has recently been applied to Lie

algebroids (and their duals), in an attempt to extend the scope of the dynamics
on Lie algebroids to a theory that allows dissipation, [8, 9, 85]. The scheme is
named as the contactization (of Lie algebroids).

More explicitly, lettingA be a Lie algebroid, and considering the extensionA∗×
R of the dual bundle with local coordinates (xi, yα, z), the dissipative Hamilton’s
equations, generated by a Hamiltonian function H = H(xi, yα, z), take the form

dxi

dt
= (aA)

i
α

∂H
∂yα

,

dyα
dt

= −(aA)
i
α

∂H
∂xi

− Hγαβyγ
∂H
∂yβ

− yα
∂H
∂z

,

dz

dt
= yα

∂H
∂yα

−H.

(1.15)

It is worth to note that the above set of equations seamlessly combines the struc-
ture of the Hamilton’s equations (1.9) on the dual bundle A∗ with the contact
Hamilton’s equations presented in (1.13). Indeed, if in particular the Lie alge-
broid A happens to be the tangent bundle TQ, then the dissipative Hamilton’s
equations (1.15) naturally yield the contact Hamiltonian dynamics as expressed
in (1.13).

If, at the other extreme, the Lie algebroid A is a Lie algebra g, the resulting
equations are called the Lie-Poisson-Herglotz equations on the extended dual
space g∗ × R. In coordinates (yα, z) on g∗ × R, with a Hamiltonian function
h = h(yα, z), the Lie-Poisson-Herglotz equations take the form

dyα
dt

= −Hγαβyγ
∂h

∂yβ
− yα

∂h

∂z
,

dz

dt
= yα

∂h

∂yα
− h. (1.16)

From the Lagrangian point of view, let L = L(xi, yα, z) denotes a Lagrangian
function on the extended Lie algebroid A × R with local coordinates (xi, yα, z).
Then the dissipative Euler-Lagrange equations encoded by this Lagrangian are

d

dt

∂L

∂yα
− (aA)

i
α

∂L

∂xi
= Hγαβy

β ∂L

∂yγ
+
∂L

∂z

∂L

∂yα
,

dxi

dt
= (aA)

i
αy

α,

dz

dt
= L(xi, yα, z).

(1.17)

Let us note once again that if, on the one extreme, the Lie algebroid A is the
tangent bundle TQ, then the dissipative Euler-Lagrange equations (1.17) turn
into Herglotz equations (1.14) of contact Lagrangian dynamics on the extended
tangent bundle TQ × R. If, on the other extreme, the Lie algebroid A is in
particular a Lie algebra g, then (1.14) transform into the Euler-Poincaré-Herglotz
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equations the Euler-Poincaré-Herglotz equations:

d

dt

∂l

∂yα
= Hγαβy

β ∂l

∂yγ
+
∂l

∂z

∂l

∂yα
,

dz

dt
= l(xi, yα, z) (1.18)

of a Lagrangian function l = l(yα, z) on g× R with coordinates (yα, z).
In the context of the present work, the formulations (1.15) and (1.17) hold

particular importance due to their extension / product nature, in the level of Lie
algebroids. It will hence be well-suited for our second objective; namely to apply
the Lie algebroid cross product theory we develop to dynamics on Lie algebroids.

Goal II: Application. Bicocycle Double Cross Product Dynamics. The second ob-
jective of this work is to present a comprehensive framework for both Hamiltonian
and Lagrangian dynamics in view of the bicocycle double cross product Lie alge-
broids outlined above. More explicitly, we shall interpret a Lie algebroid (for the
Lagrangian dynamics) and its dual (for the Hamiltonian dynamics) as a bicocycle
double cross product in order to recast the equations of motion in terms of the
individual equations of motions of the (simpler) pieces of the decomposition. The
new formulation of the equations of motion involve possibly some terms that do
not arise from these individual equations of motions. They, instead, captures the
mutual interaction of the pieces which are subject to the decomposition. Such
a reformulation of the equations of motion will indeed involve more number of
terms than the original equations. However, the terms that arise from the cross
product structure will, in practice, be much easier to deal with.

As far as the Hamiltonian mechanics is concerned, this recipe will allow us
to decompose the Hamilton’s equations (1.9), and their dissipative counterparts
(1.15). For the Lagrangian mechanics, on the other hand, we shall thus obtain a
decomposition of the Euler-Lagrange equations (1.11), as well as the dissipative
Euler-Lagrange equations (1.17) for the dissipative scenario. Needless to say, par-
ticular instances of these equations (such as the Lie-Poisson-Herglotz equations
and Euler-Poincaré-Herglotz equations) will be regenerated at once.

Accordingly, this work may be considered as a sequel to [12, 43, 86] where the
bicocycle double cross products were treated in the level of Lie algebras.

Outline. This text consists of two main parts addressing the two main objectives
presented above.

Section 2 represents the algebraic foundations of the diagram (1.8) of the hier-
archy of product Lie algebroids. It is in this section that we shall accomplish to
obtain the compatibility conditions on two vector bundles whose product (Whit-
ney sum) is a Lie algebroid. The main theorems on bicocycle double cross prod-
ucts will be collected in Subsection 2.2. We next provide two examples. First, in
Subsection 2.3, we study the decomposition of twisted Poisson geometry in the
Dirac bundle setting. Then, in Subsection 2.4, we turn our attention to decom-
pose a Jacobi Lie algebroid into a Poisson Lie algebroid and a line bundle. This
has been achieved in the level of Lie algebras in [5].

We present the equations of motion, both in Lagrangian and Hamiltonian
frameworks and both for reversible and irreversible dynamics, in Section 3. More
explicitly, in Subsection 3.1 we recall the equations of motion for the reversible
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Lagrangian dynamics on a Lie algebroid, as well as those for the reversible Hamil-
tonian dynamics on the dual bundle. We then regenerate these equations in Sub-
section 3.2 in the presence of a bicocycle double cross product decomposition of a
Lie algebroid (for the Langangian perspective) and its dual (for the Hamiltonian
perspective). Subsection 3.3 is reserved for a brief summary of the contact dy-
namics as a dissipative generalization of the classical one in view of the real line
extension. Similarly, Subsection 3.4 is withheld to record a brief summary of the
dissipative dynamics in the level of Lie algebroids. Finally, in Section 3.5 we re-
produce the equations for dissipative dynamics in both the Hamiltonian and the
Lagrangian settings in view of a bicocycle double cross product decomposition of
the Lie algebroid on which the dissipative equations were given.

2. Product Lie Algebroids

2.1. Unified Product Lie Algebroids. For the sake of the completeness of
the exposition, and for future reference, let us first recall the terminology of Lie
algebroids, and then that of the unified product construction in the Lie algebroid
framework.

Lie Algebroids. Given a manifold M , a Lie algebroid A over the base M is a
vector bundle τ : A 7→M , equipped with a map

aA : A −→ TM (2.1)

of vector bundles, called the anchor map, and a skew-symmetric bilinear bracket
[•, •]A on the space Γ(A) of sections of A so that

(i) aA([X1, X2]A) = [aA(X1), aA(X2)]

(ii) [X1, fX2]A = f [X1, X2]A + LaA(X1)(f)X2

(iii) ⟳ [X1, [X2, X3]A]A = 0,

(2.2)

for any X1, X2, X3 ∈ Γ(A), and any f ∈ C∞(M) [71,79,81]. The second equality
is called the Leibniz identity, while the last one (⟳ refers to the cyclic sum of the
relevant elements) is named as the Jacobi identity. Accordingly, a Lie algebroid
is denoted by a quintuple

(A, τ,M, aA, [•, •]A),

or in short by A, which may be presented by a commutative diagram

A aA //

τ   

TM

τM||
M

where τM stands for the tangent bundle projection.
In finite dimensions, let (xi) be a local coordinate system on M . A local

coordinate system on A may hence be denoted by (xi, yα). Letting, further,
(eα) be a (projective) basis for the space Γ(A) of sections, we obtain the matrix
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representations of the anchor map aA, and the structure functions for the Lie
algebroid A as

aA(eα) = (aA)
i
α

∂

∂xi
, [eα, eβ]A = Hγαβeγ , (2.3)

respectively.

Representations of Lie Algebroids. The representation of a Lie algebroid given
by (A, τ,M, aA, [•, •]) on a vector bundle (B, κ,M) is defined to be a map

σ : Γ(A)× Γ(B) −→ Γ(B), (X,Y ) 7→ σ(X,Y )

subject to

σ(fX, Y ) = fσ(X,Y ),

σ(X, fY ) = fσ(X,Y ) + LaA(X)(f)Y,

σ([X1, X2]A, Y ) = σ(X1, σ(X2, Y ))− σ(X2, σ(X1, Y ))

for any X,X1, X2 ∈ Γ(A), any Y ∈ Γ(B), and any f ∈ C∞(M).

Unified Products of Lie Algebroids. Let (A, τ,M, aA, [•, •]A) be a Lie algebroid,
and let (B, κ,M) be an arbitrary vector bundle together with a vector bundle
map aB : B 7→ TM .

In an attempt to define a Lie algebroid structure on the Whitney (direct) sum
vector bundle A× B over the base manifold M , equipped with the anchor

a▷◁ψ := A× B −→ TM, (X,Y ) 7→ aA(X) + aB(Y ), (2.4)

let us assume the existence of two sets of skew-symmetric bilinear maps

ψ : Γ(B)× Γ(B) −→ Γ(A), θ : Γ(B)× Γ(B) −→ Γ(B) (2.5)

and

ρ : Γ(B)× Γ(A) −→ Γ(A), σ : Γ(A)× Γ(B) −→ Γ(B). (2.6)

Then, a natural bracket operation on the space of sections of the product bundle
A× B may be given by

Γ(A× B)× Γ(A× B) −→ Γ(A× B),

[(X1, Y1), (X2, Y2)]▷◁ψ :=
(
[X1, X2]A − ρ(Y2, X1) + ρ(Y1, X2) + ψ(Y1, Y2),

θ(Y1, Y2)− σ(X2, Y1) + σ(X1, Y2)
)
.

(2.7)

The bracket (2.7) is automatically skew-symmetric (as a result of the skew-
symmetry of the mappings). As for the Jacobi and Leibniz identities, on the
other hand, the mappings of (2.5) and (2.6) are subject to a number of condi-
tions. In fact, assuming for the sake of simplicity the latter mapping of (2.6) is a
genuine Lie algebroid action3, a direct computation reveals that in order for (2.7)

3This would otherwise be dictated as another identity among the others that are listed.
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to satisfy the Jacobi identity

[ρ(Y3, X2), X1]A − [ρ(Y3, X1), X2]A

= ρ(σ(X2, Y3), X1)− ρ(Y3, [X1, X2]A)− ρ(σ(X1, Y3), X2),

ρ(Y3, ρ(Y2, X1)) + ρ(θ(Y2, Y3), X1)− ρ(Y2, ρ(Y3, X1))

= −ψ(σ(X1, Y2), Y3)− [ψ(Y2, Y3), X1]A + ψ(σ(X1, Y3), Y2),

− σ(ρ(Y2, X1), Y3)− σ(X1, θ(Y2, Y3)) + σ(ρ(Y3, X1), Y2)

= −θ(σ(X1, Y2), Y3) + θ(σ(X1, Y3), Y2).

(2.8)

and

⟳ ψ(θ(Y1, Y2), Y3)− ⟳ ρ(Y3, ψ(Y1, Y2)) = 0,

⟳ θ(θ(Y1, Y2), Y3)+ ⟳ σ(ψ(Y1, Y2), Y3) = 0
(2.9)

are to be satisfied for any X1, X2, X3 ∈ Γ(A) and any Y1, Y2, Y3 ∈ Γ(B). Similarly,
the Leibniz identity is satisfied if

ψ(Y1, fY2) = fψ(Y1, Y2),

θ(Y1, fY2) = fθ(Y1, Y2) + LaB(Y1)(f)Y2,

ρ(fY,X) = fρ(Y,X),

ρ(Y, fX) = fρ(Y,X) + LaB(Y )(f)X.

(2.10)

Finally,

[aB(Y ), aA(X)] = aA(ρ(Y,X))− aB(σ(X,Y )),

[aB(Y1), aB(Y2)] = aA(ψ(Y1, Y2)) + aB(θ(Y1, Y2))
(2.11)

are the compatibility conditions for the anchor map (2.4).
If the conditions in (2.8)-(2.11) are satisfied, then the product bundle A ▷◁ψ

B := A×B is a Lie algebroid, called the unified product of A and B. In accordance
with the terminology of [43], we shall also call this product Lie algebroid the
cocycle double cross product of A and B. These observations are summarized in
the following theorem.

Theorem 2.1. Let (A, τ,M, aA, [•, •]A) be a Lie algebroid, and (B, κ,M) a vector
bundle. Equipped with the maps (2.5) and (2.6), the product bundle

(A ▷◁ψ B := A× B, τ▷◁ψ ,M, a▷◁ψ , [•, •]▷◁ψ) (2.12)

is a Lie algebroid along with the Lie bracket (2.7) and the anchor map (2.4) if
and only if the conditions (2.8)-(2.11) are satisfied.

On the contrary, if a Lie algebroid is a product of a Lie subalgebroid of it and a
complementary subbundle, then its structure is determined as a unified product.

Theorem 2.2. Let (M, υ,M, a, [•, •]M) be a Lie algebroid and(
A, τ = υ

∣∣
A,M, aA = a

∣∣
A, [•, •]A = [•, •]M

∣∣
A

)
(2.13)

be a Lie subalgebroid so that M ∼= A×B as vector bundles, for some complemen-
tary vector bundle

(B, κ = υ
∣∣
B,M). (2.14)
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Then M is a unified product Lie algebroid that is, M = A ▷◁ψ B. In this case,
the mappings in (2.5) and (2.6) may be obtained from

[Y1, Y2]M = ψ(Y1, Y2) + θ(Y1, Y2), [Y,X]M = ρ(Y,X)− σ(X,Y ), (2.15)

and they satisfy (2.9)-(2.11).

Let us conclude with the presentation in matrix components. To this end, let
(xi) denote a local coordinate system onM , along with (xi, yα) on A, and let (eα)
be the (projective) basis of Γ(A). Let, similarly, (ea) represents a projective basis
of Γ(B), and let (xi, ya) stand for a system of local coordinates on B. Accordingly,
by a slight abuse of notation, the projective basis for Γ(A ▷◁ψ B) ∼= Γ(A)× Γ(B)
may be denoted by (eα, ea), while a set of local coordinates on which may be
represented by (xi, yα, ya).

Accordingly, the anchor map may be represented by

a▷◁ψ(eα) = (aA)
i
α

∂

∂xi
, a▷◁ψ(ea) = (aB)

i
a

∂

∂xi
, (2.16)

while the representations in (2.6) may be expressed as

ρ(ea, eα) = Rβ
aαeβ, σ(eα, ea) = −Sb

aαeb, (2.17)

respectively. Finally, setting

ψ(ea, eb) = Pα
abeα, θ(ea, eb) = Tdabed, (2.18)

for the mappings in (2.5), the structure of the (unified) product Lie algebroid
may be presented as

[eβ, eγ ]▷◁ψ = Hαβγeα,

[eb, ed]▷◁ψ = Pα
bdeα + Tabdea,

[ea, eα]▷◁ψ = Rβ
aαeβ +Sb

aαeb,

(2.19)

where the former bracket uses the structure functions of the Lie algebroid A,
which were given above in (2.3).

Unified Product Lie Algebras. We find it instructive to record the particular case
of the base manifold M to be a single point. Along the lines of the above con-
structions, this particular choice corresponds to build a Lie algebra out of a Lie
subalgebra and a complementary vector space, which has been studied in [3].
We shall summarize the construction below as a corollary to Theorem 2.1 and
Theorem 2.2 above.

Corollary 2.1. Let (g, [•, •]g) be a Lie algebra, and let h be a vector space,
equipped with two sets of mappings

ψ : h× h → g, θ : h× h → h (2.20)

and
ρ : h× g → g, σ : g× h → h. (2.21)

Then g ▷◁ψ h := g⊕ h is a Lie algebra through

[(X1, Y1), (X2, Y2)]▷◁ψ :=
(
[X1, X2]A − ρ(Y2, X1) + ρ(Y1, X2) + ψ(Y1, Y2),

θ(Y1, Y2)− σ(X2, Y1) + σ(X1, Y2)
)
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for any X1, X2 ∈ g and any Y1, Y2 ∈ h if and only if (assuming the latter map
in (2.21) is a Lie algebra action) the conditions listed in (2.8) and (2.9) are
satisfied. Conversely, if (k, [•, •]k) is a Lie algebra and g ⊆ k is a Lie subalgebra
so that k ∼= g⊕ h as vector spaces, for some complementary vector space h, then
k is a unified product of g and h. The structure maps (2.20) and (2.21), in this
case, may be obtained by

[Y1, Y2]k = ψ(Y1, Y2) + θ(Y1, Y2), [Y,X]k = ρ(Y,X)− σ(X,Y ).

2.2. Bicocycle Double Cross Product Lie Algebroids. In the previous
subsection, we presented the algebraic background of decomposing a Lie algebroid
into a Lie subalgebroid and a vector bundle. In the present subsection, we shall
upgrade that construction to the most general (and hence the most flexible) way
of decomposing a Lie algebroid. Namely, we shall address algebraic foundations
of decomposing a Lie algebroid into two vector bundles admitting all possible
interactions.

Let (A, τ,M) and (B, κ,M) be two vector bundles along with the anchors
aA : A 7→ TM and aB : B 7→ TM , respectively. To the sets (2.5) and (2.6) of
skew-symmetric mappings we shall now adjoin another set

ϕ : Γ(A)× Γ(A) −→ Γ(A), ζ : Γ(A)× Γ(A) −→ Γ(B) (2.22)

of (also skew-symmetric) mappings. In this case, a skew-symmetric bilinear op-
eration on the space of sections of the product bundle A×B, may be formulated
by

Γ(A× B)× Γ(A× B) −→ Γ(A× B),

[(X1, Y1), (X2, Y2)]ζ▷◁ψ =
(
ϕ(X1, X2)− ρ(Y2, X1) + ρ(Y1, X2) + ψ(Y1, Y2),

θ(Y1, Y2)− σ(X2, Y1) + σ(X1, Y2) + ζ(X1, X2)
)
.

(2.23)

We wish to emphasize the mapping ϕ in the first entry of the bracket and the
mapping ζ in the second entry. The product bundle may further be furnished
with the bundle map

a
ζ▷◁ψ := A× B −→ TM, (X,Y ) 7→ aA(X) + aB(Y ) (2.24)

which shall serve as the anchor.
Tedious, though straightforward, calculations reveal at once that (2.23) satisfies

the Jacobi identity if (and only if)

ρ(Y3, ϕ(X1, X2))− ψ(ζ(X1, X2), Y3) + ϕ(ρ(Y3, X2), X1)

= ρ(σ(X2, Y3), X1) + ϕ(ρ(Y3, X1), X2)− ρ(σ(X1, Y3), X2),

σ(ϕ(X1, X2), Y3) + θ(ζ(X1, X2), Y3)− ζ(ρ(Y3, X2), X1)

= σ(X1, σ(X2, Y3))− ζ(ρ(Y3, X1), X2)− σ(X2, σ(X1, Y3)),

ρ(Y3, ρ(Y2, X1)) + ψ(σ(X1, Y2), Y3) + ϕ(ψ(Y2, Y3), X1),

= −ρ(θ(Y2, Y3), X1) + ρ(Y2, ρ(Y3, X1)) + ψ(σ(X1, Y3), Y2),

σ(ρ(Y2, X1), Y3)− θ(σ(X1, Y2), Y3)− ζ(ψ(Y2, Y3), X1),

= −σ(X1, θ(Y2, Y3)) + σ(ρ(Y3, X1), Y2)− θ(σ(X1, Y3), Y2)

(2.25)
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and

⟳ ϕ(ϕ(X1, X2), X3)+ ⟳ ρ(ζ(X1, X2), X3) = 0,

⟳ ζ(ϕ(X1, X2), X3)− ⟳ σ(X3, ζ(X1, X2)) = 0,

⟳ ψ(θ(Y1, Y2), Y3)− ⟳ ρ(Y3, ψ(Y1, Y2)) = 0,

⟳ θ(θ(Y1, Y2), Y3)+ ⟳ σ(ψ(Y1, Y2), Y3) = 0

(2.26)

are satisfied.
Similarly, the Leibniz identity is satisfied if (and only if)

ϕ(X1, fX2) = fϕ(X1, X2) + LaA(X1)(f)X2,

ζ(X1, fX2) = fζ(X1, X2),

ρ(fY,X) = fρ(Y,X),

σ(X, fY ) = fσ(X,Y ) + LaA(X)(f)Y,

ρ(Y, fX) = fρ(Y,X) + LaB(Y )(f)X,

σ(fX, Y ) = fσ(X,Y ),

ψ(Y1, fY2) = fψ(Y1, Y2),

θ(Y1, fY2) = fθ(Y1, Y2) + LaB(Y1)(f)Y2.

(2.27)

Finally (2.24) satisfies the anchor map property if

[aA(X1), aA(X2)] = aA(ϕ(X1, X2)) + aB(ζ(X1, X2)),

[aB(Y ), aA(X)] = aA(ρ(Y,X))− aB(σ(X,Y )),

[aB(Y1), aB(Y2)] = aA(ψ(Y1, Y2)) + aB(θ(Y1, Y2)).

(2.28)

In accordance with the structure of the previous subsection, let us record these
results in the form of a theorem.

Theorem 2.3. Given two vector bundles (A, τ,M) and (B, κ,M), equipped with
(skew-symmetric bilinear) mappings (2.5), (2.6), and (2.22), the product bundle
A × B has the structure of a Lie algebroid through the Lie bracket (2.23) and
the anchor map (2.24) if and only if the conditions listed in (2.25)-(2.28) are all
satisfied.

Following the terminology of [43], in order to highlight the twisted cocycles we
shall denote the product Lie algebroid as A ζ ▷◁ψ B := A × B, and call it the
bicocycle double cross product of A and B.

This theorem generalizes the unified product Lie algebroid structure to the
sum of two vector bundles. More concretely, as a particular instance, if ζ in
(2.22) is identically zero, then one arrives at Theorem 2.1 where unified product
Lie algebroid structure is exhibited.

In contrast to the complexity of the conditions (2.25)-(2.28), the bicocycle
double cross product construction offers utmost flexibility when it comes to de-
compose a Lie algebroid. More precisely, we have the following.

Theorem 2.4. Given a Lie algebroid (M, υ,M, [•, •]M, a), let M ∼= A × B, as
vector bundles, for two complementary vector bundles

(A, τ = υ
∣∣
A,M), (B, κ = υ

∣∣
B,M). (2.29)
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Then M is the bicocycle double cross product of A and B, and the structure maps
are obtained by

[X1, X2]M = ϕ(X1, X2) + ζ(X1, X2),

[Y1, Y2]M = ψ(Y1, Y2) + θ(Y1, Y2),

[Y,X]M = ρ(Y,X)− σ(X,Y ).

(2.30)

Let us conclude, as usual, with the coordinates in the finite dimensional setting.
To this end, let (xi) be a local coordinate system on M , and let (eα) and (ea) be
projective bases of Γ(A) and Γ(B) respectively. In addition to (2.17) and (2.18),
we now have

ϕ(eα, eβ) = Hγαβeγ , ζ(eα, eβ) = Zaαβea, (2.31)

where Hαβγ now fail to be proper structure functions due to the existence of the
twisted cocycle terms Zaαβ. Accordingly the Lie bracket is determined by

[eβ, eγ ]ζ▷◁ψ = Hαβγeα + Zaβγea,

[eb, ed]ζ▷◁ψ = Pα
bdeα + Tabdea,

[ea, eα]ζ▷◁ψ = Rβ
aαeβ +Sb

aαeb,

(2.32)

while the anchor map is computed to be

a
ζ▷◁ψ(eα) = (aA)

i
α

∂

∂xi
, a

ζ▷◁ψ(ea) = (aB)
i
a

∂

∂xi
. (2.33)

Bicocycle Double Cross Product Lie Algebras. In the particular case of M being
a Lie algebroid over a point, the space Γ(M) of sections of M happens to be a
Lie algebra. Then, [43, Prop. 2.1] and [43, Prop. 2.2] follow from Theorem 2.3
and Theorem 2.4 respectively.

Corollary 2.2. Let (g, h) be a pair of vector spaces equipped with mappings (2.5),
(2.6) and (2.22) (considering g = Γ(A) and h = Γ(B)). Then, the direct sum
vector space g ζ ▷◁ψ h := g ⊕ h is a Lie algebra by the bracket (2.23) if and
only if the conditions (2.26) and (2.25) are satisfied. Conversely, if a Lie algebra
(k, [•, •]k) can be realized as a direct sum k ∼= g⊕h of complementary vector spaces
g and h, then k = g ζ▷◁ψ h as Lie algebras.

2.3. Twisted Poisson Algebroids and Dirac Structures. A manifold P
is called an almost Poisson manifold if the space C∞(P ) of smooth functions is
equipped with a bilinear, skew-symmetric bracket {•, •} which satisfy the Leibniz
identity

{F1, F2F3} = {F1, F2}F3 + F2{F1, F3}, (2.34)

for any F1, F2, F3 ∈ C∞(P ). Accordingly, the bracket {•, •} may be represented
by a bivector field Λ as

Λ(dF1, dF2) = {F1, F2}, (2.35)

where dF1, dF2 denote the de-Rham exterior derivatives. An almost Poisson
manifold can thus be represented by a pair (P,Λ) of a manifold and a bivector
field.

For a Hamiltonian function H defined on an almost Poisson manifold P , the
Hamilton’s equation is defined as

du

dt
= {u,H}, (2.36)
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where u is in P . Accordingly, the Hamiltonian vector field XH for a Hamilton
function H is defined to be

XH(F ) = {F,H}. (2.37)

If there exists a non-constant function C such that for all F :

{F,C} = 0 (2.38)

then the almost Poisson framework is called degenerate. Such a function C is
called a Casimir function. It should be noted that a Casimir function cannot
cause any dynamics since the Hamiltonian vector field is identically zero for a
Casimir function.

On an almost Poisson manifold (P, {•, •}) the mapping

J : ∧3C∞(P ) −→ C∞(P ), (F1, F2, F3) 7→ ⟳ {F1, {F2, F3}}. (2.39)

is called the Jacobiator. If the Jacobiator vanishes, then the bracket on the almost
Poisson manifold P satisfies the Jacobi identity. In this case the almost Poisson
manifold (P, {•, •}) is called a Poisson manifold.

From the point of view of bivector fields, the almost Poisson manifold (P,Λ)
to be a Poisson manifold corresponds to

[Λ,Λ] = 0, (2.40)

the bracket on the left hand side being the Schouten-Nijenhuis bracket.
In this case, the characteristic distribution of the Poisson manifold P , that is

the image space of all Hamiltonian vector fields, is integrable. Namely,

X{F1,F2} + [XF1 , XF2 ] = 0. (2.41)

This implies also that the manifold P is foliated by symplectic leaves. This is a
consequence of the non-degeneracy of the Poisson framework on each leaf.

Consider an almost Poisson manifold (P,Λ). The musical mapping Λ♯ induced
by the bivector field Λ is defined to be

Λ♯ : Γ1(P ) −→ X(P ), ⟨β,Λ♯(α)⟩ = Λ(α, β), (2.42)

where the pairing on the left-hand side is the one between the space Γ1(P ) of one-
form sections and the space X(P ) of vector fields. Then sections of the cotangent
bundle πP : T ∗P 7→ P admit a skew-symmetric bilinear operation

[α, β] = LΛ♯(α) (β)− LΛ♯(β) (α)− d(Λ(α, β)). (2.43)

A direct observation reads that this bracket enables us to determine an almost
Lie algebroid (T ∗P, πP , P,Λ

♯, [•, •]) where the musical mapping Λ♯ is the anchor
map. We denote this algebroid by the following commutative diagram:

T ∗P
Λ♯ //

πP ""

TP

τP}}
P

(2.44)

If Λ is a Poisson bivector field that satisfies the Jacobi identity (2.40) then the
Jacobiator for the bracket (2.43) vanishes identically either. Accordingly, the
bracket (2.43) satisfies the Jacobi identity, and the quintuple

(T ∗P, πP , P,Λ
♯, [•, •]) (2.45)
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turns out to be a genuine Lie algebroid.

Dirac Bundle Realization. An almost Dirac structure4 on a manifold M is a
subbundle D of the Whitney sum T ∗M×TM such that D is a maximal isotropic
subbundle of T ∗M × TM with respect to the pairing [21,27,91–93]

(T ∗M × TM)⊕ (T ∗M × TM) −→ R, (v1, u1) · (v2, u2) = u1(v2) + u2(v1).
(2.46)

Therefore we denote a Dirac structure by

D ⊂ T ∗M × TM, D = D⊥. (2.47)

Define a bundle structure τ : D 7→M by projecting a pair (v, u) to the base point
inM . If pr2(D) has a constant rank, then we say that D is a regular almost Dirac
structure, and pr2(D) defines a regular foliation.

An almost Dirac structure is called a Dirac structure if the space Γ(D) of
sections for the fibration D 7→M is closed with respect to the (skew-symmetric)
Courant bracket

[•, •] : Γ(D)⊕ Γ(D) −→ Γ(D),

[(α1, U1), (α2, U2)]] = (LU1α2 − LU2α1 +
1

2
d(α1(U2)− α2(U1)), [U1, U2]).

(2.48)

A Dirac structure D on a manifold M carries a Lie algebroid structure with the
anchor map pr2 : D 7→ TM (projection to the second factor in D). The Lie
algebroid D is determined by

D
pr2 //

τ   

TM

τM||
M

(2.49)

and we shall denote it by

D = (D, τ,M, pr2, [•, •]). (2.50)

Let us now examine the Lie algebroid D from the point of view of the unified
products. We remark that the Dirac bundle D decomposes into the direct sum
of two of its subbundles. The decomposition may simply be given by

(pr1, pr2) ◦∆ : D −→ DT ∗ ×DT , (2.51)

where ∆ is the diagonal map that takes an element in D to a two copies of it
in D × D, while DT and DT ∗

stands for the tangent and the cotangent bundle
parts of D respectively. It is immediate to observe that there is no cocycle term
(ψ = 0) reading that both DT and DT ∗

are Lie subalgebroids of D. So that we
are in the realm of double cross product Lie algebroid category. In particular,
the mutual actions are computed through

[U,α] =
(
LUα− 1

2
dα(U), 0

)
(2.52)

4It is common, in the literature, to represent the Dirac structure as a subbundle of TM×T ∗M .
In the present manuscript, however, we shall reverse the order of the bundles, and determine
the Dirac structure as a subbundle of Whitney sum T ∗M × TM .
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which gives that

ρ(U,α) = LUα− 1

2
dα(U), σ(α,U) = 0. (2.53)

Evidently this reads a semi-direct product Lie algebroid decomposition

D = DT ∗
⋊DT (2.54)

as a particular instance of double cross product Lie algebroid structure where the
action term σ is identically zero.

The Twisted Category. There is an interesting subcategory of almost Poisson
manifolds. In this case, the Jacobi identity (2.40) is still not satisfied, but it is
equal to the pull-back of a closed three-form [64,84]. Let us depict this geometry
in more detail. It is possible to generalize the musical mapping Λ♯ in (2.42) to the
space Γk(P ) of k-forms on P as well. We use the same notation for this mapping
hoping no confusion may arise. We define

Λ♯ : Γk(P ) −→ Xk(P ),

⟨α1 ∧ · · · ∧ αk,Λ♯(ω)⟩ = (−1)k⟨ω,Λ♯(α1) ∧ · · · ∧ Λ♯(αk)⟩,
(2.55)

where the notation Λ♯ on the right-hand side of the equality is the musical map-
ping (2.42) between the first-order tensor fields. By loosening the Jacobi identity
(2.40) as

1

2
[Λ,Λ] = Λ♯(φ) (2.56)

for a closed three-form φ, one defines twisted Poisson structure. Here, Λ♯ notation
refers to the mapping in (2.55) for k = 3. We denote a twisted Poisson manifold
by a three-tuple (P,Λ, φ). In terms of the functions, the condition (2.56) is

⟳ {F1, {F2, F3}} = φ(Λ♯(dF1),Λ
♯(dF2),Λ

♯(dF3)), (2.57)

where Λ♯ is the musical mapping in (2.42). Finally, we note that

X{F1,F2} + [XF1 , XF2 ] = −Λ♯(φ(XF1 , XF2 , •)). (2.58)

Recall the bracket (2.43) defined on the space of one-form sections over an
almost Poisson manifold. Evidently, this bracket does not satisfy the Jacobi
identity for the case of twisted Poisson manifolds. On the other hand, we can
introduce another bracket

[α, β]φ = [α, β] + ιΛ♯(α)∧Λ♯(β)(φ), (2.59)

which satisfies the Jacobi identity. Further, the quintuple
(
T ∗P, πP , P,Λ

♯, [·, ·]φ
)

is a Lie algebroid.
Consider an almost Dirac structure D on a manifold M and, φ-twisted skew-

symmetric Courant bracket [26,84]

[(α1, U1), (α2, U2)]φ = [(α1, U1), (α2, U2)] + φ(U1, U2, •)

= (LU1α2 − LU2α1 +
1

2
d(α1(U2)− α2(U1)) + φ(U1, U2, •), [U1, U2]).

(2.60)

An almost Dirac structure D of T ∗M × TM is a φ-twisted Dirac structure if it
satisfies the integrability condition with respect to the φ-twisted skew-symmetric
Courant bracket [•, •]φ. As in the ordinary case, a twisted Dirac structure D on
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M induces a Lie algebroid on D given by the anchor map pr2|D and the bracket
[•, •]φ. Therefore pr2(D) is an integrable distribution on M . If D is a regular
almost Dirac structure such that pr2(D) ⊂ TM is an integrable distribution on
M , then, there exists an exact three-form φ with respect to whichD is a φ-twisted
Dirac structure [14]. We denote this Lie algebroid by

Dφ = (D, τ,M, pr2, [•, •]φ). (2.61)

In this uniform product analysis, a more complicated decomposition of the
Dirac bundle is encountered. Once again, referring to (2.51), we write D =
DT ∗ ×DT . Notice that DT ∗

is remaining to be a Lie subalgebroid while DT is
not. Let us examine the interaction between these subbundles step by step. The
mutual actions of the bundles are exactly the same with those given in (2.53). If
we take the bracket

[(0, U1), (0, U2)]φ =
(
φ(U1, U2, •), [U1, U2]

)
(2.62)

of two tangent elements, the mappings in (2.5) are interpreted as

θ(U1, U2) = [U1, U2] ∈ Γ(DT ), ψ(U1, U2) = φ(U1, U2, •) ∈ Γ(DT ∗
), (2.63)

that is, φ(U1, U2, •) serves as the twisted cocycle term. So we decompose this
Dirac bundle as

D = DT ∗
▷◁ψ D

T (2.64)

since one of the actions is trivial.

2.4. Decomposition of Jacobi Lie Algebroid. A manifoldM equipped with
a vector field E and a bivector field Λ is a Jacobi manifold if

[Λ,Λ] = 2E ∧ Λ, [E ,Λ] = 0, (2.65)

where [•, •] is the Schouten-Nijenhuis bracket, see, for example, [67,68,74,88]. We
denote a Jacobi manifold by a triple (M,Λ, E). Starting with a Jacobi manifold,
one may define an antisymmetric bilinear bracket

{F1, F2} = Λ(dF1, dF2) + F1E(F2)− F2E(F1) (2.66)

satisfying the Jacobi identity. Furthermore, it fulfills the so-called weak Leibniz
identity

supp({F1, F2}) ⊆ supp(F1) ∩ supp(F2). (2.67)

This observation reads that the algebra is a local Lie algebra in the sense of
Kirillov [63]. The inverse of this assertion is also true, that is, a local Lie alge-
bra determines a Jacobi structure. Important examples of Jacobi structures in-
clude locally conformally symplectic structures [15,16,39,87], locally conformally
cosymplectic structures [11, 24], contact manifolds [10], and cocontact manifolds
[13,28,53,82].

Consider a Jacobi manifold determined by the triplet (M,Λ, E). We determine
a homomorphism from the space of one-forms to the space of vector fields. It is
determined by

Λ♯ : Γ1(M) −→ X(M), ⟨Λ♯(µ), ν⟩ = Λ(µ, ν) (2.68)
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for all µ and ν in Γ1(M). For a smooth real-valued Hamiltonian function H, the
Hamiltonian vector field XH is defined by

XH = Λ♯(dH) +HE . (2.69)

Note that, for the constant function H = 1 the Hamiltonian vector field is E .
The mapping taking a Hamiltonian function H to the Hamiltonian vector field
XH is a Lie algebra homomorphism satisfying

[XF1 , XF2 ] = X{F1,F2}. (2.70)

The cotangent bundle of a Poisson manifold admits a Lie algebroid structure
[17, 25]. For a Jacobi manifold (M,Λ, E), the picture is as follows. Consider the
extended cotangent bundle R×T ∗M as the total space of the first jet prolongation
of the fibration M 7→ R [83]. The space of sections of pM : R × T ∗M 7→ M is
the product space of real valued functions and one-forms F(M) × Γ1(M). So it
consists of pairs (F, µ) where F be a real valued function and µ is a one-form. A
bracket on F(M)× Γ1(M) is defined to be{

(F1, µ), (F2, ν)
}
J
=

(
Λ(ν, µ) + Λ♯(µ)(F2)− Λ♯(ν)(F1) + F1E(F2)− F2E(F1),

LΛ♯(µ)ν − LΛ♯(ν)µ− d(Λ(µ, ν)) + F1LEν − F2LEµ− ιE(µ ∧ ν)
)
,

(2.71)

where Λ♯ is the musical mapping induced by the bivector field Λ. Equipped with
this bracket, the quintuple (R×T ∗M,pM ,M, E+Λ♯, {•, •}J) happens to be a Lie
algebroid, [62]. Here, the anchor map is given by

E + Λ♯ : F(M)× Γ1(M) −→ X(M), (F, µ) 7→ Λ♯(µ) + FE . (2.72)

We refer the reader to [34, 36, 37] for further analysis on this Lie algebroid. If E
is identically zero, then one can consider the cotangent bundle T ∗M as the total
space and the bracket (2.71) reduces to the one on the algebra of one-forms on
the Poisson manifold (hence the Poisson Lie algebroid structure).

In view of Theorem 2.4 we shall now examine this Lie algebroid from the point
of view of the unified products. More precisely, we show that the Jacobi Lie
algebroid fits into the unified product framework.

To this end, we first determine the bracket on the function space by computing
the bracket of two functions as

{F1, F2}J =
(
F1E(F2)− F2E(F1), 0

)
. (2.73)

This reads the space F(M) of functions as a Lie subalgebroid of the Jacobi
algebroid. Furthermore, referring to the previous calculation, we see the Lie
bracket on the induced Lie subalgebroid as

{F1, F2}F(M) = F1E(F2)− F2E(F1). (2.74)

On the other hand, for the space of one-form sections, the situation is different.
This space is not closed under the induced Lie bracket:

{µ, ν}J =
(
Λ(ν, µ),LΛ♯(µ)ν − LΛ♯(ν)µ− d(Λ(µ, ν))− ιE(µ ∧ ν)

)
, (2.75)
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since there appears a term in the first slot manifesting the existence of twisted
cocycle term. Accordingly, taking (2.15) into account, we write

θ(µ, ν) = LΛ♯(µ)ν − LΛ♯(ν)µ− d(Λ(µ, ν))− ιE(µ ∧ ν),
ψ(µ, ν) = Λ(ν, µ).

(2.76)

Notice that we have that the bivector field turns out to be the twisted cocycle
term. Further, we compute the mutual actions using the bracket of cross terms
as

{µ, F}J =
(
Λ♯(µ)(F ),−FLEµ

)
, (2.77)

which gives the following mappings:

ρ(µ, F ) = Λ♯(µ)(F ), σ(F, µ) = FLEµ. (2.78)

Therefore we conclude that the Jacobi Lie algebroid is a unified product of the
Poisson Lie algebroid with the algebra of functions.

3. Dynamics on Product Lie Algebroids

3.1. Reversible Dynamics on Lie Algebroids. Let (A, τ,M, aA, [•, •]A) de-
note a Lie algebroid. We express its dual bundle as (A∗, π,M), where π stands
for the projection dual to τ . The fibers of A∗ over each point m in the base M ,
denoted as A∗

m = π−1(m), are the linear algebraic dual vector spaces of the fibers
of A corresponding to Am = τ−1(m), see [69,70,90].

The space of functions on the dual space A∗ is spanned by two classes of
functions. The first class consists of constant functions on fibers, i.e., functions
on the base M . The second class consists of the linear functions on fibers, i.e.,
the sections of the projection τ . Let us analyze the first class. Given a function

f on M , we can define a function f̂ on A∗ as follows:

f̂ : A∗ −→ R, f̂(u) = f ◦ π(u). (3.1)

The second class will be obtained from the sections of the Lie algebroid A. To

this end, let us take a section X. The linear function X̂ on A∗, for every u in
A∗, is defined as:

X̂ : A∗ −→ R, X̂(u) = ⟨u,X ◦ π(u)⟩. (3.2)

For these functions, a Poisson bracket on A∗ is defined as:

{f̂ , ĝ}A∗ = 0, {f̂ , X̂}A∗ = ̂LaA(X)f, {X̂1, X̂2}A∗ = ̂[X1, X2]A. (3.3)

Here, the value of the second bracket on the right-hand side is the directional
derivative of the function f in the direction of the vector field aA(X).

In finite dimensions, let (xi) be a local coordinate system on M and (xi, yα)
be a local coordinate system on A. In parallel, choose the basis set (eα) for the
section space Γ(A). Let us choose the dual basis (eα) for the section space of
A∗. Assuming (xi), (xi, yα), and (xi, yα) local coordinates on M , A, and A∗

respectively, the Poisson brackets in (3.3) take the form [78,89,90]:

{xi, xj}A∗ = 0, {xi, yα}A∗ = (aA)
i
α, {yα, yβ}A∗ = Hγαβyγ , (3.4)
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where (aA)
i
α represents the components of the anchor map in the chosen bases,

and Hγαβ are the structure functions determined in equation (2.3). In light of

these local representations, the Poisson bivector corresponding to the Poisson
bracket is computed to be

ΛA∗ =
1

2
Hγαβyγ

∂

∂yα
∧ ∂

∂yβ
+ (aA)

i
α

∂

∂xi
∧ ∂

∂yα
. (3.5)

For a Hamiltonian function H defined on the total space of the dual bundle
A∗ the Hamilton’s equation is

du

dt
= XH(u) = {u,H}A∗ . (3.6)

Accordingly, in finite dimensions, the Hamiltonian vector field XH is computed
to be

XH = (aA)
i
α

∂H
∂yα

∂

∂xi
−
(
Hγαβyγ

∂H
∂yβ

+ (aA)
i
α

∂H
∂xi

)
∂

∂yα
. (3.7)

The integral curves of the section given by this vector field satisfy Hamilton’s
equations in coordinates:

dxi

dt
= (aA)

i
α

∂H
∂yα

,
dyα
dt

= −Hγαβyγ
∂H
∂yβ

− (aA)
i
α

∂H
∂xi

. (3.8)

Lagrangian Dynamics on Lie Algebroids. Let L = L(xi, yα) be a Lagrangian
function on the Lie algebroid A. Referring the reader to [78,89] for a coordinate-
free study of the Lagrangian dynamics on Lie algebroids without referencing the
Poisson structure on the dual bundle, we shall hereby consider the Legendre
transformation (fiber derivative) as a map from the Lie algebroid to the dual
bundle as

FL : A −→ A∗, (xi, yα) 7→
(
xi, yα =

∂L

∂yα
)

(3.9)

for a more accessible way. Assuming that the Lagrangian is regular (that is
non-degenerate) we argue that the Legendre transformation is a (at least local)
diffeomorphism. Using the Legendre transformation, we pull the Poisson struc-
ture on the dual bundle A∗ to the Lie algebroid, which yields a Poisson structure,
denoted by {•, •}A, on the Lie algebroid. Define the energy function determined
by L as

EL : A −→ R, EL(x
i, yα) =

∂L

∂yα
yα − L(xi, yα). (3.10)

On the space A, the dynamics is computed to be

dxi

dt
= {xi, EL}A,

dyα

dt
= {yα, EL}A. (3.11)

Explicitly, the Euler-Lagrange equations on the Lie algebroid may be presented
as follows, [89]:

d

dt

∂L

∂yα
= (aA)

i
α

∂L

∂xi
+ Hγαβy

β ∂L

∂yγ
,

dxi

dt
= (aA)

i
αy

α. (3.12)
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The Lie Algebra Framework. In this paragraph, we shall examine the dynamical
equations in the level of Lie algebras. To this end we letM = {e}, and accordingly
the achor map to be trivial. Then we arrive at a Lie algebra g as the space of
sections. The dual space of this space is g∗. The Poisson bracket in (3.3) reduces
to so-called Lie-Poisson bracket. For two functions f = f(u) and h = h(u) defined
on the dual space g∗, the Lie-Poisson bracket is defined to be

{f, h}(u) =
〈
u,

[δf
δu
,
δh

δu

]〉
= ⟨u, adδf/δu

δh

δu
⟩, (3.13)

where the pairing is the natural one between g∗ and g whereas the bracket inside
pairing is the Lie algebra bracket on g. Here, ad refers to the adjoint action of
the Lie algebra on itself. We remark that δf/δu is the Fréchet derivative for the
infinite dimensional case and partial derivative for the finite dimensional case. We
also assume the reflexivity condition. In this reduced picture, the Hamiltonian
vector field on g∗ generated by a Hamiltonian function h is then computed to be

Xh(u) = −ad∗δh/δuu, (3.14)

where ad∗ is the linear algebraic dual of the adjoint action ad. In the Lie-Poisson
picture, the dynamics of an observable f , governed by a Hamiltonian function h,
is computed to be

ḟ = {f, h}(u) = −
〈
ad∗δh/δuu,

δf

δu

〉
. (3.15)

This bracket is exactly the one in (3.3) where the Lie algebroid is chosen to be a
Lie algebra. Then we have the Lie-Poisson equation on g∗ given by

du

dt
= −ad∗δh/δuu. (3.16)

For finite dimensions, in coordinates (yα) on g∗, the Lie-Poisson bracket is com-
puted to be

{yα, yβ}g∗ = Hγαβyγ , (3.17)

where in this case, Hγαβ refers to the structure constants of the Lie algebra. Re-

ferring to the local Hamiltonian dynamics (3.8) on the Lie algebroid setting, we
write the Lie-Poisson equations on the dual of a Lie algebroid as

dyα
dt

= −Hγαβyγ
∂h

∂yβ
. (3.18)

From the Lagrangian dynamics point of view, we choose a Lagrangian function
l = l(X) on g. This reduces the Euler-Lagrange equations (3.12) on the Lie
algebroid setting to the Euler-Poincaré equation

d

dt

δl

δX
= ad∗X

δl

δX
. (3.19)

on the Lie algebra. In finite dimensions, we choose (yα) as coordinates on g, to
obtain

d

dt

∂l

∂yα
= Hγαβy

β ∂l

∂yγ
. (3.20)
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3.2. Reversible Dynamics on BDCP Lie Algebroids. This section is re-
served for both the Lagrangian dynamics on bicocycle double cross product Lie
algebroids, and the Hamiltonian dynamics on the dual space. This will give us
both the collective motion of the dynamical systems as well as the decomposi-
tion. We start with the bicocycle double cross product Poisson structure and the
bicocycle double cross product Hamiltonian dynamics.

BDCP Poisson Bracket. We first recall the space of functions defined in (3.1) and
(3.2) and carry them to the dual space (A∗

ζ▷◁ψ B∗, π
ζ▷◁ψ ,M) of the unified prod-

uct Lie algebroid structure (Aζ ▷◁ψ B, τ
ζ▷◁ψ ,M, a

ζ▷◁ψ , [•, •]ζ▷◁ψ). The total space
is topologically equivalent to A∗×B∗ but we denote it by (A∗

ζ ▷◁ψ B∗, π
ζ▷◁ψ ,M) in

order to highlight its product character. The space of functions on the dual space
A∗
ζ ▷◁ψ B∗ is spanned by three classes of functions. The first class of functions

are
f̂ : A∗

ζ▷◁ψ B∗ −→ R, f̂(u) = f ◦ π
ζ▷◁ψ(u). (3.21)

These functions are constants on the fibers. The second and third classes of
functions come from the section of the individual spaces. Considering the sections
X in Γ(A) and Y in Γ(B), we determine the linear independent sections of Aζ ▷◁ψ
B. We denote these sections as X and Y respectively, in order not to cause any
notational inflation. That is, we take X = (X, 0) and Y = (0, Y ). They, then,
give rise to functions on the total space as

Ẑ : A∗
ζ▷◁ψ B∗ −→ R, Ẑ(w) = ⟨w,Z ◦ π

ζ▷◁ψ(w)⟩, (3.22)

where Z is either X or Y . These functions are linear on the fibers. Therefore,
in the light of the Poisson bracket in (3.3), we present the Poisson bracket on
the dual space A∗

ζ ▷◁ψ B∗ of the bicocycle double cross product Lie algebroid
A ζ▷◁ψ B as

{f̂ , ĝ}A∗
ζ▷◁ψB∗ = 0,

{f̂ , X̂}A∗
ζ▷◁ψB∗ = ̂La

ζ▷◁ψ
(X)f,

{f̂ , Ŷ }A∗
ζ▷◁ψB∗ = ̂La

ζ▷◁ψ
(Y )f,

{X̂1, X̂2}A∗
ζ▷◁ψB∗ = ̂ϕ(X1, X2) + ̂ζ(X1, X2)

{Ŷ1, Ŷ2}A∗
ζ▷◁ψB∗ = ̂ψ(Y1, Y2) + ̂θ(Y1, Y2)

{Ŷ , X̂}A∗
ζ▷◁ψB∗ = ̂ρ(Y,X)− ̂σ(X,Y ),

(3.23)

where one can consider the bracket on the fourth line as the result of the bracket
of two elements X̂1 and X̂2 taking values both in A and B, whereas the terms

on the right side of the fifth line as the result of the bracket of two elements Ŷ1
and Ŷ2 taking values both in A and B. The sixth line is the manifestation of the
(weak) representations.

The Local Picture. Let us now, for a brief moment, turn our attention to the
general case of the dual space A∗

ζ ▷◁ψ B∗ of the bicocycle double cross product
Lie algebroid A ζ ▷◁ψ B. We shall then examine the Poisson structure listed
above. Let (xi), (xi, yα), and (xi, yα) represents local coordinates on the base
manifold M , on the Lie algebroid A, and the dual space A∗ respectively. On the
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vector bundle B we choose the local coordinates (xi, ya), and on the dual space
B∗ we take (xi, ya). As a result, on the space A ζ▷◁ψ B we have the induced local
coordinates (xi, yα, ya), and on the dual bundle A∗

ζ ▷◁ψ B∗ we have (xi, yα, ya).
In this case, referring to the local characterizations (2.32), the bicocycle double
cross product Poisson bracket (3.3) takes the form:

{xi, xj}A∗
ζ▷◁ψB∗ = 0,

{xi, yα}A∗
ζ▷◁ψB∗ = (aA)

i
α,

{xi, ya}A∗
ζ▷◁ψB∗ = (aB)

i
a,

{yα, yβ}A∗
ζ▷◁ψB∗ = Hγαβyγ + Zaαβya,

{ya, yb}A∗
ζ▷◁ψB∗ = Pγ

abyγ + Tdabyd,

{ya, yβ}A∗
ζ▷◁ψB∗ = Rγ

aβyγ +Sd
aβyd.

(3.24)

See that Hγαβ is standing for the ϕ mapping, Zaαβ is for the ζ mapping, Pγ
ab is due

to ψ, and Tdab represents θ.
Let us examine the Poisson bracket on the particular instances of the bicocycle

double cross product construction. In case the ζ term is zero, we arrive at the
unified product Poisson structure which we denote by {•, •}A∗▷◁ψB∗ . If both ζ
and ψ are zero, then we arrive at the double cross product Poisson structure
{•, •}A∗▷◁B∗ . If ζ, θ and ρ are all zero, then we have cocycle extension Poisson
bracket {•, •}A∗⋉ψB∗ . The case of the dual space of the double cross product Lie
algebra has been studied in [49,52].

Hamiltonian Dynamics on the Dual of BDCP Lie Algebroids. Given a Hamilton-
ian function H = H(xi, yα, ya) on the dual bundle A∗

ζ ▷◁ψ B∗, let us recall the
Hamiltonian equation

du

dt
= {u,H}A∗

ζ▷◁ψB∗ (3.25)

where the Poisson bracket on the right hand side is the one defined in (3.23).
In local coordinates (xi, yα, ya) on A∗

ζ ▷◁ψ B∗ and in view of the local Poisson
brackets in (3.24), we compute the Hamiltonian vector field as

XH =
(
(aB)

i
a

∂H
∂ya

+ (aA)
i
α

∂H
∂yα

) ∂

∂xi

−
(
Zdαβyd

∂H
∂yβ

+ Hγαβyγ
∂H
∂yβ

−Sd
bαyd

∂H
∂yb

−Rγ
bαyγ

∂H
∂yb

+ (aA)
i
α

∂H
∂xi

)
∂

∂yα

−
(
Sd
aβyd

∂H
∂yβ

+ Tdabyd
∂H
∂yb

+Pγ
abyγ

∂H
∂yb

+Rγ
aβyγ

∂H
∂yβ

+ (aA)
i
a

∂H
∂xi

)
∂

∂ya
.

(3.26)
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In accordance with this, what we call the bicocycle double cross product Hamilton’s
equations are computed to be

dxi

dt
= (aB)

i
a

∂H
∂ya

+ (aA)
i
α

∂H
∂yα

,

dyα
dt

= −(aA)
i
α

∂H
∂xi

− Hγαβyγ
∂H
∂yβ

+ Sd
bαyd

∂H
∂yb︸ ︷︷ ︸

rep. of A on B

− Zdαβyd
∂H
∂yβ︸ ︷︷ ︸

cocycle term ζ

+ Rγ
bαyγ

∂H
∂yb︸ ︷︷ ︸

rep. of B on A

,

dya
dt

= −(aB)
i
a

∂H
∂xi

− Tdabyd
∂H
∂yb

− Sd
aβyd

∂H
∂yβ︸ ︷︷ ︸

rep. of A on B

− Pγ
abyγ

∂H
∂yb︸ ︷︷ ︸

cocycle term ψ

− Rγ
aβyγ

∂H
∂yβ︸ ︷︷ ︸

rep. of B on A

.

(3.27)

The (Dual) Lie Algebra Framework. Having formulated them for bicocycle double
cross product Lie algebroids, we can now present the ingredients of the Poisson
and the Hamiltonian dynamics for bicocycle double cross product Lie algebras
without much difficulty. In order to achieve this we assume the base manifold
to be a singleton, and the anchor maps to be trivial. In this case, one has
two vector spaces g and h and their bicocycle double cross product Lie algebra
g ζ ▷◁ψ h equipped with the Lie bracket [•, •]

ζ▷◁ψ . Correspondingly, the dual
space g∗ ζ▷◁ψ h∗ is endowed with the bicocycle double cross product Lie-Poisson
bracket, which in local coordinates is given by

{yα, yβ}g∗ζ▷◁ψh∗ = Hγαβyγ + Zaαβya,

{ya, yb}g∗ζ▷◁ψh∗ = Pγ
abyγ + Tdabyd,

{ya, yβ}g∗ζ▷◁ψh∗ = Rγ
aβyγ +Sd

aβyd,

(3.28)

where the coefficients are those that determine the representations / twisted cocy-
cles just as in the Lie algebroid setting. Given Hamiltonian function h = h(yα, ya)
on the dual space, the bicocycle double cross product Lie-Poisson equations are
then computed to be

dyα
dt

= −Hγαβyγ
∂h

∂yβ
+ Sd

bαyd
∂h

∂yb︸ ︷︷ ︸
rep. of g on h

− Zdαβyd
∂h

∂yβ︸ ︷︷ ︸
cocycle term ζ

+ Rγ
bαyγ

∂h

∂yb︸ ︷︷ ︸
rep. of h on g

,

dya
dt

= −Tdabyd
∂h

∂yb
− Sd

aβyd
∂h

∂yβ︸ ︷︷ ︸
rep. of g on h

− Pγ
abyγ

∂h

∂yb︸ ︷︷ ︸
cocycle term ψ

− Rγ
aβyγ

∂h

∂yβ︸ ︷︷ ︸
rep. of h on g

.

(3.29)

Lagrangian Dynamics on the BDCP Lie Algebroids. Let us fix a local coordinate
system on the Lie algebroid A ζ ▷◁ψ B as (xi, ȳκ) := (xi, yα, ya). Similar to
the Euler-Lagrange equations on a Lie algebroid, the Euler-Lagrange equations
generated by a Lagrangian function L on the product Lie algebroid A ζ▷◁ψ B (in
local coordinates) are two sets of equations. The first set of equations can be
directly interpreted as:

dxi

dt
= (aA)

i
α y

α + (aB)
i
ay
a. (3.30)
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The second set of equations can be expressed as:

d

dt

∂L

∂yβ
= (aA)

i
β

∂L

∂xi
+ Hαβγy

γ ∂L

∂yα
− Rα

dβy
d ∂L

∂yα︸ ︷︷ ︸
rep. of B on A

− Sa
dβy

d ∂L

∂ya︸ ︷︷ ︸
rep. of A on B

+ Zaβγy
γ ∂L

∂ya︸ ︷︷ ︸
cocycle term ζ

,

d

dt

∂L

∂yb
= (aB)

i
b

∂L

∂xi
+ Tabdy

d ∂L

∂ya
+ Sa

bγy
γ ∂L

∂ya︸ ︷︷ ︸
rep. of A on B

+ Rα
bγy

γ ∂L

∂yα︸ ︷︷ ︸
rep. of B on A

+ Pα
bdy

d ∂L

∂yα︸ ︷︷ ︸
cocycle term ψ

.

(3.31)

The Lie Algebra Framework. Let us examine the Euler-Poincaré dynamics on the
bicocycle double cross product Lie algebra g ζ▷◁ψ h. To this end, we set the terms
responsible for the anchor maps in (3.31) to be trivial. Then, given a Lagrangian
function l = l(yα, ya), in local coordinates (yα, ya), the bicocycle double cross
product Euler-Poincaré equations take the form

d

dt

∂l

∂yβ
= Hαβγy

γ ∂l

∂yα
− Rα

dβy
d ∂l

∂yα︸ ︷︷ ︸
rep. of h on g

−Sa
dβy

d ∂l

∂ya︸ ︷︷ ︸
rep. of g on h

+ Zaβγy
γ ∂l

∂ya︸ ︷︷ ︸
cocycle term ζ

,

d

dt

∂l

∂yb
= Tabdy

d ∂l

∂ya
+ Sa

bγy
γ ∂l

∂ya︸ ︷︷ ︸
rep. of g on h

+ Rα
bγy

γ ∂l

∂yα︸ ︷︷ ︸
rep. of h on g

+ Pα
bdy

d ∂l

∂yα︸ ︷︷ ︸
cocycle term ψ

.

(3.32)

3.3. Irreversible Dynamics via Real Line Extension. Hamiltonian dynam-
ics is defined on Poisson (more specifically symplectic) manifolds that offer a re-
versible motion, where the Hamiltonian function is preserved. A generalization
of the classical Hamiltonian dynamics that allows the irreversible dynamics is
achieved on contact manifolds. In the present subsection, we shall recall this
formalism.

Contact Manifolds. Let N be an odd-dimensional manifold, say, of dimension
(2n+1). A contact structure onN is a maximally non-integrable smooth distribu-
tion of codimension one, defined locally by a one-form η with the non-integrability
condition

dηn ∧ η ̸= 0. (3.33)

Such a one-form η is called a (local) contact form [10, 66]. We consider the
existence of a global contact one-form and denote a contact manifold by (N, η).
Given a contact one-form η, the vector field R satisfying

ιRη = 1, ιRdη = 0 (3.34)
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is unique, and is called the Reeb vector field. For a contact manifold (N, η), there
is a musical isomorphism

♭ : X(N) −→ Γ1(N), ξ 7→ ιξdη + ⟨η, ξ⟩η. (3.35)

We denote the inverse of (3.35) by ♯. Referring to this, we define a bivector field
Λ on N as

Λ(α, β) = dη(♯α, ♯β). (3.36)

The pair (Λ,R) gives a Jacobi structure [68, 74], since they satisfy (2.65). This
realization allows us to define a Jacobi (contact) bracket

{F,H}c = Λ(dF, dH) + FR(H)−HR(F ). (3.37)

We do note that the above bracket satisfies the Jacobi identity, but not the
Leibniz identity.

Dissipation on Extended Manifolds. Let (N, η) be a a contact manifold. We define
the contact Hamiltonian vector field ξH as [18,20,31,33,45]

ιξHdη = dH−R(H)η, ιξHη = −H. (3.38)

The relationship between the Hamiltonian vector field and the contact bracket is
given by the equation

ξH(F ) = {F,H}J − FR(H). (3.39)

Given Hamiltonian function H, the contact Hamiltonian vector field is a strict
contact vector field if and only if R(H) = 0. Accordingly, one has strict contact
Hamiltonian vector field as

ιξHdη = dH, ιξHη = −H. (3.40)

In order to observe the dissipative behaviour of this dynamics we exhibit two
calculations:

LξHH = −R(H)H, LξH(η ∧ (dη)n) = −(n+ 1)Rc(H)η ∧ (dη)n, (3.41)

where the former one is showing that the Hamiltonian function is not preserved
under the Hamiltonian function, whereas the latter gives the dissipation of the
volume form η ∧ (dη)n (given for (2n + 1)-dimenisonal contact manifold). Ac-
cordingly, the divergence of the contact Hamiltonian vector field is computed to
be

div(ξH) = −(n+ 1)R(H). (3.42)

Let now Q be a manifold, and let T ∗Q be its cotangent bundle equipped with
the canonical symplectic two-form ΩQ defined to be the exterior derivative of the
canonical one-form θQ with the negative sign. In Darboux coordinates (xi, pi) on
the cotangent bundle T ∗Q, the canonical one-form and the canonical symplectic
two-form can thus be presented as

ΘQ = pidx
i, ΩQ = −dΘQ = dxi ∧ dpi (3.43)

respectively. A generic example of a contact manifold is the extended symplectic
manifold N = T ∗Q × R. It is to write the contact one-form referring to the
canonical one-form ΘQ and the differential one-form dz defined on R. More
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precisely, by the abuse of the notation (we denote pullbacks and pushforwards of
the tensor fields by the same notation not to cause notation inflation), we have

η = dz −ΘQ. (3.44)

This construction will be our main interest in the sequel, as it involves the addition
of the dissipative terms to the dynamics on Lie algebroids.

In the Darboux coordinates (xi, pi, z) on N , the contact one-form and the Reeb
field are computed to be

η = dz − pidx
i, R =

∂

∂z
. (3.45)

Furthermore, in the Darboux coordinates, the bivector ΛT ∗Q×R is computed to
be

ΛT ∗Q×R =
∂

∂xi
∧ ∂

∂pi
+ pi

∂

∂z
∧ ∂

∂pi
. (3.46)

Here, the first term is due to the canonical Poisson bivector field ΛT ∗Q on T ∗Q
obtained from the symplectic two-form ΩQ. By defining the Liouville vector field

∆∗(xi, pi, z) = pi
∂

∂pi
(3.47)

on the extended cotangent bundle, we can write the contact bivector field as

ΛT ∗Q×R = ΛT ∗Q +R∧∆∗. (3.48)

In the local picture, the contact bracket (3.37) is written as

{F,H}c = ∂F

∂xi
∂H
∂pi

− ∂F

∂pi

∂H
∂xi

+

(
F − pi

∂F

∂pi

)
∂H
∂z

−
(
H− pi

∂H
∂pi

)
∂F

∂z
. (3.49)

Hence, the contact Hamiltonian vector field for a given Hamiltonian function
H = H(xi, pi, z) becomes

ξH =
∂H
∂pi

∂

∂xi
−
(
∂H
∂xi

+
∂H
∂z

pi

)
∂

∂pi
+

(
pi
∂H
∂pi

−H
)
∂

∂z
. (3.50)

We thus obtain the contact Hamilton’s equations for H as

dxi

dt
=
∂H
∂pi

,
dpi
dt

= −∂H
∂xi

− pi
∂H
∂z

,
dz

dt
= pi

∂H
∂pi

−H. (3.51)

Dissipative Lagrangian Dynamics. In order to facilitate dissipation within the
Lagrangian dynamics, on the tangent bundle TQ, we extend the tangent bun-
dle by the real line. We thus arrive at the extended tangent bundle TQ × R,
equipped with the induced coordinates (xi, ẋi, z). Hence, the dissipative dynam-
ics is generated by a Lagrangian function L = L(xi, ẋi, z) on TQ × R. Here, we
assume (xi, ẋi, z) as the coordinates on the extended tangent bundle. To derive
the dynamical equations governed by such a Lagrangian function, the application
of the Herglotz principle is necessary. This principle is defined by an action func-
tional, as described in [30, 58–60], where we refer the reader to [32] for a more
comprehensive account involving singular Lagrangians. In the present work, we
shall stick to the regular Lagrangians.
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For a regular Lagrangian function L, the fiber derivative determines a diffeo-
morphism from the extended tangent bundle TQ×R to the extended cotangent
bundle T ∗Q× R as

FL : TQ× R −→ T ∗Q× R, (xi, ẋi, z) 7→ (xi,
∂L

∂ẋi
, z). (3.52)

We pull the contact one-form η on T ∗Q × R and write it as ηT . This reads a
contact manifold (TQ× R, ηT ). The energy function is then defined to be

EL(x
i, ẋi, z) = ẋi

∂L

∂ẋi
− L(xi, ẋi, z), (3.53)

via which we determine the contact motion on the extended tangent bundle TQ×
R. On the dual picture, the energy function corresponds to the Hamiltonian
function

H(xi, pi, z) = ẋipi − L(xi, ẋi, z). (3.54)

Hence, the contact dynamics (3.40) given in coordinate-free manner, assuming
H := EL and η := ηT as the contact Hamiltonian function and the contact
one-form, respectively, we arrive at the Herglotz equations (also known as the
generalized Euler–Lagrange equations)

d

dt

∂L

∂ẋi
− ∂L

∂xi
=
∂L

∂ẋi
∂L

∂z
. (3.55)

Removing the explicit dependence of z reduces it to the classical Euler-Lagrange
equations.

3.4. Irreversible Dynamics on Lie Algebroids. Along the lines of [8,9,85],
let (A, τ,M, aA, [•, •]A) be a Lie algebroid and (A∗, π,M) is its dual vector bundle
equipped with the associated Poisson structure ΛA∗ defined globally in (3.3),
which is locally given by (3.5). Since the dissipative dynamics is formulated by
the canonical Poisson structure of the real line R extension, we extend the Poisson
manifold A∗ by R to define the contactization of the Poisson structure ΛA∗ . We
thus arrive at a Jacobi manifold structure on A∗ × R. Accordingly, setting the
local coordinates (xi, yα, z) on the extended bundle A∗ × R, and referring to
(3.48), we define the bivector field

ΛA∗×R = ΛA∗ +R∧∆∗ =
1

2
Hγαβyγ

∂

∂yα
∧ ∂

∂yβ
+

∂

∂xi
∧ ∂

∂yα
+ yα

∂

∂z
∧ ∂

∂yα
(3.56)

where the Reeb field and the Liouville vector field are given by

R =
∂

∂z
, ∆∗ = yα

∂

∂yα
, (3.57)

respectively. It then follows that the pair (ΛA∗×R,R) determines a Jacobi struc-
ture. As such, we can define a Jacobi bracket on A∗ × R as

{F,H}j = ΛA∗×R(dF, dH) + FR(H)−HR(F ). (3.58)
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Assuming the local coordinates (xi, yα, z) on the extended space, the local real-
ization of this bracket is computed as

{xi, xj}A∗×R = 0,

{z, xi}A∗×R = 0,

{z, yα}A∗×R = yα,

{xi, yα}A∗×R = (aA)
i
α,

{yα, yβ}A∗×R = Hγαβyγ ,

(3.59)

where (aA)
i
α is the anchor map, whereas Hγαβ are the structure functions of the

Lie algebroid.

Hamiltonian Dynamics on Extended Lie Algebroids. Given a Hamiltonian func-
tion H = H(xi, yα, z) on the extended dual space A∗×R, the Hamiltonian vector
field is defined to be

ξH(F ) = {F,H}j − FR(H). (3.60)

So, in the local coordinates (xi, yα, z) on A∗ ×R, the Hamiltonian vector field is
computed to be

ξH = (aA)
i
α

∂H
∂yα

∂

∂xi
−
(
(aA)

i
α

∂H
∂xi

+Hγαβyγ
∂H
∂yβ

+yα
∂H
∂z

) ∂

∂yα
+

(
yα
∂H
∂yα

−H
)
∂

∂z
.

(3.61)
Consequently, the dissipative Hamiltonian dynamics on the extended dual space
A∗ × R, of the Lie algebroid A, is given by

dxi

dt
= (aA)

i
α

∂H
∂yα

,

dyα
dt

= −(aA)
i
α

∂H
∂xi

− Hγαβyγ
∂H
∂yβ

− yα
∂H
∂z

,

dz

dt
= yα

∂H
∂yα

−H.

(3.62)

A particular choice is A = TM , and the anchor map to be the identity. In this
case, A∗ = T ∗M , the Hamiltonian vector field reduces to the contact Hamilton-
ian vector field (3.50), and the dynamical equations turn out to be the contact
Hamilton’s equations (3.51).

On the other extreme, if we choose the base manifold M = {e} as a singleton,
then the Lie algebroid A becomes a Lie algebra g, which will be investigated in
greater detail below.

Lagrangian Dynamics on Extended Lie Algebroids. We shall now obtain the La-
grangian picture of the real line extension that controls the dissipative terms.
Although, in general, it is possible to formulate the theory for any (even sin-
gular) Lagrangian function, we shall hereby confine ourselves with the regular
Lagrangians.

Let, now, L = L(xi, yα, z) be Lagrangian function on the extended Lie alge-
broidA×R with (local) coordinates (xi, yα, z). We then define the fiber derivative
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(or the Legendre transformation)

FL : A× R −→ A∗ × R, (xi, yα, z) 7→ (xi,
∂L

∂yα
, z, (3.63)

which is at least a local diffeomorphism as a result of the regularity of the La-
grangian function. This, then, allows us to pull the Jacobi structure (ΛA∗×R,R)
back to the extended Lie algebroid. We denote the Jacobi structure on A × R
by the pair (ΛA×R,R). This pair determines a Jacobi bracket {•, •}A×R on the
extended space. Defining the energy function

EL(x
i, yα, z) = yα

∂L

∂yα
− L(xi, yα, z) (3.64)

as the Hamiltonian function, we can determine the equations of motion as in the
form of Herglotz equations

d

dt

∂L

∂yα
− (aA)

i
α

∂L

∂xi
= Hγαβy

β ∂L

∂yγ
+
∂L

∂z

∂L

∂yα
,

dxi

dt
= (aA)

i
αy

α,

dz

dt
= L(xi, yα, z).

(3.65)

Note that in the case of the Lie algebroid A = TM , the equations (3.65) are just
Herglotz equations (3.65) to the classical form in (3.55).

Lie Algebra Framework. In the case of the base manifold is a point, the extended
dual space happens to be g∗ × R. Then assuming the coordinates (yα, z), the
Jacobi bracket may be presented as

{z, yα}g∗×R = yα,

{yα, yβ}g∗×R = Hγαβyγ .
(3.66)

Hence, given a Hamiltonian function h = h(yα, z) on g∗ × R, the Lie-Poisson-
Herglotz equations are obtained as

dyα
dt

= −Hγαβyγ
∂h

∂yβ
− yα

∂h

∂z
,

dz

dt
= yα

∂h

∂yα
− h.

(3.67)

As for a Lagrangian function l = l(yα, z) on g× R, the equations (3.65) reduces
to the Euler-Poincaré-Herglotz equations

d

dt

∂l

∂yα
+ Hγαβy

β ∂l

∂yγ
=
∂l

∂z

∂l

∂yα
,

dz

dt
= l(yα, z).

(3.68)
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3.5. Irreversible Dynamics on Bicocycle Double Cross Product Lie Al-
gebroids. The present subsection is reserved for the (de)coupling of the dynam-
ical systems equipped with irreversible characters, considered in the previous
subsection.

To this end, we first recall bicocycle double cross product Lie algebroid A ζ▷◁ψ
B of Subsection 2.2, with coordinates (xi, yα, ya). In accordance with this, we
shall assume the coordinates (xi, yα, ya) on the dual bundle A∗

ζ▷◁ψ B∗, on which
the Poisson structure was given in Subsection 3.2. The bicocycle double cross
product Poisson bracket, then, was given in (3.23) in a coordinate-free way, and
in (3.24) using coordinates.

We then extend the bicocycle double cross product Lie algebroid with the real
line to arrive at the extended product space A ζ▷◁ψ B×R with local coordinates
(xi, yα, ya, z). The dual of this bundle is A∗

ζ ▷◁ψ B∗ × R with local coordinates
(xi, yα, ya, z).

Dissipative Hamiltonian Dynamics on the Dual BDCP Lie Algebroids. We ex-
tend the Poisson brackets in (3.24) following the approach defined in Subsection
3.4. More precisely, we merge (3.24) with the Jacobi brackets in (3.59), where
the extension with the action is examined. This itinerary map leads us to the
following set of Jacobi brackets

{xi, xj}A∗
ζ▷◁ψB∗×R = 0,

{z, xi}A∗
ζ▷◁ψB∗×R = 0,

{z, yα}A∗
ζ▷◁ψB∗×R = yα,

{z, ya}A∗
ζ▷◁ψB∗×R = ya,

{xi, yα}A∗
ζ▷◁ψB∗×R = (aA)

i
α,

{xi, ya}A∗
ζ▷◁ψB∗×R = (aB)

i
a,

{yα, yβ}A∗
ζ▷◁ψB∗×R = Hγαβyγ + Zaαβya,

{ya, yb}A∗
ζ▷◁ψB∗×R = Pγ

abyγ + Tdabyd,

{ya, yβ}A∗
ζ▷◁ψB∗×R = Rγ

aβyγ +Sd
aβyd

(3.69)

which we call the dissipative bicocycle double cross product Jacobi structure.
Accordingly, for a Hamiltonian function H = H(xi, yα, ya, z) defined on the

extended bundle A∗
ζ ▷◁ψ B∗ × R, the Hamilton’s equations which we call the

dissipative bicocycle double cross product Hamilton’s equations, is the following
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set of equations:

dxi

dt
= (aA)

i
α

∂H
∂yα

+ (aA)
i
a

∂H
∂ya

,

dyα
dt

= −
(
(aA)

i
α

∂H
∂xi

+ Zaαβya
∂H
∂yβ

+ Hγαβyγ
∂H
∂yβ

−Rγ
bαyγ

∂H
∂yb

−Sd
bαyd

∂H
∂yb

+ yα
∂H
∂z

)
,

dya
dt

= −
(
(aB)

i
a

∂H
∂xi

+Rγ
aβyγ

∂H
∂yβ

+Sb
aβyb

∂H
∂yβ

+Pγ
abyγ

∂H
∂yb

+ Tdabyd
∂H
∂yb

+ ya
∂H
∂z

)
,

dz

dt
= ya

∂H
∂ya

+ yα
∂H
∂yα

−H.

(3.70)

BDCP Lie-Poisson-Herglotz Equations. Let us reconsider the dissipative dynam-
ics on Lie algebra setting, by assuming the base manifold to be a point, in which
case the anchor map turns out to be trivial. Accordingly, the extended dual of the
bicocycle double cross product space g ζ▷◁ψ h becomes g∗ ζ▷◁ψ h∗×R. Endowing
the dual space with the coordinates (yα, ya, z), the Jacobi bracket in (3.69) takes
the particular form

{z, yα}g∗ζ▷◁ψh∗×R = yα,

{z, ya}g∗ζ▷◁ψh∗×R = ya,

{yα, yβ}g∗ζ▷◁ψh∗×R = Hγαβyγ + Zaαβya,

{ya, yb}g∗ζ▷◁ψh∗×R = Pγ
abyγ + Tdabyd,

{ya, yβ}g∗ζ▷◁ψh∗×R = Rγ
aβyγ +Sd

aβyd.

(3.71)

Consequently, given a Hamiltonian function h = h(yα, ya, z) defined on g∗ ζ ▷◁ψ
h∗×R, the bicocycle double cross product Lie-Poisson-Herglotz equations are given
by

dyα
dt

= −
(
Zaαβya

∂h

∂yβ
+ Hγαβyγ

∂h

∂yβ
−Rγ

bαyγ
∂h

∂yb
−Sd

bαyd
∂h

∂yb
+ yα

∂h

∂z

)
,

dya
dt

= −
(
Rγ
aβyγ

∂h

∂yβ
+Sb

aβyb
∂h

∂yβ
+Pγ

abyγ
∂h

∂yb
+ Tdabyd

∂h

∂yb
+ ya

∂h

∂z

)
,

dz

dt
= ya

∂h

∂ya
+ yα

∂h

∂yα
− h.

(3.72)

Lagrangian Dynamics on BDCP Lie Algebroids. We shall now study the irre-
versible Lagrangian dynamics on the extended space A ζ ▷◁ψ B × R, equipped
with the local coordinates (xi, yα, ya, z) where z denotes the coordinate on R.
Accordingly, given a Lagrangian function L = L(xi, yα, ya, z), we have two sets
of equations as we have in reversible Lagrangian motion. The first set of equations
is the one that determines the dynamics of the base space given by

dxi

dt
= (aA)

i
α y

α + (aB)
i
ay
a. (3.73)
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As it can be easily observed, this equation is the same with the reversible case.
The second set of equations

d

dt

∂L

∂yβ
= (aA)

i
β

∂L

∂xi
+ Hαβγy

γ ∂L

∂yα
− Rα

dβy
d ∂L

∂yα︸ ︷︷ ︸
rep. of B on A

− Sa
dβy

d ∂L

∂ya︸ ︷︷ ︸
right rep. of A on B

+ Zaβγy
γ ∂L

∂ya︸ ︷︷ ︸
cocycle term ζ

+
∂L

∂yβ
∂L

∂z︸ ︷︷ ︸
dissipative term

,

d

dt

∂L

∂yb
= (aB)

i
b

∂L

∂xi
+ Tabdy

d ∂L

∂ya
+ Sa

bγy
γ ∂L

∂ya︸ ︷︷ ︸
rep. of A on B

+ Rα
bγy

γ ∂L

∂yα︸ ︷︷ ︸
rep. of B on A

+ Pα
bdy

d ∂L

∂yα︸ ︷︷ ︸
cocycle term ψ

+
∂L

∂yb
∂L

∂z︸ ︷︷ ︸
dissipative term

(3.74)

governs the dynamics on the fiber.

Lie Algebra Framework. As a particular instance of the irreversible collective
motion on the Lie algebroid setting, we shall now record the irreversible motion
on the Lie algebra level. To this end, we consider the extension g ζ▷◁ψ h×R of the
bicocycle double cross product Lie algebra g ζ▷◁ψ h. The irreversible Lagrangian
dynamics obtained on the extended space is now given by the bicocycle double
cross product Euler-Poincaré-Herglotz equations. Given a Lagrangian function
l = l(yα, ya, z) on g ζ▷◁ψ h× R, we have

d

dt

∂l

∂yβ
= Hαβγy

γ ∂l

∂yα
− Rα

dβy
d ∂l

∂yα︸ ︷︷ ︸
rep. of h on g

−Sa
dβy

d ∂l

∂ya︸ ︷︷ ︸
rep. of g on h

+ Zaβγy
γ ∂l

∂ya︸ ︷︷ ︸
cocycle term ζ

+
∂l

∂yβ
∂l

∂z︸ ︷︷ ︸
dissipative term

,

d

dt

∂l

∂yb
= Tabdy

d ∂l

∂ya
+ Sa

bγy
γ ∂l

∂ya︸ ︷︷ ︸
rep. of g on h

+ Rα
bγy

γ ∂l

∂yα︸ ︷︷ ︸
rep. of h on g

+ Pα
bdy

d ∂l

∂yα︸ ︷︷ ︸
cocycle term ψ

+
∂l

∂yb
∂l

∂z︸ ︷︷ ︸
dissipative term

.

(3.75)

4. Conclusion

The manuscript provides a comprehensive account of the (de)coupling phenom-
enon of Lie algebroids, and the dynamics on this geometry in the most general
way through the bicocycle double cross product construction. This framework
subsumes unified products, double cross products (matched pairs), cocycle exten-
sions, and semi-direct product theories. The (de)coupling problem is addressed



36 BEGÜM ATEŞLI, OĞUL ESEN, AND SERKAN SÜTLÜ

at the pure algebraic level in Section 2, along with an analysis from a dynamical
point of view in Section 3.

More precisely, in Theorem 2.3 we have presented the compatibility conditions
to couple two vector bundles under mutual interactions via twisted cocycles. Then
in Theorem 2.4 we showed that the bicocycle double cross product construction
provides the most tangible decomposition. Accordingly, the dynamics (dissipative
or not) encoded by a vector bundle can be decomposed in simpler units for a
better analysis.

The bicocycle double cross product Hamiltonian dynamics in the Lie alge-
broid framework is written in (3.27), while the bicocycle double cross product
Lie-Poisson dynamics is in (3.29). The Lagrangian dynamics for bicocycle double
cross products is given in (3.30) and (3.31), whereas the bicocycle double cross
product Euler-Poincaré equation is given by (3.32). The Herglotz type general-
izations of all these dynamical models are listed in Subsection 3.5.

As a future work, we wish to address the (de)coupling problem on Filippov
3-Lie algebroids, in an attempt to study collective Nambu motion.
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Geometry 12 (1977), no. 2, 253–300.

[68] A. Lichnerowicz, Les variétés de Jacobi et leurs algèbres de Lie associées, J. Math. Pures
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Department of Mathematics,, Gebze Technical University, 41400 Gebze, Ko-

caeli, Turkey,
Department of Mathematics Engineering, İstanbul Technical University, 34467
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