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A CUBATURE FORMULA FOR A CLASS OF VECTOR

POTENTIALS WITH SINGULAR KERNELS

ELNUR H. KHALILOV AND VAFA O. SAFAROVA

Abstract. In this work, a cubature formula is constructed for a class
of vector potentials with singular kernels, and error estimates for the
constructed cubature formulas are provided.

1. Introduction

It is known (see [2, pp. 153-154]) that the internal and external electric bound-
ary value problems, as well as the internal and external magnetic boundary value
problems, are reduced to a system of integral equations dependent on vector
potentials:

(Ff) (x) = 2

∫
Ω

divx {Φk (x, y) [n (y) , f (y)]} dΩy, x = (x1, x2, x3) ∈ Ω, (1.1)

(Gg) (x) = 2

∫
Ω

(n (x) , rotx {Φk (x, y) g (y)}) dΩy, x = (x1, x2, x3) ∈ Ω, (1.2)

(Kλ) (x) = 2

∫
Ω

[n (x) , gradx {Φk (x, y) λ (y)}] dΩy, x = (x1, x2, x3) ∈ Ω, (1.3)

and

(Tµ) (x) = −2
∫
Ω

[n (x) , [n (x) , rotx {Φk (x, y) µ (y)n (y)}]] dΩy,

x = (x1, x2, x3) ∈ Ω,
(1.4)

where Ω ⊂ R3 is the Lyapunov surface, n (x) = (n1 (x) , n2 (x) , n3 (x)) is the
outward unit normal at point x ∈ Ω, f (x) = (f1 (x) , f2 (x) , f3 (x)) and g (x) =
(g1 (x) , g2 (x) , g3 (x)) are vector functions continuous on the surface Ω, while
λ (x) and µ (x) are scalar functions continuous on the surface Ω. The notation
[a, b] denotes the cross product of vectors a and b, and (a, b)−denotes the dot
product;

Φk (x, y) =
exp (ik |x− y|)

4π |x− y|
, x, y ∈ R3, x ̸= y,
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is the fundamental solution of the Helmholtz equation ∆u + k2u = 0, ∆ is the
Laplace operator, and k is the wave number, where Imk ≥ 0.

Since in many cases it is impossible to find exact solutions to the integral
equations, the study of approximate solutions to these integral equations becomes
of interest. To find an approximate solution, it is first necessary to construct
cubature formulas for the integrals involved in these equations. It is worth noting
that the counterexample constructed by A.M. Lyapunov (see [3, pp. 89–90])
demonstrates that for single-layer and double-layer potentials with continuous
density, the derivative, generally speaking, does not exist. Consequently, the
operators F , G, K and T are not defined in the space of continuous functions
on the surface Ω. It is worth noting that in [1], by considering the derivative
of the double-layer potential as a hypersingular integral, a cubature formula for
the normal derivative of the double-layer potential was constructed. It should
be noted that the cubature formula constructed in [1] is not practical in the
sense that its coefficients are singular integrals. However, in [6], the existence of
the normal derivative of the acoustic double-layer potential in the sense of the
Cauchy principal value is demonstrated, and a formula for computing the normal
derivative of the acoustic double-layer potential is provided. Furthermore, in [5],
a cubature formula for the normal derivative of the acoustic single-layer potential
is constructed, while in [7], a cubature formula for the normal derivative of the
acoustic double-layer potential is developed. In the present work, the convergence
of integrals (1.1) – (1.4) in the sense of the Cauchy principal value is proven, and
cubature formulas for these integrals are constructed.

2. On the convergence of integrals (1.1) – (1.4)

Let us introduce the modulus of continuity of the function f ∈ C (Ω):

ω (f, δ) = δ sup
τ≥δ

ω̄ (f, τ)

τ
, δ > 0,

where

ω̄ (f, τ) = max
|x−y|≤τ,
x,y∈Ω

|f (x)− f (y)| ,

|f (x)− f (y)| =
√

(f1 (x)− f1 (y))
2 + (f2 (x)− f2 (y))

2 + (f3 (x)− f3 (y))
2,

and C (Ω) denotes the space of all continuous functions on the surface Ω with the
norm ∥f∥∞ = max

x∈Ω
|f (x) |.

Theorem 2.1. Let Ω ⊂ R3 be a Lyapunov surface with exponent 0 < α ≤ 1 and

diamΩ∫
0

ω (f, t)

t
dt < +∞.
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Then the integral (1.1) exists in the sense of the Cauchy principal value, and

sup
x∈Ω

| (Ff) (x) | ≤M1

∥f∥∞ +

diam Ω∫
0

ω (f, t)

t
dt

 .

Proof: It is obvious that

(Ff) (x) = 2

∫
Ω

(∂Φk (x, y)
∂x1

(n2 (y) f3 (y)− n3 (y) f2 (y))+

+
∂Φk (x, y)

∂x2
(n3 (y) f1 (y)− n1 (y) f3 (y))+

+
∂Φk (x, y)

∂x3
(n1 (y) f2 (y)− n2 (y) f1 (y))

)
dΩy.

First, we prove that under the conditions of the theorem, the integral

F1 (x) = 2

∫
Ω

∂Φk (x, y)

∂x1
(n2 (y) f3 (y)− n3 (y) f2 (y)) dΩy

exists in the sense of the Cauchy principal value.
Let us denote by d > 0 the radius of the standard sphere for Ω (see [9, pp.

400]) and let Ωε (x) = {y ∈ Ω : |x− y| < ε}, where x ∈ Ω and ε > 0. It is known
that for each x ∈ Ω the set Ωd (x) is projected uniquely onto the set Πd(x) lying
in the tangent plane Γ(x) to Ω at the point x. On the piece Ωd(x) we choose
a local rectangular coordinate system (u, v, w), with the origin at the point x,
where the w-axis is directed along the normal n (x), and the u- and v-axes lie in
the tangent plane Γ (x). Then in these coordinates the neighborhood Ωd(x) can
be defined by the equation w = ψ (u, v) , (u, v) ∈ Πd(x), where

ψ ∈ H1,α (Πd (x)) and ψ (0, 0) = 0,
∂ψ (0, 0)

∂u
= 0,

∂ψ (0, 0)

∂v
= 0. (2.1)

Here H1,α (Πd (x)) denotes the linear space of all continuously differentiable func-
tions ψ on Πd (x), whose gradψ satisfies the Holder condition with the exponent
0 < α ≤ 1, i.e.,

|gradψ (u1, v1)− grad ψ (u2, v2) | ≤Mψ

(√
(u1 − u2)

2 + (v1 − v2)
2

)α
,

∀ (u1, v1) , (u2, v2) ∈ Πd(x),

whereMψ is a positive constant depending on ψ, and not from (u1, v1) or (u2, v2).
Moreover, let Γd (x) be the part of the tangent plane Γ (x) at the point x ∈ Ω,
enclosed inside a sphere of radius d with center at the point x. Obviously, if a
point ỹ ∈ Γ (x) is a projection of a point y ∈ Ω, then

|x− ỹ| ≤ |x− y| ≤ C1 |x− ỹ| , mesΩd (x) ≤ C2mesΓd (x) , (2.2)

where C1 and C2 are positive constants depending only on Ω (if Ω is a sphere,
then C1 =

√
2 and C2 = 2).

1From here on we will denote by M positive constants that are different in different
inequalities.
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It is not difficult to calculate that

F1 (x) = F1,1 (x) + F1,2 (x) + F1,3 (x) + F1,4 (x) , (2.3)

where

F1,1 (x) = 2

∫
Ω

(ik |x− y| exp (ik |x− y|)− (exp (ik |x− y|)− 1)) (x1 − y1)

4π |x− y|3
×

× (n2 (y) f3 (y)− n3 (y) f2 (y)) dΩy,

F1,2 (x) =

∫
Ω\Ωd(x)

y1 − x1

4π |x− y|3
(n2 (y) f3 (y)− n3 (y) f2 (y)) dΩy,

F1,3 (x) =

∫
Ωd(x)

y1 − x1

4π |x− y|3
(
(n2 (y) f3 (y)− n3 (y) f2 (y))−

− (n2 (x) f3 (x)− n3 (x) f2 (x))
)
dΩy

and

F1,4 (x) = (n2 (x) f3 (x)− n3 (x) f2 (x))

∫
Ωd(x)

y1 − x1

4π |x− y|3
dΩy.

Taking into account the inequality

| exp (ik |x− y|)− 1 | ≤ |k| |x− y| ,
we obtain that∣∣∣∣(ik |x− y| exp (ik |x− y|)− (exp (ik |x− y|)− 1)) (x1 − y1)

4π |x− y|3

∣∣∣∣ ≤ M

|x− y|
. (2.4)

This means that the integral F1,1 (x) converges as improper and

|F1,1 (x)| ≤M ∥f∥∞ , ∀x ∈ Ω.

As can be seen, the integral F1,2 (x) exists as a proper integral, and therefore

|F1,2 (x)| ≤M ∥f∥∞ , ∀x ∈ Ω.

Taking into account the inequality (see [9, p. 400])

|n (y)− n (x)| ≤M |y − x|α , ∀x, y ∈ Ω,

we obtain that

|(n2 (y) f3 (y)− n3 (y) f2 (y))− (n2 (x) f3 (x)− n3 (x) f2 (x))| ≤

≤M (|x− y|α ∥f∥∞ + ω (f, |x− y|)) . (2.5)

Then, moving on to the double integral, we have

|F1,3 (x)| ≤M

∥f∥∞
∫

Ωd(x)

dΩy

|x− y|2−α
+

∫
Ωd(x)

ω (f, |x− y|)
|x− y|2

dΩy

 ≤

≤M

∥f∥∞ +

d∫
0

ω (f, t)

t
dt

 < +∞, ∀x ∈ Ω.
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It remains to prove that the integral F1,4 (x) exists in the sense of the Cauchy
principal value. Let d0 = d/ (2C1). Obviously,

Od0 (x) =
{
(u, v, 0) |

√
u2 + v2 < d0

}
⊂ Πd (x) .

Then, according to the formula for reducing a surface integral to an iterated one,
we obtain ∫

Ωd(x)

y1 − x1

|x− y|3
dΩy =

∫
Πd(x)\Od0

(x)

u(√
u2 + v2 + ψ2 (u, v)

)3×

×

√
1 +

(
∂ψ (u, v)

∂u

)2

+

(
∂ψ (u, v)

∂v

)2

dudv+

+

∫
Od0

(x)

u(√
u2 + v2 + ψ2 (u, v)

)3×
×

√1 +

(
∂ψ (u, v)

∂u

)2

+

(
∂ψ (u, v)

∂v

)2

− 1

 dudv+

+

∫
Od0

(x)

u(√
u2 + v2

)3dudv+
∫

Od0
(x)

u

 1(√
u2 + v2 + ψ2 (u, v)

)3 − 1(√
u2 + v2

)3
 dudv.

As can be seen, the first term of the integral in the last equality exists as a
proper one. Moreover, taking into account the inequalities (see [9, pp. 402])∣∣∣∣∂ψ (u, v)

∂u

∣∣∣∣ ≤M
(√

u2 + v2
)α

,

∣∣∣∣∂ψ (u, v)

∂v

∣∣∣∣ ≤M
(√

u2 + v2
)α

, (2.6)

we find ∣∣∣∣∣∣
√
1 +

(
∂ψ (u, v)

∂u

)2

+

(
∂ψ (u, v)

∂v

)2

− 1

∣∣∣∣∣∣ ≤M
(
u2 + v2

)α
.

Then we obtain the following estimate for the second term of the integral:∣∣∣∣∣∣∣∣∣∣
∫

Od0
(x)

u

(√
1 +

(
∂ψ(u, v)
∂u

)2
+
(
∂ψ(u, v)
∂v

)2
− 1

)
(√

u2 + v2 + ψ2 (u, v)
)3 dudv

∣∣∣∣∣∣∣∣∣∣
≤M.

Moving to the polar coordinate system{
u = r cos τ,
v = r sin τ,

0 ≤ τ ≤ 2π,
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we obtain that the third term of the integral is equal to zero:∫
Od0

(x)

u(√
u2 + v2

)3dudv = lim
ε→+0

∫
Od0

(x)\Oε(x)

u(√
u2 + v2

)3dudv =

= lim
ε→+0

d0∫
ε

2π∫
0

cosφ

r
dφdr = 0. (2.7)

Since there exists a point (θ1u , θ2v) such that

ψ (u, v)− ψ (0, 0) =
∂ψ (θ1u , θ2v)

∂u
u+

∂ψ (θ1u , θ2v)

∂v
v,

where 0 < θ1 < 1 and 0 < θ2 < 1, then taking into account (2.1) and (2.6), we
find that

|ψ (u, v) | = |ψ (u, v) − ψ (0, 0) | ≤M
(√

u2 + v2
) 1+α

.

Therefore,∣∣∣∣∣∣∣
1(√

u2 + v2 + ψ2 (u, v)
)3 − 1(√

u2 + v2
)3
∣∣∣∣∣∣∣ ≤M

1(√
u2 + v2

)3−2α ,

∀ (u, v) ∈ Πd
(
x′
)
\ (0 , 0) .

Then, moving on to the repeated integral, for the last term of the integral we
obtain the following estimate:

∣∣∣∣∣∣∣
∫

Od0
(x)

u

 1(√
u2 + v2 + ψ2 (u, v)

)3 − 1(√
u2 + v2

)3
 dudv

∣∣∣∣∣∣∣ ≤M.

As a result, we obtain that the integral F1,4 (x) exists in the sense of the Cauchy
principal value and

|F1,4 (x)| ≤M ∥f∥∞ , ∀x ∈ Ω.

As a result, taking into account the obtained estimates for the expressions
F1,1 (x), F1,2 (x), F1,3 (x) and F1,4 (x) in equality (2.3), we obtain that the integral

F1 (x) = 2

∫
Ω

∂Φk (x, y)

∂x1
(n2 (y) f3 (y)− n3 (y) f2 (y)) dΩy

exists in the sense of the Cauchy principal value, and

sup
x∈Ω

|F1 (x) | ≤M

∥f∥∞ +

diam Ω∫
0

ω (f, t)

t
dt

 .

In a similar way, it can be shown that the integrals
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F2 (x) = 2

∫
Ω

∂Φk (x, y)

∂x2
(n3 (y) f1 (y)− n1 (y) f3 (y)) dΩy

and

F3 (x) = 2

∫
Ω

∂Φk (x, y)

∂x3
(n1 (y) f2 (y)− n2 (y) f1 (y)) dΩy

exist in the Cauchy principal value sense, with

sup
x∈Ω

|F2 (x) | ≤M

∥f∥∞ +

diam Ω∫
0

ω (f, t)

t
dt


and

sup
x∈Ω

|F3 (x) | ≤M

∥f∥∞ +

diam Ω∫
0

ω (f, t)

t
dt

 .

This completes the proof of the theorem.
It is not difficult to calculate that

(Gg) (x) = 2

∫
Ω

(
n1 (x)

(
∂Φk (x, y)

∂x2
g3 (y)−

∂Φk (x, y)

∂x3
g2 (y)

)
+

+n2 (x)

(
∂Φk (x, y)

∂x3
g1 (y)−

∂Φk (x, y)

∂x1
g3 (y)

)
+

+n3 (x)

(
∂Φk (x, y)

∂x1
g2 (y)−

∂Φk (x, y)

∂x2
g1 (y)

))
dΩy,

(Kλ) (x) = 2

∫
Ω

((
∂Φk (x, y)

∂x3
n2 (x)−

∂Φk (x, y)

∂x2
n3 (x)

)
e1+

+

(
∂Φk (x, y)

∂x1
n3 (x)−

∂Φk (x, y)

∂x3
n1 (x)

)
e2+

+

(
∂Φk (x, y)

∂x2
n1 (x)−

∂Φk (x, y)

∂x1
n2 (x)

)
e3

)
λ (y) dΩy

and

(Tµ) (x) = −2

∫
Ω

(V1 (x, y) e1 + V2 (x, y) e2 + V3 (x, y) e3)µ (y) dΩy,

where e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1),

V1 (x, y) = n1 (x)n2 (x)
∂Φk (x, y)

∂x3
n1 (y)− n1 (x)n2 (x)

∂Φk (x, y)

∂x1
n3 (y)−

− (n2 (x))
2 ∂Φk (x, y)

∂x2
n3 (y) + (n2 (x))

2 ∂Φk (x, y)

∂x3
n2 (y)−
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− (n3 (x))
2 ∂Φk (x, y)

∂x2
n3 (y) + (n3 (x))

2 ∂Φk (x, y)

∂x3
n2 (y)+

+n1 (x)n3 (x)
∂Φk (x, y)

∂x1
n2 (y)− n1 (x)n3 (x)

∂Φk (x, y)

∂x2
n1 (y) ,

V2 (x, y) = n2 (x)n3 (x)
∂Φk (x, y)

∂x1
n2 (y)− n2 (x)n3 (x)

∂Φk (x, y)

∂x2
n1 (y)−

− (n3 (x))
2 ∂Φk (x, y)

∂x3
n1 (y) + (n3 (x))

2 ∂Φk (x, y)

∂x1
n3 (y)−

− (n1 (x))
2 ∂Φk (x, y)

∂x3
n1 (y) + (n1 (x))

2 ∂Φk (x, y)

∂x1
n3 (y)+

+n1 (x)n2 (x)
∂Φk (x, y)

∂x2
n3 (y)− n1 (x)n2 (x)

∂Φk (x, y)

∂x3
n2 (y)

and

V3 (x, y) = n1 (x)n3 (x)
∂Φk (x, y)

∂x2
n3 (y)− n1 (x)n3 (x)

∂Φk (x, y)

∂x3
n2 (y)−

− (n1 (x))
2 ∂Φk (x, y)

∂x1
n2 (y) + (n1 (x))

2 ∂Φk (x, y)

∂x2
n1 (y)−

− (n2 (x))
2 ∂Φk (x, y)

∂x1
n2 (y) + (n2 (x))

2 ∂Φk (x, y)

∂x2
n1 (y)+

+n2 (x)n3 (x)
∂Φk (x, y)

∂x3
n1 (y)− n2 (x)n3 (x)

∂Φk (x, y)

∂x1
n3 (y) .

Then, proceeding in exactly the same way as in the proof of Theorem 2.1, we can
prove the validity of the following theorems.

Theorem 2.2. Let Ω ⊂ R3 be a Lyapunov surface with exponent 0 < α ≤ 1 and

diamΩ∫
0

ω (g, t)

t
dt < +∞.

Then the integral (1.2) exists in the sense of the Cauchy principal value, and

sup
x∈Ω

| (Gg) (x) | ≤M

∥g∥∞ +

diam Ω∫
0

ω (g, t)

t
dt

 .

Theorem 2.3. Let Ω ⊂ R3 be a Lyapunov surface with exponent 0 < α ≤ 1 and

diamΩ∫
0

ω (λ, t)

t
dt < +∞.

Then the integral (1.3) exists in the sense of the Cauchy principal value, and

sup
x∈Ω

| (Kλ) (x) | ≤M

∥λ∥∞ +

diam Ω∫
0

ω (λ, t)

t
dt

 .
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Theorem 2.4. Let Ω ⊂ R3 be a Lyapunov surface with exponent 0 < α ≤ 1 and

diamΩ∫
0

ω (µ, t)

t
dt < +∞.

Then the integral (1.4) exists in the sense of the Cauchy principal value, and

sup
x∈Ω

| (Tµ) (x) | ≤M

∥µ∥∞ +

diam Ω∫
0

ω (µ, t)

t
dt

 .

3. Cubature formula for integrals (1.1) – (1.4)

We partition Ω into “regular” elementary parts: Ω =
N⋃
l=1

Ωl. By a “regular” el-

ementary part we mean a set of points subordinate to the following requirements:

(1) for each l ∈ {1, 2, ..., N} the elementary part Ωl is closed and the set
0
Ωl

of its interior points with respect to Ω is not empty; moreover, mes
0
Ωl = mesΩl

and
0
Ωl
⋂ 0

Ωj = ∅ for j ∈ {1, 2, ...N} , j ̸= l;
(2) for each l ∈ {1, 2, ..., N} the elementary part Ωl is a connected piece of

the surface Ω and the boundary of the elementary part Ωl is a continuous curve;
(3) for each l ∈ {1, 2, ..., N} there exists a so-called supporting point x (l) =

(x1 (l) , x2 (l) , x3 (l)) ∈ Ωl such that
(3.1) rl(N) ∼ Rl(N) (the expression rl (N) ∼ Rl (N) means that rl (N) and

Rl (N) are equivalent, i.e., there exist numbers C1 > 0 and C2 < +∞ such that

C1 ≤ rl(N)
Rl(N) ≤ C2 for any N), where rl (N) = min

x∈∂Ωl

|x− x (l)| and Rl (N) =

max
x∈∂Ωl

|x− x (l)|;

(3.2) Rl (N) ≤ d
2 ;

(3.3) rj (N) ∼ rl (N) for each j ∈ {1, 2, ..., N}.
Obviously, r (N) ∼ R (N) and lim

N→∞
r (N) = lim

N→∞
R (N) = 0, where R (N) =

max
l=1, N

Rl (N), r(N) = min
l=1, N

rl(N).

The following lemmas are true.

Lemma 3.1. ([8]). There exist constants C ′
0 > 0 and C ′

1 > 0 not depending
on N such that, for all l, j ∈ {1, 2, ..., N}, j ̸= l, and all y ∈ Ωj, the following
inequalities hold:

C ′
0 |y − x (l)| ≤ |x (j)− x (l)| ≤ C ′

1 |y − x (l)| ,
where the x (l), l ∈ {1, 2, ..., N}, are supporting points.

Lemma 3.2. ([8]). For a partition Ω =
N⋃
l=1

Ωl of the surface Ω into regular

elementary parts, the following relation holds: R (N) ∼ 1√
N
.
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It is obvious that there exists a natural number N0 such that

(R (N))
1

1+α ≤ min {1 , d/2} , ∀N > N0.

Let us put

Pl =
{
j | 1 ≤ j ≤ N , |x (l)− x (j)| ≤ (R (N))

1
1+α

}
,

Ql =
{
j | 1 ≤ j ≤ N , |x (l)− x (j)| > (R (N))

1
1+α

}
.

Theorem 3.1. Let Ω ⊂ R3 be a Lyapunov surface with exponent 0 < α ≤ 1 and

diamΩ∫
0

ω (f, t)

t
dt < +∞.

Then the sequence(
FNf

)
(x (l)) = 2

∑
j∈Ql

divx {Φk (x, y) [n (y) , f (y)]}|x=x(l), y=x(j) ·mesΩj

converges to F (x(l)) at N → ∞, and

max
l=1, N

∣∣(Ff) (x (l))− (FNf) (x (l))∣∣ ≤

≤M

∥f∥∞N
− α

2(1+α) +

N
− 1

2(1+α)∫
0

ω (f, t)

t
dt+N

− 1
2(1+α)

diamΩ∫
N

− 1
2(1+α)

ω (f, t)

t2
dt

 . (3.1)

Proof. It is obvious that (
FNf

)
(x (l)) =

= 2
∑
j∈Ql

∂Φk (x (l) , x (j))

∂x1 (l)
(n2 (x (j)) f3 (x (j))− n3 (x (j)) f2 (x (j)))mesΩj+

+2
∑
j∈Ql

∂Φk (x (l) , x (j))

∂x2 (l)
(n3 (x (j)) f1 (x (j))− n1 (x (j)) f3 (x (j)))mesΩj+

+2
∑
j∈Ql

∂Φk (x (l) , x (j))

∂x3 (l)
(n1 (x (j)) f2 (x (j))− n2 (x (j)) f1 (x (j)))mesΩj .

Then, as we can see, it is sufficient to prove that the sequence

FN1 (x (l)) =

= 2
∑
j∈Ql

∂Φk (x (l) , x (j))

∂x1 (l)
(n2 (x (j)) f3 (x (j))− n3 (x (j)) f2 (x (j)))mesΩj

converges to F1(x(l)) at N → ∞. It is obvious that

F1 (x(l))− FN1 (x(l)) = hN1 (x(l)) + hN2 (x(l)) ,
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where

hN1 (x(l)) = 2

∫
⋃

j∈Pl

Ωj

∂Φk (x(l), y)

∂x1(l)
(n2(y)f3(y)− n3(y)f2(y)) dΩy

and

hN2 (x(l)) = 2
∑
j∈Qi

∫
Ωj

(
∂Φk (x(l), y)

∂x1(l)
(n2(y)f3(y)− n3(y)f2(y)) −

−∂Φk (x(l), x(j))
∂x1(l)

(n2(x(j))f3(x(j))− n3(x(j))f2(x(j)))

)
dΩy.

It is not difficult to calculate that hN1 (x (l)) = hN11 (x (l))+h
N
12 (x (l))+h

N
13 (x (l)),

where

hN11 (x (l)) =
1

2π

∫
⋃

j∈Pl

Ωj

(n2 (y) f3 (y)− n3 (y) f2 (y))×

×(ik |x (l)− y| exp (ik |x (l)− y|)− (exp (ik |x (l)− y|)− 1)) (x1 (l)− y1)

|x (l)− y|3
dΩy,

hN12 (x (l)) =
1

2π

∫
⋃

j∈Pl

Ωj

y1 − x1 (l)

|x (l)− y|3
×

× ((n2 (y) f3 (y)− n3 (y) f2 (y))− (n2 (x (j)) f3 (x (j))− n3 (x (j)) f2 (x (j)))) dΩy
and

hN13 (x (l)) =
n2 (x (j)) f3 (x (j))− n3 (x (j)) f2 (x (j))

2π

∫
⋃

j∈Pl

Ωj

y1 − x1 (l)

|x (l)− y|3
dΩy.

Let y ∈ ∂

( ⋃
j∈Pl

Ωj

)
. Obviously, there exist natural numbers p ∈ Pl and

m ∈ Ql such that y ∈ ∂Ωp and y ∈ ∂Ωm. From here we have

|x (l)− y| ≤ |x (l)− x (p)|+ |x (p)− y| ≤ (R (N))
1

1+α +R (N)

and

|x (l)− y| ≥ |x (l)− x (m)| − |x (m)− y| > (R (N))
1

1+α −R (N) ,

therefore,

(R (N))
1

1+α −R (N) < |x (l)− y| ≤

≤ (R (N))
1

1+α +R (N) , ∀ y ∈ ∂

⋃
j∈Pl

Ωj

 . (3.2)

Then, taking into account inequality (2.4) and moving on to the double integral,
we obtain that ∣∣hN11(x(l))∣∣ ≤M

∫
⋃

j∈Pl

Ωj

∥f3∥∞ + ∥f2∥∞
|x(l)− y|

dΩy ≤
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≤M ∥f∥∞

2π∫
0

dφ

(R(N))
1

1+α∫
0

dt = 2πM ∥f∥∞ (R(N))
1

1+α ,

and taking into account inequality (2.5), we obtain that∣∣hN12(x(l))∣∣ ≤M

∫
⋃

j∈Pl

Ωj

(
∥f∥∞

|x(l)− y|2−α
+
ω (f, |x(l)− y|)

|x(l)− y|2

)
dΩy ≤

≤M

2π∫
0

dφ

(R(N))
1

1+α∫
0

(
∥f∥∞
t2−α

+
ω(f, t)

t2

)
tdt =

= 2πM

∥f∥∞
α

(R(N))
α

1+α +

(R(N))
1

1+α∫
0

ω(f, t)

t
dt

 .

To evaluate expressions hN13 (x (l)) on a piece Ωd (x (l)) we choose a local rect-
angular coordinate system (u, v, w) with the origin at the point x (l), where the
axis w is directed along the normal n (x (l)), and the axes u and v will lie on the
tangent plane Γ (x (l)). By Π∗

l we denote the projection of the set
⋃
j∈Pl

Ωj onto

the tangent plane Γ (x (l)). Let

dl = min
ỹ∈∂Π∗

l

|x (l)− ỹ| , Odl (x (l)) =
{
u2 + v2 < dl

}
⊂ Γ (x (l)) .

Then, according to the formula for reducing a surface integral to an iterated
integral, we obtain that∫

⋃
j∈Pl

Ωj

y1 − x1 (l)

|x (l)− y|3
dΩy =

∫
Odl(x(l))

u(√
u2 + v2

)3dudv+

+

∫
Odl

(x(l))

u

(√
1 +

(
∂ψ
∂u

)2
+
(
∂ψ
∂v

)2
− 1

)
(√

u2 + v2 + ψ2 (u, v)
)3 dudv+

+

∫
Odl

(x(l))

u

 1(√
u2 + v2 + ψ2 (u, v)

)3 − 1(√
u2 + v2

)3
 dudv+

+

∫
Π∗

l \Odl
(x(l))

u

√
1 +

(
∂ψ
∂u

)2
+
(
∂ψ
∂v

)2
(√

u2 + v2 + ψ2 (u, v)
)3dudv. (3.3)

From (2.7) it is obvious that the first integral on the right-hand side of equal-
ity (3.3) exists in the sense of the Cauchy principal value and is equal to zero.
Moreover, taking into account inequalities (2.1) and (2.2), we have
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∣∣∣∣∣∣∣∣∣∣
∫

Odl
(x(l))

u

(√
1 +

(
∂ψ
∂u

)2
+
(
∂ψ
∂v

)2
− 1

)
(√

u2 + v2 + ψ2 (u, v)
)3 dudv

∣∣∣∣∣∣∣∣∣∣
≤M (R (N))

2α
1+α ,

∣∣∣∣∣∣∣
∫

Odl
(x(l))

u

 1(√
u2 + v2 + ψ2 (u, v)

)3 − 1(√
u2 + v2

)3
 dudv

∣∣∣∣∣∣∣ ≤M (R (N))
2α
1+α .

Let us estimate the last integral in equality (3.3). First of all, there is a point

ỹ∗ ∈ Π∗
l such that dl = |x (l)− ỹ∗|. Let y∗ ∈ ∂

( ⋃
j∈Pl

Ωj

)
denote the preimage

of the point ỹ∗, and let γ (a , b) denote the angle between the vectors a and b.
Applying inequality (3.2), we obtain that

dl = |x (l)− y∗| cos γ (y∗ − x (l) , ỹ∗ − x (l)) =

= |x (l)− y∗|
√
1− cos2 γ (y∗ − x (l) , n (x (l))) ≥

≥ |x (l)− y∗|
√
1−M2 |x (l)− y∗|2α ≥

≥
(
(R (N))

1
1+α −R (N)

) √
1−M2

(
(R (N))

1
1+α +R (N)

)2α
≥

≥
(
(R (N))

1
1+α −R (N)

) √
1−M2

(
2 (R (N))

1
1+α

)2α
=

=
(
(R (N))

1
1+α −R (N)

) √(
1− 2αM (R (N))

α
1+α

) (
1 + 2αM (R (N))

α
1+α

)
≥

≥
(
(R (N))

1
1+α −R (N)

) (
1− 2αM (R (N))

α
1+α

)
≥

≥ (R (N))
1

1+α − (1 + 2αM) R (N) .

Then∣∣∣∣∣∣∣
∫

Π∗
l \Odl

(x(l))

u(√
u2 + v2 + ψ2 (u, v)

)3
√
1 +

(
∂ψ

∂u

)2

+

(
∂ψ

∂v

)2

dudv

∣∣∣∣∣∣∣ ≤

≤M

(R(N))
1

1+α+R(N)∫
(R(N))

1
1+α−(1+2αM)R(N)

dt

t
≤

≤ M
(2 + 2αM) R (N)

(R (N))
1

1+α −R (N) (1 + 2αM)
≤M (R (N))

α
1+α .
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As a result, we have ∣∣hN13 (x (l))∣∣ ≤M ∥f∥∞ (R (N))
α

1+α .

Summing up the obtained estimates for the expressions hN11 (x (l)), h
N
12 (x (l))

and hN13 (x (l)), we obtain

∣∣hN1 (x (l))
∣∣ ≤M

∥f∥∞ (R (N))
α

1+α +

(R(N))
1

1+α∫
0

ω (f, t)

t
dt

 .

To evaluate the expression hN2 (x (l)) we use the representation

hN2 (x (l)) = hN21 (x (l)) + hN22 (x (l)) ,

where

hN21 (x (l)) = 2
∑
j∈Ql

∫
Ωj

∂Φk (x (l) , y)

∂x1 (l)
×

× ((n2 (y) f3 (y)− n3 (y) f2 (y))− (n2 (x (j)) f3 (x (j))− n3 (x (j)) f2 (x (j)))) dΩy

and

hN22 (x (l)) = 2
∑
j∈Ql

∫
Ωj

(
∂Φk (x (l) , y)

∂x1 (l)
− ∂Φk (x (l) , x (j))

∂x1 (l)

)
×

× (n2 (x (j)) f3 (x (j))− n3 (x (j)) f2 (x (j))) dΩy.

It is obvious that the function ω (f, δ) does not decrease, and the function
ω (f, δ) /δ does not increase. Then, taking into account inequality (2.5), we find

∣∣hN21 (x (l))∣∣ ≤M
∑
j∈Ql

∫
Ωj

|x (j)− y|α ∥f∥∞ + ω (f, |x (j)− y|)
|x (l)− y|2

dΩy ≤

≤M

∥f∥∞ (R (N))α
∫

⋃
j∈Ql

Ωj

dΩy

|x (l)− y|2
+ ω (f,R (N))

∫
⋃

j∈Ql

Ωj

dΩy

|x (l)− y|2

 ≤

≤M

∥f∥∞ (R (N))α
diamΩ∫

(R(N))
1

1+α

dt

t
+ ω (f,R (N))

diamΩ∫
(R(N))

1
1+α

dt

t

 ≤
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≤M

∥f∥∞ (R (N))α |lnR (N)|+ ω
(
f, (R (N))

1
1+α

) diamΩ∫
(R(N))

1
1+α

dt

t

 ≤

≤M

∥f∥∞ (R (N))α |lnR (N)|+ (R (N))
1

1+α

diamΩ∫
(R(N))

1
1+α

ω (f, t)

t2
dt

 .

Let y ∈ Ωj , j ∈ Ql. Since

∂Φk (x (l) , y)

∂x1 (l)
− ∂Φk (x (l) , x (j))

∂x1 (l)
=

=

(
1

4π |x (l)− y|3
− 1

4π |x (l)− y (j)|3

)
×

× (ik |x (l)− y (j)| − 1) exp (ik |x (l)− y (j)|) (x1 (l)− y1 (j))+

+
ik ( |x (l)− y| − |x (l)− x (j)|) exp (ik |x (l)− y|) (x1 (l)− y1)

4π |x (l)− y|3
+

+
( ik |x (l)− y| − 1) (exp (ik |x (l)− y|)− exp (ik |x (l)− x (j)|)) (x1 (l)− y1)

4π |x (l)− y|3
+

+
( ik |x (l)− y| − 1) exp (ik |x (l)− y|) (x1 (j)− y1)

4π |x (l)− y|3
,

then taking into account Lemma 3.1, we obtain that∣∣∣∣∂Φk (x (l) , y)∂x1 (l)
− ∂Φk (x (l) , x (j))

∂x1 (l)

∣∣∣∣ ≤M
R (N)

|x (l)− y|3
.

From here we have∣∣hN22 (x (l))∣∣ ≤MR (N) ∥f∥∞
∫

⋃
j∈Ql

Ωj

dΩy

|x (l)− y|3
≤

≤MR (N) ∥f∥∞

diamΩ∫
(R(N))

1
1+α

dt

t2
≤M (R (N))

α
1+α ∥f∥∞ .

Summing up the obtained estimates for the expressions hN1 (x (l)) and hN2 (x (l)),
and taking into account Lemma 3.2, we obtain the validity of estimate (3.1).

Since (see [4, pp. 55])

lim
δ→0

 δ∫
0

ω (f, t)

t
dt+ δ

diamΩ∫
δ

ω (f, t)

t2
dt

 = 0,
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it is obvious that

lim
N→∞

max
l=1, N

∣∣(Ff) (x (l))− (FNf) (x (l))∣∣ = 0.

The theorem is proven.

By proceeding in exactly the same way as in the proof of Theorem 3.1, one
can prove the validity of the following theorems.

Theorem 3.2. Let Ω ⊂ R3 be a Lyapunov surface with exponent 0 < α ≤ 1 and

diamΩ∫
0

ω (g, t)

t
dt < +∞.

Then the sequence(
GNg

)
(x) = 2

∑
j∈Ql

(n (x) , rotx {Φk (x, y) g (y)})|x=x(l), y=x(j) ·mesΩj

converges to (Gg) (x(l)) at N → ∞, and

max
l=1, N

∣∣ (Gg) (x (l))− (GNg) (x (l)) ∣∣ ≤

≤M
(
∥g∥∞N

− α
2(1+α) +

N
− 1

2(1+α)∫
0

ω (g, t)

t
dt+N

− 1
2(1+α)

diamΩ∫
N

− 1
2(1+α)

ω (g, t)

t2
dt
)
.

Theorem 3.3. Let Ω ⊂ R3 be a Lyapunov surface with exponent 0 < α ≤ 1 and

diamΩ∫
0

ω (λ, t)

t
dt < +∞.

Then the sequence(
KNλ

)
(x) = 2

∑
j∈Ql

[n (x) , gradx {Φk (x, y) λ (y)}]|x=x(l), y=x(j) ·mesΩj

converges to (Kλ) (x(l)) at N → ∞, and

max
l=1, N

∣∣ (Kλ) (x (l))− (KNλ
)
(x (l))

∣∣ ≤

≤M
(
∥λ∥∞N

− α
2(1+α) +

N
− 1

2(1+α)∫
0

ω (λ, t)

t
dt+N

− 1
2(1+α)

diamΩ∫
N

− 1
2(1+α)

ω (λ, t)

t2
dt
)
.

Theorem 3.4. Let Ω ⊂ R3 be a Lyapunov surface with exponent 0 < α ≤ 1 and

diamΩ∫
0

ω (µ, t)

t
dt < +∞.
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Then the sequence(
TNµ

)
(x) = −2

∑
j∈Ql

[n (x) , [n (x) , rotx {Φk (x, y) µ (y)n (y)}]]|x=x(l), y=x(j)·mesΩj

converges to (Tµ) (x(l)) at N → ∞, and

max
l=1, N

∣∣ (Tµ) (x (l))− (TNµ) (x (l)) ∣∣ ≤

≤M
(
∥µ∥∞N

− α
2(1+α) +

N
− 1

2(1+α)∫
0

ω (µ, t)

t
dt+N

− 1
2(1+α)

diamΩ∫
N

− 1
2(1+α)

ω (µ, t)

t2
dt
)
.
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