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ON THE INITIAL VALUE PROBLEM FOR THE

NON-STATIONARY NONLINEAR HIROTA EQUATION WITH

A LOWER-ORDER TERM

UMID A. HOITMETOV AND FERUZA K. MUSAEVA

Abstract. In this paper, we establish that the inverse scattering method
(ISM) is an extremely efficient approach for solving the initial value
problem associated with the Hirota equation, an equation modified by
an additional term and time-varying coefficients, in the framework of
rapidly decreasing functions. This study focuses on investigating how
the scattering data of the Dirac operator evolve with time when the
potential is defined as the solution to the initial value problem for the
time-dependent Hirota equation, which is a nonlinear evolution equa-
tion with variable coefficients including an additional term in the class
of rapidly decreasing functions. In addition, this work also investigates
the solvability of the Cauchy problem for both the complex modified
Korteweg–de Vries (cmKdV) equation and the nonlinear Schrödinger
(NLS) equation. In each case, the equations are modified by adding an
additional term and endowed with coefficients that vary with time. A
detailed algorithmic procedure for solving these problems is presented,
accompanied by several examples illustrating the application of the pro-
posed method.

1. Introduction

A solitary wave is a traveling wave represented by a single peak or trough that
propagates in isolation, maintaining its shape, size, and speed. The Korteweg–de
Vries equation is widely recognized as one of the most essential and celebrated
partial differential equations, serving as a primary tool for modeling and analyzing
the propagation of solitary waves in shallow water environments:

qt − 6qqx + qxxx = 0.

In 1967, researchers C. Gardner, J. Greene, M. Kruskal, and R. Miura [12]
succeeded in solving this equation by applying the inverse scattering method
(ISM) to the Sturm-Liouville operator defined on the entire real line.

Zakharov and Shabat demonstrated the universality of the ISM in 1972 by
extending it to solve the Cauchy problem for the nonlinear Schrödinger (NLS)
equation [38]. This work laid the foundation for the study of other equations.
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In 1973, Hirota [15] considered the following equation:

iqt + 3iζ|q|2qx + λqxx + iµqxxx + η|q|2q = 0, (1.1)

where i2 = −1, ζ, λ, µ, η ∈ R and these parameters satisfy the condition ζλ = µη.
In his paper [15], Hirota applied the method named after him [16] to obtain N -
soliton solutions of this equation. Equation (1.1) can be rewritten as

iqt + χ
(
qxx + 2q|q|2

)
+ iδ

(
6|q|2qx + qxxx

)
= 0, (1.2)

where ζ = 2δ, λ = χ, µ = δ, η = 2χ. It is important to note that when χ = 1
and δ = 0, equation (1.2) simplifies to an NLS equation, whereas when χ = 0
and δ = 1, it becomes a complex modified Korteweg-de Vries (cmKdV) equation,
demonstrating how the equation transforms under these particular conditions.
In 1991, Fukumoto and Miyazaki [11] demonstrated the relevance of Hirota’s
equation (1.2) in modeling the motion of vortex filaments in three-dimensional
incompressible Euler fluid dynamics.

The remarkable growth in research on optical solitons has been driven by
their significant impact on optical fibers, which are effectively used for trans-
mitting information over intercontinental distances. In optical communication
systems, the transmission line includes optical fibers and amplifiers, which in-
troduce interference, noise, and signal distortions. Thus, a more precise ap-
proach to this research area is critical for advancing this field. Hirota’s equation,
[2, 6, 10, 35], which moderately differs from the standard nonlinear Schrödinger
equation, is used to study solitons in the context of optical wave propagation in
fibers. As the Hirota equation is a universal tool for modeling nonlinear pro-
cesses in various fields of science and technology, many effective solution meth-
ods and algorithms have been proposed, some of which are described in detail in
[3, 7, 8, 17, 22, 23, 27, 29, 33, 39].

A number of efficient techniques and robust algorithms have been established
to address different kinds of nonlinear equations, with some of these approaches
detailed in [4, 5, 13, 14, 18, 19, 20, 24, 25, 28, 30, 31, 34]. In many real physical
scenarios, differential equations with variable coefficients often provide a more
accurate and meaningful representation than equations with constant coefficients,
especially when taking into account inhomogeneous properties of the medium.
From a practical standpoint, equations featuring variable coefficients demonstrate
greater accuracy [1, 17, 26, 32, 36, 37].

2. Formulation of the problem

In this study, we concentrate on the non-stationary Hirota equation with a
lower-order term. More precisely, we examine the following equation:

iqt + α(t)
(
qxx + 2q|q|2

)
+ iβ(t)

(
6|q|2qx + qxxx

)
+ ϑ(t)qx = 0. (2.1)

The functions α(t), β(t), and ϑ(t) are of class C1, ensuring their derivatives exist
and remain continuous throughout the domain of consideration. Let us analyze
equation (2.1) in conjunction with the given initial condition, which is expressed
as

q(x, 0) = q0(x), (2.2)
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where q0(x) represents the prescribed initial state of the function, serving as
the foundation for investigating the evolution of solutions over time within the
framework of the problem.

The constraints detailed hereafter are rigorously valid:
1)

eε|x||q0(x)| ≤
C

(1 + |x|)1+ζ
, ζ > 0, (2.3)

where ϵ > 0 and C > 0 is a constant;
2) the operator

L(0) = i

(
d
dx −q0(x)

−q∗0(x) − d
dx

)
is characterized by preciselyN distinct eigenvalues, labeled ρ1(0), ρ2(0), . . . , ρN (0),
each associated with respective multiplicities k1(0), k2(0), . . . , kN (0), all situated
entirely within the upper half-plane C+ = {ρ ∈ C : Im(ρ) > 0}.

The solution q(x, t) will be sought from the following specified class of func-
tions:

M =

{
q(x, t) :

3∑
j=0

∣∣∣∣∂jq(x, t)∂xj

∣∣∣∣ eε|x| ≤ C

(1 + |x|)1+ζ
, ε > 0, C > 0, ζ > 0

}
. (2.4)

3. Preliminaries

Our investigation centers on the Dirac system, formulated as the coupled equa-
tions below: {

y1x + iρv1 = q(x)y2,

y2x − iρy2 = −q∗(x)y1,
(3.1)

This system is defined on the entire real line, that is, for all values of x in the region
(−∞,∞) where the functions y1, y2, and q(x), together with their respective
derivatives, describe the behavior of the system at every point in this infinite
region. In this context, q(x) is a complex-valued function that fulfills a specific
boundedness condition for a certain positive parameter ε, ensuring that

eε|x||q(x)| ≤ C

(1 + |x|)1+ζ
, ζ > 0, (3.2)

where C is a constant, and the decay rate governed by ζ guarantees that q(x)
vanishes sufficiently fast at infinity, which is crucial for the well-posedness and
asymptotic analysis of the problem. By defining the operator

L = i

(
d
dx −q(x)

−q∗(x) − d
dx

)
,

we can express the system in the compact eigenvalue form LY = ρY, where the
vector Y = (y1, y2)

T represents the solution components.
The direct and inverse scattering problems for the operator L have been exten-

sively investigated in previous works, including [21], [9], among others. Assuming
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condition (3.2), the system (3.1) admits Jost solutions exhibiting asymptotic be-
havior at infinity for Im(ρ) > −ε/2:

Υ(x, ρ) = e−iρx

[(
1
0

)
+ o(1)

]
,

Ῡ(x, ρ) = eiρx
[(

0
−1

)
+ o(1)

]
,

as x→ −∞,


Ψ(x, ρ) = eiρx

[(
0
1

)
+ o(1)

]
,

Ψ̄(x, ρ) = e−iρx

[(
1
0

)
+ o(1)

]
,

as x→ +∞,

(3.3)

Note that here the notation bar does not mean complex conjugation, for this
we will use the notation *.

Under condition (3.2), such solutions exist and are uniquely determined by the
asymptotics (3.3). Within the region defined by Imρ > −ε/2, it is readily ap-
parent that the pairs of vector functions {Υ(x, ρ), Ῡ(x, ρ)} and {Ψ(x, ρ), Ψ̄(x, ρ)}
form complete sets of fundamental solutions. Consequently, in this strip, the
following relations hold:

Υ(x, ρ) = a(ρ)Ψ̄(x, ρ)+b(ρ)Ψ(x, ρ), Ῡ(x, ρ) = −ā(ρ)Ψ(x, ρ)+b̄(ρ)Ψ̄(x, ρ), (3.4)

where
Υ(x, ρ) = (υ1(x, ρ), υ2(x, ρ))

T , Ψ = (ψ1(x, ρ), ψ2(x, ρ))
T ,

a(ρ) =W{Υ(x, ρ),Ψ(x, ρ)} ≡ υ1(x, ρ)ψ2(x, ρ)− υ2(x, ρ)ψ1(x, ρ),

a(ρ)ā(ρ) + b(ρ)b̄(ρ) = 1, b(ρ) = b∗(ρ∗), N = N̄ , ρ̄n = ρ∗n

Ψ̄(x, ρ) =

(
ψ∗
2(x, ρ

∗)
−ψ∗

1(x, ρ
∗)

)
, Ῡ(x, ρ) =

(
υ∗2(x, ρ

∗)
−υ∗1(x, ρ∗)

)
, a(ρ) = a∗(ρ∗).

The function a(ρ) (and, by a similar reasoning, ā(ρ)) is characterized by having
only a finite number of zeros in the complex plane. More specifically, there exist
zeros ρn located in the open upper half of the complex plane, that is, ρn ∈ C+,
where each zero is counted with a multiplicity kn for n = 1, 2, . . . , N . In a
similar fashion, the function ā(ρ) exhibits zeros ρ̄n in the open lower half-plane,
ρ̄n ∈ C− = {ρ ∈ C : Im(ρ) < 0}, with each of these zeros occurring with
a multiplicity k̄n for n = 1, 2, . . . , N̄ . The eigenvalues of the operator L in the
upper (lower) half-plane are represented by the values ρn

(
ρ̄n
)
where the functions

a(ρ)
(
ā(ρ)

)
vanish.

There exist sequences of numbers
{
κn
0 ,κn

1 , . . . ,κn
kn−1

}
and

{
κ̄n
0 , κ̄n

1 , . . . , κ̄n
kn−1

}
satisfying:

1

j!

(
d

dρ

)j

Υ(x, ρ)
∣∣∣
ρ=ρn

=

j∑
l=0

κn
j−l

1

l!

(
d

dρ

)l

Ψ(x, ρ)
∣∣∣
ρ=ρn

, (3.5)

1

j!

(
d

dρ

)j

Ψ(x, ρ)
∣∣∣
ρ=ρn

=

j∑
l=0

κ̄n
j−l

1

l!

(
d

dρ

)l

Υ(x, ρ)
∣∣∣
ρ=ρn

,

where κn
0 ̸= 0 and κ̄n

0 ̸= 0. The sequence
{
κn
0 ,κn

1 , . . . ,κn
kn−1

}
is called the

normalization chain of the operator L, associated with the eigenvalues {ρn}Nn=1,
while

{
κ̄n
0 , κ̄n

1 , . . . , κ̄n
kn−1

}
is the conjugate chain.
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The lack of spectral singularities in the operator L indicates that the functions
a(ρ) and ā(ρ) have no real zeros.

The Jost solutions Ψ(x, ρ) and Ψ̄(x, ρ), which are central to the spectral analy-
sis of the operator under consideration, admit integral representations of a certain
structure that essentially reflects the interaction between the spatial variable x
and the spectral parameter ρ. In particular, for x in the domain and ρ in the
corresponding domains of the complex plane, these functions can be expressed
as:

Ψ(x, ρ) =

(
0
1

)
eiρx +

∫ ∞

x
Ω(x, s)eiρsds,

Ψ̄(x, ρ) =

(
1
0

)
e−iρx +

∫ ∞

x
Ω̄(x, s)e−iρsds,

(3.6)

where

Ω(x, s) =
(
ω1(x, s) ω2(x, s)

)T
, Ω̄(x, s) =

(
ω̄1(x, s) ω̄2(x, s)

)T
,

q(x) = −2ω1(x, x).

Here the kernels Ω(x, s) and Ω̄(x, s) satisfy certain analyticity and damping con-
ditions dictated by the constraints of the problem. These representations are not
only fundamental for deriving asymptotic expansions like |x| → ∞ or |ρ| → ∞,
but also play a decisive role in establishing the existence and uniqueness of so-
lutions of related inverse spectral problems. The functions Ω(x, s) and Ω̄(x, s),
which are defined for y > x, are governed by the system of equations

Ω̄(x, y) +

(
0
1

)
Λ(x+ y) +

∫ ∞

x
Ω̄(x, s)Λ(s+ y) ds = 0,

Ω(x, y)−
(
1
0

)
Λ∗(x+ y)−

∫ ∞

x
Ω(x, s)Λ∗(s+ y) ds = 0.

(3.7)

which is recognized as the system of Gelfand-Levitan-Marchenko (sGLM) integral
equations, playing a fundamental role in inverse scattering theory by providing a
framework for reconstructing potentials from scattering data and analyzing the
spectral properties of associated differential operators. Here

Λ(x) =
1

2π

∫ ∞

−∞

b(ρ)

a(ρ)
eiρx dρ− i

N∑
n=1

kn−1∑
j=0

κn
kn−1−j

j!

(
djf(x, ρ)

dρj

)∣∣∣∣
ρ=ρn

,

Λ∗(x) =
1

2π

∫ ∞

−∞

b̄(ρ)

a(ρ)
e−iρx dρ+ i

N∑
n=1

kn−1∑
j=0

κ̄n
kn−1−j

j!

(
dj f̄(x, ρ)

dρj

) ∣∣
ρ=ρn

.

f(x, ρ) =
(ρ− ρn)

kn

a(ρ)
eiρx, f̄(x, ρ) =

(ρ− ρn)
kn

a(ρ)
e−iρx

(3.8)

The function s+(ρ) =
b(ρ)

a(ρ)
is called the scattering function of the operator L.

The collection of elements{
s+(ρ), ρn, κn

j , j = 0, 1, . . . , kn − 1, n = 1, N
}

is referred to as the scattering data for the system of equations (3.1), representing
a fundamental set of parameters that encapsulate essential information about the
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interaction of waves with a potential, thereby playing a crucial role in the inverse
scattering transform and the analysis of soliton solutions.

Definition 1. We say that the function s+(ρ) is a function of type (S) in the
strip |Im ρ| < ε/2 if:

1) s+(ρ) is a meromorphic function in the strip |Im ρ| < ε/2 and for each
ζ < ε/2,

s+(ρ) = O

(
1

ρ

)
,
∣∣ρ∣∣→ ∞,

uniformly in the strip |Im ρ| ≤ ζ;
2) s+(ρ) has no non-real poles in the strip |Im ρ| < ε/2 and

1 + s+(ρ)s̄(ρ) ̸= 0,

where s̄(ρ) =
b̄(ρ)

ā(ρ)
.

The theorem presented below is valid [21].

Theorem 3.1. For the function s+(ρ), defined in the strip | Im ρ| < ε/2, the val-
ues ρ1, ρ2, . . . , ρN residing in the upper half-plane Im ρ > 0, and their associated
sequences κn

0 ,κn
1 , . . . ,κn

kn−1 (where κn
0 ̸= 0 for all n = 1, 2, . . . , N), to constitute

valid scattering data for an operator of type (3.1) with a complex-valued potential
adhering to (3.2), the following criteria must fulfill:

1) the function s+(ρ) is a function of type (S) in the strip |Im ρ| < ε/2;
2) the functions F (x) and F̄ (x), constructed from the above quantities, accord-

ing to formula (3.8) satisfy the condition∣∣Λ(x)∣∣eεx ≤ C1

(1 + x)1+ζ
, for x ≥ a, (a > −∞),

∣∣Λ̄(x)∣∣e−εx ≤ C2

(1 + x)1+ζ
, for x ≤ a, (a < +∞),

for all a ∈ R.

Theorem 3.2 ([9], §6.2). The scattering data of the operator L allows for the
unique reconstruction of the operator L.

4. Time Evolution

Suppose that the potential q(x, t) in the eigenvalue system

L(t)Υ = ρΥ, (4.1)

satisfies equation (2.1), which governs its evolution, and note that this equation
(2.1) admits a Lax pair representation characterized by the differential operators

Γ = α(t)

(
i
(
|q|2 − 2ρ2

)
iqx + 2ρq

iq∗x − 2ρq∗ i
(
−|q|2 + 2ρ2

)) , (4.2)

Π = β(t)

(
−4iρ3 − 2iρ|q|2 − q∗qx + q∗xq 4ρ2q + 2iρqx − qxx − 2q|q|2

−4ρ2q∗ + 2iρq∗x + q∗xx + 2q∗|q|2 4iρ3 − 2iρ|q|2 + q∗qx − q∗xq

)
. (4.3)

providing a powerful analytical framework for studying the integrability of the
system and facilitating the application of the inverse scattering method to analyze
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its solution structure. As a result, this equation can be reformulated in the Lax
representation as

Lt(t)+
[
L(t),Γ + Π

]
= G, (4.4)

where

G =

(
0 G1

G2 0

)
,

with G1 = ϑ(t)qx, G2 = ϑ(t)q∗x and
[
L(t),Γ

]
= L(t) Γ − AL(t) denotes the

commutator of the operators L(t) and Γ .
By differentiating equation (4.1) with respect to t, substituting (4.4) we derive

the relation

(L(t)− ρI) (Υt(x, ρ, t)− (Γ + Π)Υ(x, ρ, t)) = −GΥ(x, ρ, t). (4.5)

Applying the method of variation of parameters, we seek a solution to equation
(4.5) in the form

Υt(x, ρ, t)− (Γ + Π)Υ(x, ρ, t) = C(x, ρ, t)Ψ(x, ρ) +D(x, ρ, t)Υ(x, ρ),

where C(x, ρ, t) and D(x, ρ, t) are undetermined coefficients. In order to deter-
mine the functions C(x, ρ, t) and D(x, ρ, t), we derive the following system of
equations which, once solved under the appropriate conditions, allows for the
determination of these unknown functions by using the relationships between the
components of the system:{

C ′(x, ρ, t)ψ1(x, ρ, t) +D′(x, ρ, t)υ1(x, ρ, t) = iG1υ2(x, ρ, t),

C ′(x, ρ, t)ψ2(x, ρ, t) +D′(x, ρ, t)υ2(x, ρ, t) = −iG2υ1(x, ρ, t).
(4.6)

This notation will be used consistently in all subsequent discussions. By solving
the system of equations (4.6), we arrive at the following result, which provides
the expressions for the unknown functions involved in the system

C ′(x, ρ, t) = − i

a(ρ, t)
Υ̃T (x, ρ, t)GΥ(x, ρ, t),

D′(x, ρ, t) =
i

a(ρ, t)
ΨT (x, ρ, t)GT Υ̃(x, ρ, t),

(4.7)

where Υ̃(x, ρ, t) =
(
υ2(x, ρ, t) υ1(x, ρ, t)

)T
. According to formulas (4.2), (4.3),

and (4.5), as the spatial variable x tends to negative infinity (x → −∞) the fol-
lowing limit characteristics of the functions C(x, ρ, t) and D(x, ρ, t) are observed.
The function C(x, ρ, t) exhibits a decreasing character, asymptotically tending to
zero, which is mathematically expressed by the limit relation

C(x, ρ, t) → 0.

Meanwhile, the function D(x, ρ, t) tends to a nontrivial expression determined by
the structure of the operator and the parameters of the system: its limit takes
the form

D(x, ρ, t) → 2iρ2 (α(t) + 2ρβ(t)) ,

where the coefficients α(t) and β(t), depending on the time variable t, reflect the
dynamic properties of the model under consideration.
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Therefore, from (4.7) we can determine

C(x, ρ, t) = −ia−1(ρ, t)

∫ x

−∞
Υ̃T (z, ρ, t)GΥ(z, ρ, t)dz,

D(x, ρ, t) = ia−1(ρ, t)

∫ x

−∞
ΨT (z, ρ, t)GT Υ̃(z, ρ, t)dz + 2iρ2

(
α(t) + 2ρβ(t)

)
.

Thus, the equality (4.5) has the form

Υt(x, ρ, t)− (Γ + Π)Υ(x, ρ, t)

= − i

a(ρ, t)
(ρ, t)

∫ x

−∞
Υ̃T (z, ρ, t)GΥ(z, ρ, t)dz ·Ψ(x, ρ, t)

+
i

a(ρ, t)

∫ x

−∞
ΨT (z, ρ, t)GT Υ̃(z, ρ, t)dz ·Υ(x, ρ, t)

+2iρ2
(
α(t) + 2ρβ(t)

)
Υ(x, ρ, t).

(4.8)

Based on the expression provided in (3.4), the equality (4.8) can be rewritten in
the following form, which allows for a more detailed representation and analysis
of the relationships between the variables involved, thereby offering a clearer
understanding of how they interact under the given conditions:

at(ρ, t)Ψ̄(x, ρ, t) + bt(ρ, t)Ψ(x, ρ, t)− (Γ + Π)
(
a(ρ, t)Ψ̄(x, ρ, t) + b(ρ, t)Ψ(x, ρ, t)

)
= −ia−1(ρ, t)

∫ x

−∞
Υ̃T (z, ρ, t)GΥ(z, ρ, t)dz ·Ψ(x, ρ, t)

+

(
ia−1(ρ, t)

∫ x

−∞
ΨT (z, ρ, t)GT Υ̃(z, ρ, t)dz

)(
a(ρ, t)ψ̄(x, ρ, t) + b(ρ, t)ψ(x, ρ, t)

)
+2iρ2

(
α(t) + 2ρβ(t)

)(
a(ρ, t)ψ̄(x, ρ, t) + b(ρ, t)ψ(x, ρ, t)

)
.

By taking the limit as x→ +∞ in the preceding equality and using the conditions
specified in (4.2) and (4.3), we obtain

at(ρ, t) = i

∫ ∞

−∞
ΨT (z, ρ, t)GT Υ̃(z, ρ, t))dz, (4.9)

bt(ρ, t) = −ia−1(ρ, t)

∫ ∞

−∞
Υ̃T (z, ρ, t)GΥ(z, ρ, t)dz

+ib(ρ, t)a−1(ρ, t)

∫ ∞

−∞
ΨT (z, ρ, t)GT Υ̃(z, ρ, t)dz + 4iρ2b(ρ, t)

(
α(t) + 2ρβ(t)

)
.

Given that s+(ρ, t) =
b(ρ, t)

a(ρ, t)
, we can derive the following from the previous

expressions:

ds+(ρ, t)

dt
= 4iρ2

(
α(t) + 2ρβ(t)

)
s+(ρ, t)

− i

a2(ρ, t)

∫ ∞

−∞
Υ̃T (z, ρ, t)GΥ(z, ρ, t)dz.

(4.10)
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Lemma 4.1. The vector-functions

Υ(x, ρ, t) =

(
υ1(x, ρ, t)
υ2(x, ρ, t)

)
and Ψ(x, ρ, t) =

(
ψ1(x, ρ, t)
ψ2(x, ρ, t)

)
,

composed of their scalar components υ1, υ2 and ψ1, ψ2, act as fundamental solu-
tions for the dynamical system defined by (4.1), with their components fulfilling
the identities below: ∫ ∞

−∞
ΨT (x, ρ, t)GT Υ̃(x, ρ, t)dx = 0, (4.11)∫ ∞

−∞
Υ̃T (x, ρ, t)GΥ(x, ρ, t)dx = −2iρϑ(t)a(ρ, t)b(ρ, t). (4.12)

Proof. To calculate the integral in the left part of the identity (4.11), let us use
the formulas (2.4), (3.3), (3.4) and (4.1) and obtain the following result, which
will help to simplify further calculations:∫ ∞

−∞
ΨT (x, ρ, t)GΥ(x, ρ, t)dx

= ϑ(t)

∫ ∞

−∞

(
q∗x(x, t)υ1(x, ρ, t)ψ1(x, ρ, t) + qx(x, t)υ2(x, ρ, t)ψ2(x, ρ, t)

)
dx

= ϑ(t)

(∫ ∞

−∞
υ1(x, ρ, t)ψ1(x, ρ, t)dq

∗(x, t) +

∫ ∞

−∞
υ2(x, ρ, t)ψ2(x, ρ, t)dq(x, t)

)
= lim

d→∞
ϑ(t)

(
q∗(x, t)υ1(x, ρ, t)ψ1(x, ρ, t) + q(x, t)υ2(x, ρ, t)ψ2(x, ρ, t)

)∣∣∣d
−d

−ϑ(t)
∫ ∞

−∞
q∗(x, t)

(
υ′1(x, ρ, t)ψ1(x, ρ, t) + υ1(x, ρ, t)ψ

′
1(x, ρ, t)

)
dx

−ϑ(t)
∫ ∞

−∞
q(x, t)

(
υ′2(x, ρ, t)ψ2(x, ρ, t) + υ2(x, ρ, t)ψ

′
2(x, ρ, t)

)
dx

= lim
d→∞

ϑ(t)
[
−iρ

(
υ1(x, ρ, t)ψ2(x, ρ, t) + υ1(x, ρ, t)ψ1(x, ρ, t)

)]∣∣∣d
−d

= 0.

In this context, the prime symbol is used to indicate differentiation with respect
to the variable x, and in a similar manner, the following integral is computed by
applying the same methodological approach, ensuring consistency in the analyt-
ical framework and facilitating the derivation of relevant expressions:∫ ∞

−∞
Υ̃T (x, ρ, t)GΥ(x, ρ, t)dx = ϑ(t)

∫ ∞

−∞

(
q∗x(x, t)υ

2
1(x, ρ, t)+qx(x, t)υ

2
2(x, ρ, t)

)
dx

= lim
d→∞

ϑ(t)
(
q∗(x, t)υ21(x, ρ, t) + q(x, t)υ22(x, ρ, t)

)∣∣∣d
−d

−2ϑ(t)

∫ ∞

−∞

(
q∗(x, t)υ1(x, ρ, t)υ

′
1(x, ρ, t) + q(x, t)υ2(x, ρ, t)υ

′
2(x, ρ, t)

)
dx

= −2ϑ(t)

∫ ∞

−∞

[
υ′1(x, ρ, t)

(
−υ2(x, ρ, t) + iρυ2(x, ρ, t)

)
+υ′2(x, ρ, t)

(
−υ1(x, ρ, t) + iρυ1(x, ρ, t)

)]
dx = −2iρϑ(t)a(ρ, t)b(ρ, t).

□
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Corollary. Utilizing Lemma 4.1 and formula (4.9) produces the following
identity:

∂a(ρ, t)

∂t
= 0.

The time-independence of a(ρ, t) further implies that the associated spectral data
– including bound state eigenvalues ρn(t) and their multiplicities kn(t) – remain
stationary over time, preserving the intrinsic connection between the scattering
data and the potential’s geometry, i.e.

kn(t) = kn(0), ρn(t) = ρn(0), n = 1, N. (4.13)

Combining equations (4.10) and (4.12), the temporal derivative of s+(ρ, t) is
derived as

ds+(ρ, t)

dt
= 2iρ

(
2ρα(t) + 4ρ2β(t) + iϑ(t)

)
s+(ρ, t). (4.14)

Now we investigate the evolution of the normalizing chain
{
κn
0 ,κn

1 , . . . ,κn
kn−1

}
corresponding to the eigenvalue ρn, for n = 1, N . Subsequently, we re-express
equation (4.8) in the restructured form:

Υt(x, ρ, t)− (Γ + Π)Υ(x, ρ, t) = 2iρ2
(
α(t) + 2ρβ(t)

)
Υ(x, ρ, t)

− i

a(ρ, t)

(∫ x

−∞
Υ̃T (z, ρ, t)GΥ(z, ρ, t)dz ·Ψ(x, ρ, t)

−
∫ x

−∞
ΨT (x, ρ, t)GT Υ̃(z, ρ, t)dz ·Υ(z, ρ, t)

)
.

(4.15)

To initiate, we evaluate the subsequent integral by applying expressions (2.4) and
(3.1)-(3.4): ∫ x

−∞
ΨT (z, ρ, t)GT Υ̃(z, ρ, t)dz

= ϑ(t)

∫ x

−∞

(
q∗z(z, t)υ1(z, ρ, t)ψ1(z, ρ, t) + qz(z, t)υ2(z, ρ, t)ψ2(z, ρ, t)

)
dz

= ϑ(t)

(∫ x

−∞
υ1(z, ρ, t)ψ1(z, ρ, t)dq

∗(z, t) +

∫ x

−∞
υ2(z, ρ, t)ψ2(z, ρ, t)dq(z, t)

)
= ϑ(t) lim

d→∞

(
q∗(z, t)υ1(z, ρ, t)ψ1(z, ρ, t) + q(z, t)υ2(z, ρ, t)ψ2(z, ρ, t)

)∣∣∣x
−d

−ϑ(t)
∫ x

−∞
q∗(z, t)

(
υ′1(z, ρ, t)ψ1(z, ρ, t) + υ1(z, ρ, t)ψ

′
1(z, ρ, t)

)
dz

−ϑ(t)
∫ x

−∞
q(z, t)

(
υ′2(z, ρ, t)ψ2(z, ρ, t) + υ2(z, ρ, t)ψ

′
2(z, ρ, t)

)
dz

= ϑ(t)
(
q∗(x, t)υ1(x, ρ, t)ψ1(x, ρ, t) + q(x, t)υ2(x, ρ, t)ψ2(x, ρ, t)

)
−iρϑ(t)

∫ x

−∞

(
υ1(z, ρ, t)ψ2(z, ρ, t) + υ2(z, ρ, t)ψ1(z, ρ, t)

)′
dz

= ϑ(t)
(
q∗(x, t)υ1(x, ρ, t)ψ1(x, ρ, t) + q(x, t)υ2(x, ρ, t)ψ2(x, ρ, t)

)
−2iρϑ(t)υ2(x, ρ, t)ψ1(x, ρ, t).
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By following a similar derivation process, the following integral expression is
obtained:∫ x

−∞
Υ̃T (z, ρ, t)GΥ(z, ρ, t)dz = ϑ(t)

(
q∗(x, t)υ21(x, ρ, t) + q(x, t)υ22(x, ρ, t)

)
−2iρϑ(t)υ1(x, ρ, t)υ2(x, ρ, t).

which allows equation (4.15) to be reformulated in an equivalent form, facilitating
further analysis and manipulation within the given mathematical framework:

Υt(x, ρ, t)− (Γ + Π)Υ(x, ρ, t) = 2iρ2
(
α(t) + 2ρβ(t)

)
Υ(x, ρ, t)

− i

a(ρ, t)

[{
ϑ(t)

(
q∗(x, t)υ21(x, ρ, t) + q(x, t)υ22(x, ρ, t)

)
−2iρϑ(t)υ1(x, ρ, t)υ2(x, ρ, t)

}
Ψ(x, ρ, t)

−
{
ϑ(t)(q∗(x, t)υ1(x, ρ, t)ψ1(x, ρ, t) + q(x, t)υ2(x, ρ, t)ψ2(x, ρ, t))

−2iρϑ(t)υ2(x, ρ, t)ψ1(x, ρ, t)
}
Υ(x, ρ, t)

]
= − i

a(ρ, t)
ϑ(t)

(
q∗(x, t)υ21(x, ρ, t)Ψ + q(x, t)υ22(x, ρ, t)Ψ(x, ρ, t)

)
+

i

a(ρ, t)
ϑ(t)

(
q∗(x, t)υ1(x, ρ, t)ψ1(x, ρ, t)Υ(x, ρ, t)

+q(x, t)υ2(x, ρ, t)ψ2(x, ρ, t)Υ(x, ρ, t)
)

+
2ρ

a(ρ, t)
ϑ(t)

(
υ2(x, ρ, t)ψ1(x, ρ, t)Υ(x, ρ, t)− υ1(x, ρ, t)υ2(x, ρ, t)Ψ(x, ρ, t)

)
+2iρ2

(
α(t) + 2ρβ(t)

)
Υ(x, ρ, t) = −iϑ(t)

(
−q(x, t)υ2(x, ρ, t)
q∗(x, t)υ1(x, ρ, t)

)
−2ρϑ(t)

(
0

υ2(x, ρ, t)

)
+ 2iρ2

(
α(t) + 2ρβ(t)

)
Υ(x, ρ, t). (4.16)

By differentiating the equality (4.16) (kn − 1) times with respect to ρ and evalu-
ating at ρ = ρn, we get

∂

∂t

((kn−1)

Υn

)
−(Γ0+Π0)

(kn−1)

Υn −(kn−1)(Γ1+Π1)
(kn−2)

Υn − 1

2!
(kn−1)(kn−2)(Γ2+Π2)

(kn−3)

Υn

− 1

3!
(kn − 1)(kn − 2)(kn − 3)Π3

(kn−4)

Υn = 2iρ2n
(
2ρnβ(t) + α(t)

)(kn−1)

Υn

+4iρn(kn − 1)
(
3ρnβ(t) + α(t)

)(kn−2)

Υn + 2i(kn − 1)(kn − 2)
(
6ρnβ(t) + α(t)

)(kn−3)

Υn

+2i(kn − 1)(kn − 2)(kn − 3)β(t)
(kn−4)

Υn + ϑ(t)q(x, t)
(kn−1)

Υn

−2ϑ(t)

(
0

(kn−1)
υ2n

)
− 2(kn − 1)ϑ(t)

(
0

(kn−2)
υ2n

)
, (4.17)

where
(r)

Υn =
∂rΥ(x, ρ, t)

∂ρr
∣∣
ρ=ρn

, Γj =
dj

dρj
Γ
∣∣
ρ=ρn

, Πl =
dl

dρl
Π
∣∣
ρ=ρn

, j = 0, 2, l = 0, 3.
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By applying the formulas (2.4) and (3.5), we first evaluate the limit of the equality
(4.17) as x → ∞, and in this limit, we compare the coefficients of the term(
0
1

)
(ix)leiρnx for each l = kn − 1, kn − 2, . . . , 0, ultimately yielding the following

result:
∂κn

0 (t)

∂t
=
(
8iρ3nβ(t) + 4iρ2nα(t)− 2ρnϑ(t)

)
κn
0 (t),

∂κn
1 (t)

∂t
=
(
8iρ3nβ(t)+4iρ2nα(t)−2ρnϑ(t)

)
κn
1 (t)+

(
24iρ2nβ(t)+8iρnα(t)−2ϑ(t)

)
κn
0 (t),

∂κn
2 (t)

∂t
=
(
8iρ3nβ(t)+4iρ2nα(t)−2ρnϑ(t)

)
κn
2 (t)+

(
24iρ2nβ(t)+8iρnα(t)−2ϑ(t)

)
κn
1 (t)

+
(
24iρnβ(t) + 4iα(t)

)
κn
0 (t),

∂κn
l (t)

∂t
=
(
8iρ3nβ(t) + 4iρ2nα(t)− 2ρnϑ(t)

)
κn
l (t)

+
(
24iρ2nβ(t) + 8iρnα(t)− 2ϑ(t)

)
κn
l−1(t)

+
(
24iρnβ(t) + 4iα(t)

)
κn
l−2(t) + 8iβ(t)κn

l−3(t), l = 3, 4, . . . , kn − 1.

(4.18)

As a result of the previously conducted calculations, we ultimately arrive at
the following result, which essentially represents the main result of this study:

Theorem 4.1. Let q(x, t) be a solution of the problem defined by (2.1)–(2.4).
Then the scattering data associated with the non-self-adjoint operator L(t) with
the potential q(x, t) evolve over time according to the differential equations (4.13),
(4.14) and (4.18).

Remark 4.1. The behavior of the scattering data for the operator L(t) is en-
tirely determined by the equations obtained in Theorem 4.1, which lays a robust
groundwork for using the ISM to solve the problems (2.1)–(2.4). The resulting

set
{
s+(ρ, t), ρj(t), κj

0(t), κ
j
1(t), . . . , κ

j
kj−1(t), j = 1, N

}
satisfies the conditions

of Theorem 3.1, so according to Theorem 3.1 and 3.2, the potential q(x, t) in the
operator L(t) is uniquely determined and is a solution of problem (2.1)–(2.4).

5. Algorithm and example

Suppose we are provided with an initial function q0(x) that satisfies the condi-
tion specified in (2.3), which ensures that the function adheres to the necessary
criteria for the problem under consideration. In this case, the solution of the
problem (2.1)-(2.4) is found using the following algorithm:

• after resolving the direct problem while utilizing the prescribed initial
function q0(x), we subsequently determine the complete set of scattering
data associated with the operator L(0), which is given by the collection
of values:{

s+(ρ, 0), ρj(0),κj
0(0), κ

j
1(0), . . . , κ

j
kj−1(0), j = 1, N

}
;

• by utilizing the equations outlined in Theorem 4.1, we obtain the scatter-
ing data for t > 0, offering a comprehensive description of the system’s
evolution and the associated wave dynamics:{

s+(ρ, t), ρj(t), κj
0(t), κ

j
1(t), . . . , κ

j
kj−1(t), j = 1, N

}
;
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• by leveraging the scattering data obtained for t > 0, we proceed to solve
the sGLM integral equations, ultimately determining the unique solution
q(x, t), as established in Theorem 3.2.

Example 1. Let us examine the following problem, which involves analyzing
the given conditions and deriving relevant solutions:

iqt + qxx + 2q|q|2 + it
(
qxxx + 6|q|2qx

)
+ iσtqx = 0,

q(x, 0) = −
2id0

(
κ0
0

)∗
e−2ic0x∣∣κ0

0

∣∣ cosh 2(d0x− η0)
,

(5.1)

where σ = const, ρ0 = c0 + id0, (d0 > 0), κ0
0 =

∣∣κ0
0

∣∣eiζ0 , ∣∣κ0
0

∣∣2 = 4d20e
4η0 .

The scattering data of the operator L(0) may be easily found:

s+ (0) = 0, ρ(0) = ρ0 = c0 + id0, (d0 > 0), κ0(0) = κ0
0 .

By Theorem 4.1, we have

ρ0(t) = ρ0(0) = c0 + id0; κ0(t) = κ0
0e

γ(t),

where γ(t) = 4iρ20t+ 4iρ30t
2 − iρ0σt

2. Therefore,

Λ(x, t) = −iκ0(t)e
iρ0x. (5.2)

By solving the system of integral equations given in (3.7), which includes the
kernel defined in (5.2), we eventually derive the following explicit expression,

ω1(x, t) =
iκ∗

0(t)e
−2iρ∗0x

1 + |κ0(t)|2
4d20

e−4d0x
,

thereby determining the solution to the Cauchy problem (5.1), which gives a
comprehensive description of the evolution of the system under the given initial
conditions:

q(x, t) = −
2i
(
κ0
0

)∗
e−4i(c0−id0)3t2−4i(c0−id0)2t+(ic0+d0)σt2−2ic0x−2d0x

1 +
|κ0

0|
2

4d20
e−4d0x+8d0(d20−3c20)t

2−16c0d0t+2σd0t2
.

Taking into account the expansion κ0
0 =

∣∣κ0
0

∣∣eiζ0 , the resulting equality can be
reformulated as follows:

q(x, t) = − 2id0e
(−4ic30+12ic0d20+ic0σ)t2+4i(d20−c20)t−2ic0x−iζ0

cosh
(
2d0x− 2η0 − 4d0

(
d20 − 3c20

)
t2 + 8c0d0t− σd0t2

) .
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Figure 1. Plot of the modulus of the function q(x, t) for the fixed parameter
values: c0 = −0.3, d0 = 0.5, σ = 1, φ = π/2, ψ = π/2.

6. Some special cases

In this section, we explore several special cases of equation (2.1), focusing on
specific scenarios that allow for a more detailed analysis of the behavior and
properties of the system under particular conditions.

1. If we set α(t) ≡ 0, β(t) ̸≡ 0, and ϑ(t) ̸≡ 0 in equation (2.1), we obtain the
following modified equation:

qt + β(t)
(
6|q|2qx + qxxx

)
− iϑ(t)qx = 0, (6.1)

which represents the non-stationary cmKdV equation with a lower-order term,
capturing the dynamics of the system under these specific conditions. Thus, by
setting α(t) ≡ 0 in Theorem 4.1, we obtain the time evolution of the scattering
data for the Dirac operator, where the potential is determined by the solution of
the problem defined by equation (6.1) and the conditions (2.2)–(2.4).

Example 2. We now examine the problem outlined below:

qt + 3t2(qxxx + 6|q|2qx) + (2t+ 1)qx = 0,

q(x, 0) = −
2id0

(
κ0
0

)∗
e−2ic0x∣∣κ0

0

∣∣ cosh 2(d0x− η0)
,

where ρ0 = c0 + id0, (d0 > 0), κ0
0 =

∣∣κ0
0

∣∣eiζ0 , ∣∣κ0
0

∣∣2 = 4d20e
4η0 .
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The solution to this problem is as follows, and it is solved in precisely the same
approach as Example 1:

q(x, t) = − 2id0e
−8ic0(c20−3d20)t

3+2ic0(t2+t)−iζ0−2ic0x

cosh
(
2d0x− 2η0 − 8d0

(
d20 − 3c20

)
t3 − 2d0(t2 + t)

) .

Figure 2. Plot of the modulus of the function q(x, t) for the fixed parameter
values: c0 = −0.3, d0 = 0.5, φ = π/2, ψ = π/2.

2. By setting β(t) ≡ 0 and α(t) ̸≡ 0, ϑ(t) ̸≡ 0 in equation (2.1), we derive the
following equation:

iqt + α(t)
(
qxx + 2q|q|2

)
+ ϑ(t)qx = 0, (6.2)

which is a non-stationary NLS equation with a lower-order term. As a result, by
setting β(t) ≡ 0 in Theorem 4.1, we obtain the time evolution of the scattering
data for the Dirac operator, with the potential being determined as the solution
to equation (6.2) under the conditions given in equations (2.2)–(2.4).

Example 3. Consider the subsequent problem:

iqt + uxx + 2q|q|2 + 3itqx = 0,

q(x, 0) = −
2id0

(
κ0
0

)∗
e−2ic0x∣∣κ0

0

∣∣ cosh 2(d0x− η0)
,

where ρ0 = c0 + id0, (d0 > 0), κ0
0 =

∣∣κ0
0

∣∣eiζ0 , ∣∣κ0
0

∣∣2 = 4d20e
4η0 .

This example is solved in exactly the same way as Example 1, and the solution
to this problem is as follows:

q(x, t) = − 2id0e
−4i(c20−d20)t+3ic0t2−2ic0x−iζ0

cosh
(
8c0d0t− 3d0t2 + 2d0x− 2η0

) .
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Figure 3. Plot of the modulus of the function q(x, t) for the fixed parameter
values: c0 = −0.3, d0 = 0.5, φ = π/2, ψ = π/2.
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