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ABSENCE OF GLOBAL SOLUTIONS OF A SYSTEM OF
HIGHER ORDER SEMILINEAR EVOLUTION EQUATIONS
WITH A SINGULAR POTENTIAL IN EXTERIOR DOMAIN

SHIRMAYIL BAGIROV

Abstract. The system of evolution equations of higher order with re-
spect to time is considered in the domain Q% = {x : |z| > R} x (0; +00),
which includes a biharmonic operator with respect to spatial variables
and a singular potential. The absence of global solutions is treated.
Using the test function method, a critical exponent of the absence of
global solution is found. This work is a generalization of a previously
published work [6], where the case of the first order with respect to time
was studied.

1. Introduction

Let R >0, Bg = {z: |z| < R}, By = {x: |z| > R}, 0Bgr={z:|z| = R},
Brigr, = {z + B1 < |z] < Ra}, By = R"\Bg,Qr = Bgr x (0;+00),Q} =

Bl x (0;400), z = (21, ...,an) € R", 7= |z| = /2] + ... + 22.

We consider the following system of equations

Pur 4 A2y — Clyy = ||t fug|®h

ot 2] (1.1)
k .
G + A%y — I%Q“UQ = |2|72 Juy |
in the domain ', with an initial condition
6’“*1% b1
W—IZ o = Uy (ZL’) (12)

and the boundary conditions

u;(z,t)ds > 0, Au;(z,t)ds <0, (1.3)
/ /

8BR 8BR

2
wheren > 4,¢; > 1, k> 1,0, € R0<(C; < ("(n4_4)) , ufo_l(x) € C(By),

n Pa
ubl >0, A%u = A(Au), Au = ;;1 Pu =12

2
Oz
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We will deal with the absence of global solutions. By global solution of the
problem (1.1)-(1.3), we mean a pair of functions (u1,u2) which satisfy the rela-
tions uq(z,t), uz(x,t) € C;lf(Q’R)ﬂC’g,’ffl(Bﬁ x [0, +00)), the system (1.1) at
every point of Q', the initial condition (1.2) and the boundary conditions (1.3).

The problems of absence of global solutions for different classes of differential
equations and inequalities are important in theory and applications, that’s why
they are constantly attracting the attention of mathematicians. A lot of research
has been dedicated to these problems (see [26]).

In 1966, Fujita in his famous work [16] considered the following problem:

?;Z =Au+u?,  (z,t) € R" x (0,+00), (1.4)

U |t=0 = up(x) >0, x € R", (1.5)
where ¢ > 1, ug(z) is a continuous bounded function. As is known, for every ¢ > 1
there exists T = T'(ug) such that the problem (1.4), (1.5) has a classical solution
in the cylinder R™ x (0,T"). The question is: what happens when 7' = +00? Fujita
proved that if 1 < g < ¢ =1+ %, then for every wug there exists Ty = Tp(ug) <

oo such that lim supu(z,t) = +oo. He also proved that if ¢ > ¢, then for

t~1>T070 Rn

sufficiently small ug the global solution does exist, i.e. T' = +o0. Later, Hayakawa
[19] and Kobayashi [21] showed that in case ¢ = 1+ 2 the global solutions also do
not exist. So there is a value of the exponent of nonlinearity such that the global
solution may exist or not depending on this value. In mathematical literature,
such a value is referred to as a “critical exponent of nonlinearity”.

Fujita’s famous work mentioned above marked the beginning of a significant
development in the field of how the size of nonlinearity affects the existence or
nonexistence of a global solution. Various generalizations of Fujita’s work have
been made. For example, R" was replaced by different bounded or unbounded
domains, the Laplace operator was replaced by other differential operators, the
nonlinearity in the equation (1.4) was replaced by the one of a different type (for
more detail, see [7, 13, 26, 28]).

Another generalization of Fujita’s result is to explore the existence of global
positive solutions to the system of semilinear Fujita-type equations. For example,
M. Escobedo and M. A. Herrero[14] considered the following initial value problem:

ou
S = Au+ vt
{ % = Av +u® (w.1) € x (0, ),

u‘t:O = U()(x), v‘t:O = Uo(l‘),x € R",
where g1 > 0, g2 > 0, up(x),vo(x) are continuous, bounded and non-negative
a+1 q2+1 ) > n

2
there is no non-negative global solution for any non-trivial initial data, and for
g1+l _go+1
q192—17 q1g2—1
global solutions. Besides, in case q1g2 < 1 all non-negative solutions are global.
The absence of global solutions to the system of nonlinear Fujita-type equations
has been also considered in, e.g., [2, 3, 6, 11, 15, 27].

In this work, we study the system of equations of higher order with respect to
time variable including a biharmonic operator with respect to spatial variables

functions. It was proved that if giqo > 1, then for max (qlqu, farT z

max ( ) < 5 there exist both non-trivial global solutions and non-
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and a singular potential. The problems considered in this work have been earlier
studied in [4, 5, 8, 9, 17, 22, 23, 25, 29].

Note that the semilinear stationary and non-stationary equations with a bi-
harmonic operator in principal part have also been considered by many authors
(see, e.g., [4, 6, 12, 24, 30, 31, 32]).

As for the existence or non-existence of solutions to the higher order (with
respect to time) evolution inequalities, a number of works have been done in this
field. For example, E] Hamidi and Laptev [18] treated the non-existence of weak
solutions to higher order evolution inequalities of the following form:

{ S Au—|—| |2u>|u]q in R™ x (0,00),

%Izk,ll (0,z) >0 n R,

where n >2,¢g>1, C > — ("7_2)2

In [10], Caristi considered the evolution inequality of the form
oFu
otk

where n > 2, m is a positive integer, ¢ > 1, o < 2m.

In [1, 20], the existence and nonexistence of global solutions to the evolution
inequality

— |2|” A™u > |u|? in R" x (0,00) ,

oFu m— C m— o
o — Al tu) + 2P —s (- V(ju" " w) > [a]* ful?

have been studied in € x (0,00), where @ C R" is an exterior of a ball or a
semiball, k> 1, n>2,g>m>1, C,o0 € R.

Our aim in this work is to generalize the results of [6], where the case k = 1
is considered, and to find an exact critical exponent of the absence of global
solution for k£ > 1 using also the test function method developed by Mitidieri and
Pohozaev in [25, 26].

2. Main result and its proof

For simplicity, we will use the following notations:

2
(n—2)2+Ci, /\?::\/<n22> + 1+ D;,
1 1+ D; — A\ —A*
/J'l 2 )\Z 9
i
2

A\ 4o+ 4 A, o+ 4 4—é
a; = 4‘4‘4—43&—» k,i— T

>\ + 2= )\ + = A+
U¢+4+q¢(aj+4) _ n—4 4 . .
f. = -\ = — = =1,2, .
1 q1q2_1 7 2 ]{’ Za] 9 7’75‘7

Consider the functions
_n=4_\— _ _n=4_y— _n=4_H+ .

&) =pilz|” 2 N 4 laT T N — g Moi=1,2.
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It is easy to see that the function &;(z) is a solution of the equation

Ci

A2y —

in R™\{0} and

0&; I(AE;)
él 07 87" DZ it 07 A‘fz 07 87" 1= O (2 2)

for |x| = 1.
Our main result is the following theorem:

Theorem 2.1. Let n>4,¢s>1, k>1, 0, € ROLS(C; < (%)2, 1=1,2
and the following conditions be satisfied:
(1) g1 > max(1,a1),q2 > max(1,a2) and max(6;,02) > 0,
(2) k = Liag > 1, g9 < ag,(ql,qg) € (1,,81] X (1,0[2]\{51,0[2} and
a1 > 1, ¢ <o, (q1,q2) € (1,a0] x (1, Bo]\{a1, B2},

(8) k>Tiaz > 1, g2 <oz > 1 gp € [max (1,4 (1-2)), ap]\{1)

for asye > 1, andqi € (1, kﬁﬁ) , 42 € [maX (17 %2 ( - %)) ; 062} \{1}
for asye < 1,

4) kE>Lar>1, ¢t <arq¢>1,q € [max( ,71< )), al} \{1}
1

for ary1 > 1, and gz € (1, 1_271) , q1 € [max (1 -(1— ﬁi) , al} \{1}
for a1y < 1.

If (ui(z,t),us(z,t)) is a solution of the problem (1.1)-(1.3), then u; =
0,u2 = 0.

Proof. Let (u1(z,t),u2(x,t)) be the solution of the problem (1.1)-(1.3). Con-
sider the following functions:

1, if 1< z] <p,
K
o(z) = (%cosw(%—l)%—%) , if p<lz| <2p,
0, if |z =2p,
L, if 1<t<pk,
1 _4 1\7 . 4 4
T,(t) = (§COS7T<p kt—l)—i—i) , if pr <t <2pk,
0, if t>2pk,

where k, 7y are sufficiently large positive constants, and  is such that for |x| = 2p

0 0? 3

PP _C¥ . (2.3)
or  orz  Or
For simplicity, assume R = 1. Let’s multiply the first equation by 1 (z,t) =

T,(t)é1(x)p(x), and the second one by a(x,t) = T, (t)€2(x)¢(z), and then inte-
grate over Q. After integration by parts, we obtain:

_ . dFT
[ i sl T @z = (0 [ e dar
Qf Qf
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—i—// uiTpAQ(&gp)dmdt— // Céu,-Tp{icpdxdt—/
@ @ |zl '

1

4
E . .
/ 8(Aul)§ig0d3 — / Auia(&@) ds+
83172,) 8V 831,2;)

uls (@) &i(x)p(a)dz+

2p
<[ m =

ou; 0
A& - i—A(; 2.4
* /E?Bl,?p ov (gl()O)dS ABl,Qﬁ " v (fz‘p)dsl « ’ ( )

where v is an outward unit normal vector to 0By 2, 1,7 = 1,2, i # j
To avoid repetition, in what follows we will assume i,j = 1,2, ¢ # j, and we

will use the same constant C' in all formulas, although in reality C' is different in
different formulas.

Using (2.2), (2.3), let’s estimate the integrals inside square brackets in (2.4)

/ AU ¢ s — 0,
dB1,2, ov

—/ Auia(&(p)ds = —/ ch{?(fi@) ds
0B .2, ov lz|=1 ov

= Aui(agl + &—— )ds— Ay gzds<0
lz|=1 0 lz|=1

or
ou; ou
“A(&p)ds = / !
/331,2;) ov ( QD) 0B1,2p

al/' (Aip +2(V&i, V) + &iAp)ds =

8ui
= — Agzds = 0,
/$|1 37‘

4 )
_ /331,% uia(A(fi@))dS = — /ml ui%(A(ﬁﬂp))ds _

_ 9(A&)
—/xllul o ds <0.

Since

/ ul T ()& (x)p(x)dx > 0 and /OO T,(t)dt > 0,
By 0

taking into account that &; are the solutions of (2.1) and using the estimates
obtained from (2.4), we obtain

// | | % T p(t)&i(z)p(x)drdt < ( // w;i&p d 3
2 Ci
+ w Ty A*(&p)dadt — —uiTpépdrdt =
o @ |7l
dFT Ci
_ )k // uifigoidtkp dxdt + // uiTpgo (A2§z — 4§z> dxdt+
Q! Q) ||

N / / T, [V (&), Vi) + A(VE:, V(Ap)+

Ty dxdt+
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"%
120680+ 4 Y > ¢ L

k,m=1

dzdt <

10T OXLOTm,

4
k

2p dkT 2p
< (-1 k/ / ;& pdl‘dt+/
< (-1 oy & ;

where H(;, ¢) means the expression inside square brackets, i.e.

—~ 9% Py
H(&, ) = 4(V(A%), Vo) +4(VE, V(Ap) + 286 Ap +4 l; b Barda.

Ei

/ wT,Hy(G 9)dudt,  (2.5)
B

P:2p

Now, Using Holder’s inequality, let’s estimate the right-hand side of (2.5). Then

we obtain
// 2|7 |ui| " Tolipdadt <
Q1

1
4 4 dk T, |9 .45 @
o Tj |y | T & @ 52-“ J
. / 2|77 |ug |V Tp€pdadt . , ) AT dxdt +
pk B pk 1 T ‘37| J q é‘]]

4
k

2p 95
x|% |u |V Ty€pdadt X
pSJ
0 Bp.ap

k;.Q\‘ =

4
k

2p Hi( 4G
/ / |Hil&, )‘ — dedt | (2.6)
0 By 2p m% qj —1)5 q -1

Denote the second integral in the first term by I;, and the second one in the
second term by J;. From (2.6) we obtain:

/ / 21 Jus| Térpdndt <

where + + L =1.
qj qj‘

L 1 1
qQ =+ 7/
(// ]x‘@ |U1‘q2 pfzgodxdt) q2 +J; 2 , (2.7)
// 2|72 |u1 | Tpéapdadt <
Q4
q1 L L
(// |7 Jug| ™ Tpﬁlsodxdt> ql + I (2.8)

Considering these inequalities and using (2.6) again, we obtain:

1
// 2|7 o Ty pdadt < / 4 /\x!al ol Topdwdt | If +
% Bi
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20% N N R
+ / / 2|70 Jug| ™ Tpérpdadt | Iyt 1% +J2 |, (2.9)
0 Bp2p
a
Qp% a2 L/
// 2|7 Jur |2 Tpbapdxdt < /4 / 2|72 |ur |2 Tpéapdadt | 1,2+
@ pF I B
1
Zp% é i/ " i/ L/
+ / / 2|72 Jug |® Tpéopdadt | J;° LY+ J)" (2.10)
0 Bp2p
Substituting (2.8) in (2.7) and (2.7) in (2.8), we have
// 2|7 |ug| ™ Tpé1pdadt <
Q1
1 1
aa | o o - | @
= (//Q/ |7 Jug|™ Tp§190d$dt> Iqu + qu2] —72511 + JZQI] X
1
X // |2|72 |ur |2 Tpbopdadt <
o
am [ 212 2w
< //Ql ‘$|02 ’ul‘QZ Tp&Q(ﬂdl‘dlﬁ 12‘11 —|—J2q1 11112 +J102
1
Then
- - 11492 - - a1
o e o | a2t
//Q, |27 Jug|™ T, 1 pdadt < | 172 + J;* LY+ J)" . (2.11)
1 L | L |
~ - 9192 — - a2
= L] ara2-1 L L] a1
//Q’ 2|72 |ug |2 Tpéapdrdt < |10 + J,° 12 +J"? . (212)
1 L | L |

Making the changes
t=pit, T=ps, x=py, T(r)="T,(pi7),
Gi(y) =&(py),  &(y) = »lpy),

let’s estimate the right-hand sides of (2.11) and (2.12).
Let’s first estimate the integrals I;, ¢ =1,2:

!
4 d* T, |4 .9

2pk dtkp &"L 90
I, = dxdt <
b e G os(a 1) (G -

P 1 Tp |:L" I gj
!
4 1d"T,|% /

(]v
dik &’

2p
</ ﬁ/ dr <
= 4 q/vfl (' —1 q/.fl =
pE T By || 724G ¢
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2 dkl q3 q;
’ k .
< Cp_4qj+:/ Zﬁ—l dr/ /‘5@1 q/,,1d$ <
LI B |x’%(qj— )gjy
4~ qu
< Cp~Y5t% j(T)/ =t —dx, (2.13)
B 0D ¢

J

where [;(T) = f12 Mo —dr.
7

Estimating the last mtegral in (2.13) as in [6], we obtain:

q
/ - 1d1:<(]/ PG (@)= (@ =D+ =1 g,
Bi |z ,Uyqfl) ‘1]

/

9j
2p ‘ZJ 4= o+ (g;-1))— qujm if mi>0
z J J I )
17 Zf i < O)
where 7; = A\ ¢j — A; — oj + (g — 1).
By (2.14), from (2. 13) we have
WL
LTy "t if m>0
B=CV L mEep e, if =0 (2.15)
L(T) p 7k if m<O0.

Using (2.13) and the estimates for each term H;(;, ¢) obtained in [6], let’s esti-
mate J;, 1 =1,2.

4
Ji = /ka / S )‘QJT drdt <
i = >~
0 By.2p |IL“U] q]—l .—1

4
|Hz-<fmo>rq9
§/ Tpdt/ D) A /__1dx
0 Byap |2|7 (G0 €07

(=0 (@ =1)=(= "5 AT (=D Fntg o

IN

L") dg +

2 ( ds3 ds? ds
X 7 ; ds <
1 Saj(qj_l)@qj_l

’ - 7 — (! / n ~ 4’4+ 4 i .~
< Cp—4qj+%+Ai aG=2; (qj—l)—aj(qj—lH%“Jj(@) =Cp AR "’Jj(¢), (2.16)

where jj(g?a) means the last integral.
Now, using (2.15), (2.16), let’s estimate the right-hand sides of (2.11), (2.12).

As is known, the integrals I;(T), J;(¢) are bounded for large values of k and ~y

(see [26]). Depending on the sign of 7;, let’s consider different cases.
1. Assume oy > 1, a9 > 1 and consider the following cases:
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(a) m <0, m2 <0. This means ¢; < a1, g2 < ag. Then, in view of (2.15), (2.16),
from (2.11), (2.12) we obtain

x|7 w1 spdxdt <
J p
Q1

1 1 1 ‘11‘721 1 1 1 a5 :
4q 4 o ~a o7 | 92— =5 57 = | 1192
+1)+7 9; 74 q q; 74, q
<Op 192 1(‘1] ) k [fi]Ii] +J7,J [f]z j1+ jz é
4 4 I 1 9192 - | %
_a192(4 —p)tdat g 7 ~d " q192—1 o o q192—1
SOP nal fiJIiJ+Ii] flejZ—i_Ijl )

where

1a Zf i < 07
file) = { In(2p), if ni =0.

Making p tend to 400, we have
/ / || 7" Juj | Tpéipdadt < 0.
@
Then u; =0, us = 0.

(b) Now let 1 > 0, 12 > 0. This means ¢; > a1, g2 > ag. Using (2.15), (2.16)
again, from (2.11), (2.12) we obtain

// |78 |ui| T Tpipdxdt <

—4 /,+é+ﬁ )L 2i9;5 _4 a;
SCP< EARRETI q1q2_1p A 77] qf araa—1

X

5l
q1q2—1

(T) + " (T)

IN

—dg+A Y, 4 /PO S NP B S
S Cp( 4q;+kq;+nz) q1q2—1+( 4Qz+kq§+77;) q1a99—1 _

_ Cpqlqi;,l[*4Q¢l1j*4qz'+%(qJ'*1)l1i+%(l1¢*1)+mqg'+77j] _

_ Cpmqi;,l[_4(Q1q2—1)—4(%+1)+%(q1q2—1)+77i(1j+77j] _

_ Cpqlql?[—(4—%)(qwz—1)—4(Qi+1)+/\i_qz'ij—quz'-i-nTqu'q]'—Ai_—Uz'— nTH] _

:Cp_ﬁ[(4_%)(q1q2_1)+4(qi+1) A (@1g2—1)+oi+0jq;— (q’qu 1)] —

e e e e N

| 2itirailo ) \- n-4_ 4

=Cp el ? ] Cp~%. (2.17)

Assume max(61,602) > 0. For definiteness, let #; > 0. Then for i = 1 it follows
from (2.17) that

// 2|7 ua| ™ T,épdxdt < Cp
Q1
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Making p tend to 400, we have

// 2|7 Jua| Tyrdvdt < 0.
&

So ug = 0. Then it follows from the second equation of the system that u; = 0.
For 65 > 0, we similarly obtain u; = 0,us = 0. Now let max(6;, 02) = 0. Consider,
for example, 6; = 0. Then it follows from (2.17) that

// 2|7 Jua|? Ty dvdt < C.
&

From the properties of integral it follows

o
// 127 [us| &rdadt — 0, (2.18)
0 By.2p
4
2pk
/4 /\m|”1]u2\Q1§1da¢dt—>0. (2.19)
pk 1

Then, taking into account (2.18) and (2.19), from (2.9) we obtain

4
2pk 1

a1
// 2|7 Jug| " Toé1pdxdt < /4 / 2|7 Jug| ™ Erpdxdt | I+
@ pk B}

1
[e’e) a1
+ / / 2|7t Jug| ™ Erpdadt | J,
o JB]

/ /
4+ 410 I SR PO S} 1
( q1+k+q1772 q/1q2+ QQ+k+q2771 q/2><

=,

1

e e

92 92
12 +J;

=)
2

<

<Cp
1
i af

2p N
[y [ el el qpdnar |+
pk  JB]

1 1

Q
S

0o g L |9 1 1
~q/ ~q/ ~q/
+ / / |z|7 Jua| ™ Erpdadt | Tyt I +J,2 | <
0 JB,a,
< Cpﬁ(—4Q1(q2+1)+%(Q1Q2—1)+772+!I1?71) %
2[0% E ~L/
X /4 / || Jug|™ &1pdadt L+
pk  JBj
L a
00 o L|®[ L L
0 JB,a,
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,qltm*l@l 2pk - -
< Cp 9192 4 ]x\ ! ‘u2’q1 flcpdxdt 11 +
pk  JB]

a2

- w1
+ / / |$|U1 ’U2|q1 flgpdxdt J2q1 ;2 + J2q2 S
0 JB,a,
1
20k a1
<C /4 / || Jug|™ &1pdzdt 1q1+
t Jp
1
- o a]m
+ / / |27 |ug| ™ &1pdxdt J;l 1242 + ;2 -0
0 JB,a, I

So, we again have

// |2]7" Jug] ™ &1 pdadt < 0.
@

Then us = 0, and, consequently, u; = 0. If 5 = 0, we can similarly obtain
up = O,UQ =0.
(c) Now let’s consider the cases where n; <0, n; > 0. Let first n; <0, g2 > 0.

This means q; > a1, g2 < ay. Then from (2.11), (2.12) it follows that

// |27t |ug|™ &1 pdadt <

- ) arg2—1)+4(q1+1)— 772]X

91492
q1q2—1

In+Jn (2.20)

So, if ;1 < 0,9 < (4 ) (q1g2 — 1) +4(q1 + 1), then, making p tend to +oo,

from (2.20) we have
// || Jug|™ E1pdadt < 0
Qi

and, consequently, u; = 0,us = 0. If n; < 0,mp = (4 — %) (g2 — 1) +4 (1 +1),
then from (2.20) it follows that

// |27 Jug|™ &1 pdxdt < C.
Q1

Then, as in the case (b), we can show that u; =0, ug = 0.

Note that the conditions m; < 0,0 < 79 < (4 — 7) (g2 —1) +4(q1 + 1) are
equivalent to the conditions g2 < a0, a1 < ¢1 < v¥2¢192 + 51, and the conditions
m=00<n< (4 — 7) (g1g2 — 1) + 4 (g1 + 1) are equivalent to the conditions
g2 = a9, a1 < q1 < Y2q192 + P1- Since v = 0 for k = 1, it is obvious that

in this case the solution does not exist if (q1,q2) € (1, ﬁl] (1 ag]\{ﬁl,ag}

In case k > 1, let’s rewrite the inequality q1 < 72¢192 + 51 as ¢o > 7—12 — %m =

%2 (1 - q—l) . Since g2 > 1, for q; < B this inequality always holds, and, therefore,
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for (q1,q2) € (1,51] x (1, 2] the solution also does not exist. If g1 > [, we
have to separately consider the cases 79 < 1, 72 > 1. In case 72 > 1, we

have ,%2 (1 — %) < 1 for every q1 > 1, and therefore there is no solution for

q > a1, 1 <@ < ay If 9 <1, then for 1 < vas the solution does not exist

when a1 < q1 < 5 ﬂ , 1 < qgo < agand ¢ > 5172 %(1—%)§q2§a2,and
B

for 1 > yoas the Solutlon does not exist when a1 < ¢1 < T 1 < g2 < a9 and
51 ;<@ < 1_@2,\/2,%(1 61)<q2<a2

NOW let 1 > 0,m2 < 0. Then, similar to the previous case, we come to conclu-
sion that for 7o < 0, 0 < < (4 — 7) (q1g2 — 1) +4(g2 + 1) and for ny = 0,
0<m < (4= %) (q1g2 — 1) +4(g2 + 1) the solution is identically zero.

Rewrite the conditions 7 < 0,0 < m1 < (4— 7) (1g2 — 1) + 4(g2 + 1) in
the form ¢1 < a1, as < g2 < 19192 + [2, and the conditions 72 = 0,0 < n; <
(4 — *) (q1q2 — 1)+4(g2+1) in the form q; = a1, a2 < g2 < y1q192+ B2. Then, for
k = 1 the solution does not exist if (¢1,g2) € (1, 1] x (1 Bg]\{al, B2}. In case k >

1, having rewritten the inequality ¢ < v1q1g2 + 52 as ¢1 > L o <1 g 22

come to conclusion that the solution does not exist when (g1, g2) € (1, a1]x (1, B2].
And if g2 > B9, then, similar to the previous, we can assert that for v; > 1 with

g2 > ag, 1 < q1 < ag, and for 1 < 1 with as < ¢go < fﬁﬂ 1< g <a; and

qo > 1?%,%(1—%) < q1 < ajincase 1 < yja; and with as < ¢o < 6271

we also

1 < g1 <o and 162% < qo < 1_%1%,7% <1— %) < q1 < ajin case 1 > yia,
the solution does not exist.

II. Now let ay < 1, ap > 1. Since ¢ > 1, we have to consider the cases
n <0,n9 >0and n > 0,9 > 0. For n; <0, no > 0, similar to the previous
case, u1 = Oug = 0if 1 < 0, gy < (4— 7) (1@ —1) +4(q1 +1) and n; = 0,
me < (4-— E) (g2 —1) +4(qn +1).

Similarly we can make a conclusion that for £k = 1 the solution does not exist
if (q1,q2) € (1,61] x (1, a2)\{p1, @2}, while for k£ > 1 the solution does not exist
in the following cases:

Q> 1>Q2 S [max (17 'Y% ( - %)) ) OQ] \{1}) if Q272 > 1 and q1 € (17 1,[;71272) )

e (L), e [max (14 (1-2)), a \{1} if gz < 1.

Now let 3 > 0, n2 > 0. Then, as in case (b), it is easy to see that u; = 0,
ug =01if g1 > 1, g2 > ag, max{6,02} > 0.

III. Let a7 > 1,5 < 1. Then we have to consider the cases 71 > 0, 72 < 0
and 71 > 0, 72 > 0. When 11 > 0, 2 < 0, we similarly come to conclu-
sion that for k& = 1 there is no solution if (q1,¢2) € (1,a1] x (1, B2]\{au, B2},
while for £ > 1 the solution does not exist in the following cases: g2 > 1, ¢1 €

[max <1, ,711 < - %)) ) Oél] \{1}if a1y1 > 1, and g2 € (1, 1_§2171> )

Q€ [max (1, 71( - %) ; oq} \{1} if g1 < 1.
When 11 > 0, 72 > 0, then for ¢; > a1, 1 < g2, max{6,602} > 0 the solution

does not exist.
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IV. Let a; <1, ag < 1. Here we have to consider only the case n; > 0, 2 > 0.
Then u; =0, ug = 0 if max{6y,62} > 0.
So the theorem is completely proved.

1]
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