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SYNTHESIS OF BOUNDARY CONDITIONS CONTROL AND

STATE MEASUREMENT POINTS MOTION FOR FAST

DAMPING OF STRING VIBRATIONS

VUGAR A. HASHIMOV

Abstract. The problem of synthesis of boundary controls for damping
transverse vibrations of a string is investigated. The problem has two
important features. Firstly, feedback is achieved by measuring the state
(vertical movement) of the string points by remote sensors of the state of
the string points moving outside the string. Secondly, to form the modes
of operation of boundary controls, the values of state measurements at
measurement points are used both at the current and past moments of
time. The paper presents a formulation of the problem of synthesis of
boundary controls, in which the parameters of the feedback involved in
the linear dependencies between the measurements of the state of the
string at the measurement points and the modes of boundary controls
and the velocities of movement of the measuring devices are optimized.
To determine the values of the optimized parameters involved in these
dependencies, formulas are obtained that allow the use of effective nu-
merical methods of first-order optimization. The results of numerical
experiments on test problems are presented.

1. Introduction

The paper considers the problem of controlling the process of stabilizing trans-
verse vibrations of a string by controlling the state of the string at the ends
(boundary conditions) [10, 14, 15, 16]. Controls occurs with feedback. Measure-
ments of the state (vertical movement) of the string points are made by remote
sensors moving above the string. The values of the control actions in the bound-
ary conditions are assigned depending on the values of the measurements of the
state of the string points both at the current and past moments of time. The
velocities of movement of the measuring devices are controlled and are assigned
depending on the measured state values.

The formulation of the problem under study arises in many applied problems
[5, 10, 11, 14, 15, 22, 16]. A special case of formulation of this problem arises,
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for example, in the controlling of transient processes of pipeline transportation
of carbon raw materials [5, 11, 13].

It should be noted that the problem of damping string vibrations using program
control has been studied by many authors. In the works of the authors [10, 14,
15] the problem of optimal damping to stabilization of string vibrations due to
boundary conditions was studied. The dependence of the minimum time for
damping the string vibration on its length was established. In the work [6] the
problem of boundary conditions controlling under constraints on control actions
was investigated. In the works [6, 8, 17] the problem of damping vibrations at
the expense of stabilizers installed on the string itself was investigated. In works
[4, 20] the problem of optimizing the placement of vibration stabilizers for a
thin membrane string was solved. The above studies considered the problem of
constructing optimal program control.

In contrast to previously studied formulations of problems of control of the vi-
bration stabilization process, this paper considers, firstly, the problem of bound-
ary control with feedback. Secondly, information from measuring devices moving
along the string, both current and past moments in time is used for feedback.
Thirdly, the velocity of movement of the sensors is also controlled and depends on
the values of the current state measurements obtained by the sensors themselves.

Formulas are proposed for the dependence of the values of the boundary control
and the velocities of movement of the sensors on the measured values of the
state at the current and previous moments of time. The constant coefficients
involved in these dependencies are the optimized feedback parameters. Formulas
for the gradient components of the objective functional of the source problem
based on the optimized parameters are obtained. The formulas allow the use
of effective first-order optimization methods for the numerical determination of
optimal parameter values.

The paper presents the results of numerical experiments and an analysis of
the behavior of the stabilization process in the presence of noise (error) in the
measurements of the current state carried out by the sensors.

2. Statement of the problem

The problem of damping transverse vibrations of a thin string by stabilizers
installed at its ends is considered. The process of vibration at t > 0 is described
by the following initial–boundary-value problem [10, 14, 26]:

utt (x, t) = a2uxx (x, t)− λut (x, t) , x ∈ (0, l) , (2.1)

u (x, t) = 0, ut (x, 0) =

N0∑
s=1

qsµσ (x; θs) , t ≤ 0, x ∈ [0, l] , (2.2)

u (0, t) = ϑ1 (t) , (2.3)

u (l, t) = ϑ2 (t) . (2.4)

Here: u (x, t) is the function defining the amplitude of transverse vibrations of the
string at point x at time t; a2 > 0, λ ≥ 0 are given constants determined by the
physical properties of the string and the medium in which it is located; qs is the
magnitude of the initial state splash at N0 points of the string θs, s = 1, 2, . . . , N0;
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ϑ1 (t) and ϑ2 (t) are functions defining the control actions of the stabilizers at the
left and right ends of the string, respectively, x = 0 and x = l.

The given piecewise continuous function in x ∈ [0, l] µσ (x; θs) ≥ 0 determines
the intensity distribution of the splash of the initial state of the string in the σ
neighborhood of the point θ̌ ∈ [σ, l − σ]. It has the following properties:

µσ
(
x; θ̌
){≥ 0 for x ∈

[
θ̌ − σ, θ̌ + σ

]
,

= 0 for x ̸∈
[
θ̌ − σ, θ̌ + σ

]
,

θ̌+σ∫
θ̌−σ

δσ
(
x; θ̌
)
dx = 1. (2.5)

It is assumed that the values of the magnitudes q = (q1, q2, . . . , qN0) of the
initial state splash at the concentration points θ = (θ1, θ2, . . . , θN0) are not known
exactly. The sets of their possible values qs are given:

Qs =
{
qs ∈ R : qs ≤ qs ≤ qs

}
, s = 1, 2, . . . , N0, (2.6)

Q = Q1 ×Q2 × · · · ×QN0 ,

and the distribution density functions of their values ρQs (qs) ≥ 0 such that∫
Qs

ρQs (qs)dqs = 1, s = 1, 2, . . . , N0.

The locations θs of possible initial state splashes are determined by the sets
Θs, s = 1, 2, . . . , N0:

θs ∈ Θs ⊂ [σ, l − σ] , s = 1, 2, . . . , N0, Θ = Θ1 ×Θ2 × · · · ×ΘN0 , (2.7)

with given distribution density functions ρΘs (θs) ≥ 0 such that∫
Θs

ρΘs (θs)dθs = 1, s = 1, 2, . . . , N0.

The functions ϑ1 (t) and ϑ2 (t) are optimized controls for the vibration damping
process under consideration and satisfy the technological constraints:

ϑ1 ≤ ϑ1 (t) ≤ ϑ1, ϑ2 ≤ ϑ2 (t) ≤ ϑ2, t ≥ 0. (2.8)

It is known that the classical solution u (x, t) of the initial–boundary-value
problem (2.1)–(2.4) for the given control actions ϑ1 (t) and ϑ2 (t) exists and is
unique [26].

The problem under consideration of the velocity of control of the process of
damping the vibrations of a string consists in determining the control values of
the vibration dampers ϑ = (ϑ1 (t) , ϑ2 (t)) that minimize the time Tf , after which
the ε-settling condition is satisfied:

Tf → min, (2.9)

J (T, ϑ) ≤ ε at T ≥ Tf . (2.10)

Here,

J (Tf , ϑ) =

∫
Q

∫
Θ

I (Tf , ϑ; q, θ) ρQ(q)ρΘ (θ) dθdq, (2.11)
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I (Tf , ϑ; q, θ) =

T1∫
Tf

l∫
0

µ1 (x) [u (x, t)]
2dxdt (2.12)

+ε1∥ϑ1 (t)− ϑ̂1∥2L2[0,T1]
+ ε2∥ϑ2 (t)− ϑ̂2∥2L2[0,T1]

.

The condition (2.10) will be called the ε-settling condition for a string.
Here the function u (x, t) = u (x, t;ϑ, q, θ) is a solution of the initial–boundary-

value problem (2.1)–(2.4) for the given concentration points θs of the magnitude of
splashes of the state qs at the initial time, s = 1, 2, . . . , N0, and damper modes ϑ =
(ϑ1 (t) , ϑ2 (t)); µ1 (x) ≥ 0 is a weight function that determines the significance of
damping of vibrations at the point of the string x ∈ [0, l]. The second and third

terms in (2.12) serve for regularization the functional, ε1 ≥ 0, ε2 ≥ 0, ϑ̂1 ∈ R and

ϑ̂2 ∈ R are regularization parameters. ε ≥ 0 is a given number characterizing the
degree of ”settling” of vibrations, specified from practical considerations.

Let us note the specificity of the functional (2.11), (2.12). Here the given value
∆T > 0 determines the duration of the time closed interval [Tf , T1], T1 = Tf+∆T ,
during which the degree of stabilization of the string vibrations are assessed.
The functional (2.11), (2.12) estimates the quality of the control parameters ϑ =
(ϑ1 (t) , ϑ2 (t)) for the state of the string over the time interval t ∈ [Tf , T1] when
controlling the process of damping vibrations over the time closed interval t ∈
[0, T1] on average over all values of the parameters of external splashes θ, q,
satisfying the conditions (2.6), (2.7).

The meaning of the functional (2.11), (2.12) is that it evaluates the quality of
the boundary condition control ϑ (t) of the string damping process on the closed
interval [0, Tf ] on average over all sets of possible values of the splash magnitudes
and the locations of their concentration at the initial moment of time.

To synthesize the current control values ϑ (t), t ∈ [0, T1], we will use information
about the state of the string points at the current and previous moments of time,
measured continuously in time by N remote sensors moving above it. The move-
ments of the sensors are defined by the functions ξi (t) ∈ [0, l], i = 1, 2, . . . , N .
The sensors continuously measure the values of the string transverse displacement
(amplitude) at the current locations of the measuring devices:

ǔi (t) = u (ξi (t) , t) , t ∈ [0, T1] , i = 1, 2, . . . , N. (2.13)

The movements of the sensors are controllable and are described by the fol-
lowing Cauchy problems

ξ̇i (t) = ai (t) ξi (t) + wi (t) , t ∈ (0, T1] , i = 1, 2, . . . , N, (2.14)

ξi (0) = ξ0i , i = 1, 2, . . . , N. (2.15)

Here: ξi (t) is location of i-th sensor at time t, t ∈ [0, T1]; wi (t) is optimized
control action on the movement of sensor; ξ0i , i = 1, 2, . . . , N , are specified initial
locations of sensors on the string.

The control actions are the velocities of movement of the measuring sensors,
which must satisfy the technological limitations:

wi ≤ wi (t) ≤ wi, t ∈ [0, T1] , i = 1, 2, . . . , N. (2.16)
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During the movement the sensors themselves should not approach the bound-
ary of the string and should not go beyond the boundaries of individual non-
intersecting segments specified for each sensor:

ξi (t) ∈
[
ξi, ξi

]
⊂ [0, l] , t ∈ [0, T1] , i = 1, 2, . . . , N, (2.17)[

ξi, ξi
]
∩
[
ξj , ξj

]
= ∅, i ̸= j, i, j = 1, 2, . . . , N.

To form the current value of the damping mode ϑ (t), we use the following
dependence, which determines the continuous linear feedback of control actions
from the state of the string at the measurement points (2.13) at the current and
past moments of time:

ϑ1 (t;k) =

N∑
i=1

[
k1i ǔi (t) + k2i ǔi (t− τ)

]
(2.18)

=
N∑
i=1

[
k1i u (ξi (t) , t) + k2i u (ξi (t− τ) , t− τ)

]
, t ∈ [0, T1] ,

ϑ2 (t;k) =
N∑
i=1

[
k3i ǔi (t) + k4i ǔi (t− τ)

]
(2.19)

=
N∑
i=1

[
k3i u (ξi (t) , t) + k4i u (ξi (t− τ) , t− τ)

]
, t ∈ [0, T1] .

Here: k1 =
(
k11, k

1
2, . . . , k

1
N

)
, k2 =

(
k21, k

2
2, . . . , k

2
N

)
, k3 =

(
k31, k

3
2, . . . , k

3
N

)
, k4 =(

k41, k
4
2, . . . , k

4
N

)
are the vectors of synthesized values of the gain coefficients.

Similarly, for the dependence of the control actions wi (t) on the movement
of the sensors on the measured current values of the string displacement at the
measurement points, we use the formula

wi (t;k) = k5i ǔi (t) + k6i ǔi (t− τ) (2.20)

= k5i u (ξi (t) , t) + k6i u (ξi (t− τ) , t− τ) , t ∈ [0, T1] , i = 1, 2, . . . , N,

where k5 =
(
k51, k

5
2, . . . , k

5
N

)
and k6 =

(
k61, k

6
2, . . . , k

6
N

)
are vectors of feedback

parameters.
Let denote k =

(
k1, k

2, k3, k4, k5, k6
)
∈ R6N the optimized vector of feedback

parameters.
The value τ > 0 is given and is determined depending on the intensity of the

vibration process, namely, the more intense the damping, the smaller its value.
Substituting (2.18) and (2.19) into the boundary conditions (2.3), (2.4)

u (0, t) =
N∑
i=1

[
k1i u (ξi (t) , t) + k2i u (ξi (t− τ) , t− τ)

]
, t ∈ (0, T1] , (2.21)

u (l, t) =

N∑
i=1

[
k3i u (ξi (t) , t) + k4i u (ξi (t− τ) , t− τ)

]
, t ∈ (0, T1] , (2.22)

we obtain non-local (loaded) boundary conditions non-separated from the values
of the state at the interior points of the string. Substituting the expressions for the
velocities wi (t), i = 1, 2, . . . , N from formula (2.20) into the differential equations
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(2.14), we obtain the following differential equations, in which the solution of the
initial–boundary-value problem (2.1), (2.2), (2.21), (2.22) participates:

ξ̇i (t) = ai (t) ξi (t) + k5i u (ξi (t) , t) + k6i u (ξi (t− τ) , t− τ) , (2.23)

t ∈ (0, T1] , i = 1, 2, . . . , N.

Note that the initial–boundary-value problem (2.1), (2.2), (2.21), (2.22) and
the Cauchy problems (2.23), (2.15) must be solved simultaneously. The issues of
existence and uniqueness of the solution of linearly loaded initial–boundary-value
problems and numerical methods for their solution were studied in such works as
[1, 3, 9, 12, 19, 21].

It is clear that the solutions of the initial–boundary-value problem (2.1), (2.2),
(2.21), (2.22) and the Cauchy problems (2.23), (2.15) depend on the synthesized
constant parameters k.

In this case, the functionality (2.11), (2.12) will also depend on the synthesized
feedback parameters

J (Tf ,k) =

∫
Q

∫
Θ

I (Tf ,k; q, θ) ρQ(q)ρΘ (θ) dqdθ, (2.24)

I (Tf ,k; q, θ) =

T1∫
Tf

l∫
0

µ1 (x) [u (x, t;k)]
2dxdt+ ε3∥k− k̂∥2R6N . (2.25)

Here: k̂ ∈ R6N are the regularization parameters of the functional (2.24),
(2.25), the values of which are assigned using known regularization methods [27].

From the dependencies (2.18) and (2.19) it is clear that the controls ϑ1 (t;k),
ϑ2 (t;k) and the velocities wi (t;k), i = 1, 2, . . . , N depend nonlinearly on the
synthesized parameters. Consequently, the state u (x, t;k) and the locations of
the sensor points ξi (t;k) are essentially nonlinear in terms of the synthesized
parameters. The functional (2.25) represents a complex nonlinear dependence
on the optimized parameters and it is not possible to conduct any studies of its
convexity. This implies the possibility of multi-extremality of the functional in
the space of synthesized feedback parameters k ∈ R6N .

Let us substitute formulas (2.18) and (2.19) into constraints (2.8), and formulas
(2.20) into constraints (2.16). We obtain the following constraints on the feedback
parameters:

ϑ1 ≤
N∑
i=1

[
k1i u (ξi (t) , t) + k2i u (ξi (t− τ) , t− τ)

]
≤ ϑ1, t ∈ [0, T1] , (2.26)

ϑ2 ≤
N∑
i=1

[
k3i u (ξi (t) , t) + k4i u (ξi (t− τ) , t− τ)

]
≤ ϑ2, t ∈ [0, T1] , (2.27)

wi ≤ k5i u (ξi (t) , t) + k6i u (ξi (t− τ) , t− τ) ≤ wi, t ∈ [0, T1] , (2.28)

i = 1, 2, . . . , N.
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Let the range of the value of transverse vibrations of the string during the
process be known for all admissible controls, the magnitudes of the initial splashes
q ∈ Q and the points of their concentrations θ ∈ Θ,

u ≤ u (x, t) ≤ u, x ∈ [0, l] , t ∈ [0, T1] . (2.29)

Then, taking into account the conditions (2.29) and the dependencies (2.26)–
(2.28), we obtain the following linear constraints on the synthesized feedback
parameters:

ϑ1 ≤
N∑
i=1

k1i u+ k2i u ≤ ϑ1, ϑ1 ≤
N∑
i=1

k1i u+ k2i u ≤ ϑ1,

ϑ1 ≤
N∑
i=1

k1i u+ k2i u ≤ ϑ1, ϑ1 ≤
N∑
i=1

k1i u+ k2i u ≤ ϑ1,

ϑ2 ≤
N∑
i=1

k3i u+ k4i u ≤ ϑ2, ϑ2 ≤
N∑
i=1

k3i u+ k4i u ≤ ϑ2,

ϑ2 ≤
N∑
i=1

k3i u+ k4i u ≤ ϑ2, ϑ2 ≤
N∑
i=1

k3i u+ k4i u ≤ ϑ2,

wi ≤ k5i u+ k6i u ≤ wi, wi ≤ k5i u+ k6i u ≤ wi, i = 1, 2, . . . , N,

wi ≤ k5i u+ k6i u ≤ wi, wi ≤ k5i u+ k6i u ≤ wi, i = 1, 2, . . . , N.

. (2.30)

We will reduce the constraints (2.17) to the following equivalent constraints:

gi (t; ξi (t)) =
∣∣g0i (t; ξi (t)) ∣∣− ξi − ξi

2
≤ 0, i = 1, 2, . . . , N, t ∈ [0, T1] , (2.31)

g0i (t; ξi (t)) = ξi (t)−
ξi + ξi

2
.

To take into account the constraints (2.31) we use the following external
penalty functional relative to the functional (2.24), (2.25):

J̃ (Tf ,k) =

∫
Q

∫
Θ

Ĩ (Tf ,k; q, θ) ρQ(q)ρΘ (θ) dqdθ, (2.32)

Ĩ (Tf ,k; q, θ) =

T1∫
Tf

l∫
0

µ1 (x) [u (x, t)]
2dxdt+ ε3∥k− k̂∥2R6N +RG, (2.33)

G =

N∑
i=1

T1∫
0

[
g+i (t; ξi (t))

]2
dt,

where R ≥ 0 is a positive penalty coefficient tending to +∞. The notation
g+i (t; ξi (t)) means that g+i (t; ξi (t)) = gi (t; ξi (t)) if gi (t; ξi (t)) > 0 and g+i (t; ξi (t)) =
0 if gi (t; ξi (t)) ≤ 0, i = 1, 2, . . . , N .

The obtained problem (2.1), (2.2), (2.21), (2.22), (2.23), (2.15), (2.24), (2.25)
can be classified as a class of parametric problems of optimal control of an object
with distributed parameters [7, 24, 27]. The main features of the task are: 1) non-
linear participation in the problem of optimized parameters, which indicates the
non-convexity of the control synthesis problem as a whole, and, consequently, the
possible multi-extremality of the functional; 2) the presence of an non-separated
boundary condition, in which the states of the process at the internal points of
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the string participate, which causes additional difficulties in solving the corre-
sponding boundary value problems for given values of the control parameters
[1, 3, 9, 12].

The statement of the problem (2.1)–(2.12) can be classified as class of problems
of parametric optimal performance of objects with distributed parameters.

Note that, the problem under consideration is nonlinear and, in general, non-
convex in the parameters being optimized; therefore, it can be expected that it is
multi-extremal. In this case, the solution to the problem is understood as finding
some local optimum, in particular, the closest to some given initial approximation
k0. In this work we will use the ”multi-start” method, one of the most common
methods of global optimization.

Thus, in the problem under consideration (2.1)–(2.12) it is required to de-
termine the following parameters and functions: Tf is the minimum time of the
transient process with initial conditions (2.2) to a state satisfying condition (2.10);
admissible control actions of the stabilizers at the ends of the string ϑ1 (t) and
ϑ2 (t), determined by formulas (2.18), (2.19); the controls wi (t), i = 1, 2, . . . , N
of the sensor movement determined by formulas (2.20) and the corresponding
trajectories ξi (t) from formulas (2.23), (2.15).

Let us note an important specificity of the process described by the equation
(2.1). In the case of λ > 0, which corresponds to the influence of elastic forces
(resistance) of the string or the medium on the vibration process, the vibration
process under consideration, even without the functioning of the dampers (i.e.
ϑ1 (t) ≡ 0 and ϑ2 (t) ≡ 0), is self-soothing, i.e. at t −→ ∞ the state of the string
as a whole will tend to zero. Therefore, there will be a finite time Tf at which
the amplitude of the string vibration will be small, and its state will satisfy the
condition (2.10).

3. Approach and derivation of formulas for numerical solution of
the problem

A two-level approach to solving the problem under consideration is proposed,
which consists of separate optimization of the transient process time Tf and
the optimized feedback parameters k. At the top level, the transition time Tf is
optimized using some one-dimensional optimization method to find the minimum
possible value at which the condition (2.10) is satisfied. For each fixed value of Tf ,
the selected one-dimensional optimization algorithm solves the auxiliary problem
of minimizing the functional to determine the corresponding feedback parameters
k∗
Tf
:

J̃Tf
(k) = J̃ (Tf ,k) , (3.1)

ĨTf
(k; q, θ) = Ĩ (Tf ,k; q, θ) ,

under constraints (2.30) and (2.31).
As an algorithm for one-dimensional optimization for Tf , one can use, for ex-

ample, the bisection method with a preliminary search for an uncertainty interval
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Tf , Tf

]
such that

J̃
(
Tf ,k

∗
Tf

)
= min

k
J̃
(
Tf ,k

)
≥ ε, (3.2)

J̃
(
Tf ,k

∗
Tf

)
= min

k
J̃
(
Tf ,k

)
≤ ε.

It is clear that the main complexity of the proposed approach lies in carrying
out the second level of optimization of determining the optimal values of the
feedback parameters k for a given time Tf of the end of the control process, i.e.
solving the auxiliary optimal control problem (2.1), (2.2), (2.21), (2.22), (2.23),
(2.15), (2.32), (2.33), (3.1) with a fixed time Tf .

To minimize the penalty functional (2.32), (2.33) for finding the interval
[
Tf , Tf

]
at each given Tf and penalty coefficient R taking into account the linearity of the
constraints (2.30), it is proposed to use the iterative gradient projection method,

kn+1 = P(2.30)

[
kn − αn gradkJ̃Tf

(kn)

]
, n = 0, 1, . . . . (3.3)

Here P(2.30)

[
·
]
is the operator of projection of the optimized feedback param-

eters k onto the acceptable domain defined by the constraints (2.30).
In (3.3) the following notation is used: 6N -dimensional gradient vector of the

objective functional (2.32)

gradkJ̃Tf
(k) =

(
∂J̃Tf

(k)

∂k1
,
∂J̃Tf

(k)

∂k2
,
∂J̃Tf

(k)

∂k3
,
∂J̃Tf

(k)

∂k4
,
∂J̃Tf

(k)

∂k5
,
∂J̃Tf

(k)

∂k6

)
,

(3.4)
αn ≥ 0 is a step in the direction of the antigradient, determined by some known
method that ensures the condition of monotonicity of the iterative process [27]

J̃Tf

(
kn+1

)
≤ J̃Tf

(kn) , n = 0, 1, . . .

In particular, one-dimensional minimization methods can be used to find αn,

αn = arg min
α≥0

J̃Tf

(
P(2.30)

[
kn − α gradkJ̃Tf

(kn)

])
, n = 0, 1, . . . .

The following theorem presents formulas for the components of the gradient
(3.4) of the functional J̃Tf

(k) = J̃ (Tf ,k) with respect to k for a given completion
time of the control process Tf .

Theorem 3.1. If the above conditions are satisfied on the functions and param-
eters involved in the initial–boundary-value problem (2.1), (2.2), (2.21), (2.22)
and in the Cauchy problems (2.23), (2.15), the functional (3.1) is differentiable
with respect to the feedback parameters k, and the components of its gradient are
determined by the formulas:

∂J̃Tf
(k)

∂k1i
=

∫
Q

∫
Θ

{
−

T1∫
0

a2ψx (0, t)u (ξi (t) , t) dt+ 2ε
(
k1i − k̂1i

)}
(3.5)

×ρQ(q)ρΘ (θ) dθdq,
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∂J̃Tf
(k)

∂k2i
=

∫
Q

∫
Θ

{
−

T1−τ∫
0

a2ψx (0, t+ τ)u (ξi (t) , t) dt+ 2ε3

(
k2i − k̂2i

)}
(3.6)

×ρQ(q)ρΘ (θ) dθdq,

∂J̃Tf
(k)

∂k3i
=

∫
Q

∫
Θ

{
−

T1∫
0

a2ψx (l, t)u (ξi (t) , t) dt+ 2ε3

(
k3i − k̂3i

)}
(3.7)

×ρQ(q)ρΘ (θ) dθdq,

∂J̃Tf
(k)

∂k4i
=

∫
Q

∫
Θ

{
−

T1−τ∫
0

a2ψx (l, t+ τ)u (ξi (t) , t) dt+ 2ε3

(
k4i − k̂4i

)}
(3.8)

×ρQ(q)ρΘ (θ) dθdq,

∂J̃Tf
(k)

∂k5i
=

∫
Q

∫
Θ

{
−

T1∫
0

φi (t)u (ξi (t) , t) dt+ 2ε3

(
k5i − k̂5i

)}
(3.9)

×ρQ(q)ρΘ (θ) dθdq,

∂J̃Tf
(k)

∂k6i
=

∫
Q

∫
Θ

{
−

T1−τ∫
0

φi (t+ τ)u (ξi (t) , t) dt+ 2ε3

(
k6i − k̂6i

)}
(3.10)

×ρQ(q)ρΘ (θ) dθdq,

i = 1, 2, . . . , N . For arbitrarily given admissible feedback parameters k, magni-
tudes q and locations of θ splashes in the initial conditions (2.2) the functions
ψ (x, t) = ψ (x, t;k, q, θ) and φi (t) = φi (t;k, q, θ), i = 1, 2, . . . , N are solutions
of the following conjugate boundary-value problem and Cauchy problems:

ψtt (x, t) = a2ψxx (x, t) + λψt (x, t)− 2µ (x)u (x, t)χ[Tf ,T1] (t) , (3.11)

x ∈
(
ξi
(
t+
)
, ξi+1

(
t−
))
, i = 0, 1, . . . , N, t ∈ [0, T1) ,

ψx

(
ξi
(
t+
)
, t
)
= ψx

(
ξi
(
t−
)
, t
)
− k1i ψx (0, t)− k2i ψx (0, t+ τ) (3.12)

+k3i ψx (l, t) + k4i ψx (l, t+ τ)− k5i
a2
φi (t)−

k6i
a2
φi (t+ τ) ,

t ∈ [0, T1 − τ) , i = 1, 2, . . . , N,

ψx

(
ξi
(
t+
)
, t
)
= ψx

(
ξi
(
t−
)
, t
)
− k1i ψx (0, t) + k3i ψx (l, t)−

k5i
a2
φi (t) , (3.13)

t ∈ [T1 − τ, T1) , i = 1, 2, . . . , N,

ψ
(
ξi
(
t+
)
, t
)
= ψ

(
ξi
(
t−
)
, t
)
, (3.14)

t ∈ [0, T1) , i = 1, 2, . . . , N,

ψ (x, T1) = 0, ψt (x, T1) = λψ (x, T1) , x ∈ [0, l] , (3.15)

ψ (0, t) = 0, t ∈ [0, T1) , (3.16)

ψ (l, t) = 0, t ∈ [0, T1) , (3.17)

φ̇i (t) = −ai (t)φi (t) + 2Rsgn
(
g0i (t; ξi (t))

)
g+i (t; ξi (t)) (3.18)

−
[
a2k1i ψx (0, t)− a2k3i ψx (l, t) + k5i φi (t)
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+a2k2i ψx (0, t+ τ)− a2k4i ψx (l, t+ τ) + k6i φi (t+ τ)
]
ux (ξi (t) , t) ,

t ∈ [0, T1 − τ) , i = 1, 2, . . . , N,

φ̇i (t) = −ai (t)φi (t) + 2Rsgn
(
g0i (t; ξi (t))

)
g+i (t; ξi (t)) (3.19)

−
[
a2k1i ψx (0, t)− a2k3i ψx (l, t) + k5i φi (t)

]
ux (ξi (t) , t) ,

t ∈ [T1 − τ, T1) , i = 1, 2, . . . , N,

φi (T1) = 0, i = 1, 2, . . . , N. (3.20)

Proof. To prove the differentiability of the functional J̃Tf
(k) with respect to k,

we use the increment method [18, 27].
From the mutual independence of the sets of powers (2.4) and the locations

of the concentration of the splashes in the initial conditions (2.6) the following
relation holds:

gradkJ̃Tf
(k) = gradk

∫
Q

∫
Θ

ĨTf
(k; q, θ) ρQ(q)ρΘ (θ)dθdq = (3.21)

=

∫
Q

∫
Θ

gradkĨTf
(k; q, θ)ρQ(q)ρΘ (θ)dθdq.

Using (3.21), we will work on obtaining the gradient components of the func-
tional (2.33) for arbitrary but specifically specified values of the splash magnitudes
q and the locations of their concentration centers θ.

Let, for given admissible control parameters k =
(
k1, k

2, k3, k4, k5, k6
)
∈ R6N ,

splash magnitudes q and their concentration locations θ in the initial condi-
tions (2.1), (2.2), (2.18), (2.19) the function u (x, t) = u (x, t;k, q, θ) be the solu-

tion of the initial–boundary-value problem, where the function ũ(x, t; k̃, q, θ) =
u (x, t;k, q, θ) + ∆u (x, t) is the solution of the problem for admissible control

parameters k̃ = k + ∆k, which have received a sufficiently small increment
∆k =

(
∆k1,∆k

2,∆k3,∆k4,∆k5,∆k6
)
.

Similarly, for admissible control parameters k, the functions ξi (t) = ξi (t;k),
i = 1, 2, . . . , N will be solutions of the Cauchy problems (2.23), (2.15), where the

functions ξ̃i(t; k̃) = ξi (t;k)+∆ξi (t), i = 1, 2, . . . , N are solutions of the problems

for admissible control parameters k̃.
Then it is easy to verify that ∆u (x, t) and ∆ξi (t), i = 1, 2, . . . , N , up to terms

of the second order of smallness, are solutions to the following initial-boundary
value problem:

∆utt (x, t) = a2∆uxx (x, t)− λ∆ut (x, t) , x ∈ [0, l] , t ∈ (0, T1] , (3.22)

∆u (x, t) = 0, ∆ut (x, 0) = 0, t ≤ 0, x ∈ [0, l] , (3.23)

∆u (0, t) =

N∑
i=1

[
∆k1i u (ξi (t) , t)+k

1
i∆u (ξi (t) , t)+k

1
i ux (ξi (t) , t)∆ξi (t)

]
(3.24)

+
N∑
i=1

[
∆k2i u (ξi (t− τ) , t− τ) + k2i∆u (ξi (t− τ) , t− τ)

+k2i ux (ξi (t− τ) , t− τ)∆ξi (t− τ)

]
+

N∑
i=1

[
∆k1i∆u (ξi (t) , t)
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+∆k2i∆u (ξi (t− τ) , t− τ)

]
+O

(
∥∆ξ (t) ∥2RN

)
+O

(
∥∆ξ (t− τ) ∥2RN

)
,

∆u (l, t) =

N∑
i=1

[
∆k3i u (ξi (t) , t)+k

3
i∆u (ξi (t) , t)+k

3
i ux (ξi (t) , t)∆ξi (t)

]
(3.25)

+
N∑
i=1

[
∆k4i u (ξi (t− τ) , t− τ) + k4i∆u (ξi (t− τ) , t− τ)

+k4i ux (ξi (t− τ) , t− τ)∆ξi (t− τ)

]
+

N∑
i=1

[
∆k3i∆u (ξi (t) , t)

+∆k4i∆u (ξi (t− τ) , t− τ)

]
+O

(
∥∆ξ (t) ∥2RN

)
+O

(
∥∆ξ (t− τ) ∥2RN

)
,

and Cauchy problems:

∆ξ̇i (t) = ai (t)∆ξi (t) +
[
∆k5i u (ξi (t) , t) + k5i∆u (ξi (t) , t) (3.26)

+k5i ux (ξi (t) , t)∆ξi (t) + ∆k6i u (ξi (t− τ) , t− τ) + k6i∆u (ξi (t− τ) , t− τ)

+k6i ux (ξi (t− τ) , t− τ)∆ξi (t− τ)
]
+∆k5i∆u (ξi (t) , t)

+∆k6i∆u (ξi (t− τ) , t− τ) +O
(
∥∆ξ (t) ∥2RN

)
+O

(
∥∆ξ (t− τ) ∥2RN

)
,

t ∈ (0, T1] , i = 1, 2, . . . , N,

∆ξi (0) = 0, i = 1, 2, . . . , N. (3.27)

It is known that solutions of initial–boundary-value problems with respect to
differential equations of hyperbolic type, in particular, of the form (3.22)–(3.25)
[18], and ordinary differential equations of the form (3.26), (3.27), under the
assumptions made on the functions involved in the formulation of the problem
under study, continuously depend on the parameters and functions involved in
them. Therefore, with respect to the increment of solutions to problems (2.1),
(2.2), (2.21), (2.22) and (2.23), (2.15), obtained due to sufficiently small incre-
ments of the parameters ∆k, there are estimates that we write in a fairly general
form:

∥∆u (x, t) ∥2L2([0,l]×[0,T1])
≤ c1

(
∥∆k∥2R6N

)
,

∥∆ξ (t) ∥2
LN
2 [0,T1]

≤ c2
(
∥∆k∥2R6N

)
,

c1 > 0, c2 > 0 are constants that do not depend on ∆k.
In this case, the functional ĨTf

(k; q, θ) will receive an increment that, with
an accuracy of terms of the first order of smallness relative to the increment of
the parameters ∆k and, accordingly, the increment of the solution of the initial–
boundary-value problem, we write in the form:

∆ĨTf
(k; q, θ) = ĨTf

(k+∆k; q, θ)− ĨTf
(k; q, θ) = ∆ITf

(k; q, θ) (3.28)

+R∆G = ITf
(k+∆k; q, θ)− ITf

(k; q, θ) +R (G (ξ (t) + ∆ξ (t))−G)

=

T1∫
Tf

l∫
0

2µ (x)u (x, t)∆u (x, t)dxdt+ 2ε3⟨k− k̂,∆k⟩
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+R
N∑
i=1

T1∫
0

2sgn
(
g0i (t; ξi (t))

)
g+i (t; ξi (t))∆ξi (t)dt+O

(
∥∆k∥2R6N

)
.

Here ⟨·, ·⟩ denotes the scalar product of vectors.
Having moved all the terms of the equation (3.22) to the left, we multiply both

parts of the resulting equality by an arbitrary function ψ (x, t) = ψ (x, t;k) =
ψ (x, t;k, q, θ) from the class of functions continuously differentiable with respect
to t ∈ [0, T1] and twice continuously differentiable with respect to x for x ∈
[0, l]. Similarly, after moving all the terms of the equations (3.26) to the left,
we multiply both parts of the obtained equalities by the still arbitrary functions
φi (t) = φi (t;k), i = 1, 2, . . . , N . Integrating the left-hand sides of the obtained
equalities, equal to zero, respectively, over x ∈ [0, l], t ∈ [0, T1] and t ∈ [0, T1],
and adding to (3.28), we will have:

∆ĨTf
(k; q, θ) =

T1∫
Tf

l∫
0

2µ (x)u (x, t)∆u (x, t)dxdt (3.29)

+2ε3⟨k− k̂,∆k⟩+R
N∑
i=1

T1∫
0

2sgn
(
g0i (t; ξi (t))

)
g+i (t; ξi (t))∆ξi (t)dt

+

T1∫
0

l∫
0

ψ (x, t)

[
∆utt (x, t)− a2∆uxx (x, t) + λ∆ut (x, t)

]
dxdt

+
N∑
i=1

T1∫
0

φi (t)

[
∆ξ̇i (t)− ai (t)∆ξi (t)−∆k5i u (ξi (t) , t)− k5i∆u (ξi (t) , t)

−k5i ux (ξi (t) , t)−∆k6i u (ξi (t− τ) , t− τ)

−k6i∆u (ξi (t− τ) , t− τ)−k6i ux (ξi (t− τ) , t− τ)∆ξi (t− τ)

]
dt+O

(
∥∆k∥2R6N

)
.

In the fourth term of formula (3.29) we split the integration over x ∈ (0, l) into
integration over intervals (ξi (t

+) , ξi+1 (t
−)), i = 0, 1, . . . , N , ξ0 (t) = 0, ξN+1 (t) =

l, then after simple calculations, integrating by parts over x and t, taking into
account estimates (3.23), (3.24), (3.27), we obtain:

∆ĨTf
(k; q, θ) = ∆Ĩ1 +∆Ĩ2 +∆Ĩ3, (3.30)

∆Ĩ1 =
N∑
i=1

{
−

T1∫
0

a2ψx (0, t)u (ξi (t) , t)∆k
1
i dt+ 2ε3

(
k1i − k̂1i

)
∆k1i

}

+

N∑
i=1

{
−

T1−τ∫
0

a2ψx (0, t+ τ)u (ξi (t) , t)∆k
2
i dt+ 2ε3

(
k2i − k̂2i

)
∆k2i

}

+
N∑
i=1

{
−

T1∫
0

a2ψx (l, t)u (ξi (t) , t)∆k
3
i dt+ 2ε3

(
k3i − k̂3i

)
∆k3i

}
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+
N∑
i=1

{
−

T1−τ∫
0

a2ψx (l, t+ τ)u (ξi (t) , t)∆k
4
i dt+ 2ε3

(
k4i − k̂4i

)
∆k4i

}

+
N∑
i=1

{
−

T1∫
0

φi (t)u (ξi (t) , t)∆k
5
i dt+ 2ε3

(
k5i − k̂5i

)
∆k5i

}

+

N∑
i=1

{
−

T1−τ∫
0

φi (t+ τ)u (ξi (t) , t)∆k
6
i dt+ 2ε

(
k6i − k̂6i

)
∆k6i

}
,

∆Ĩ2 =

l∫
0

ψ (x, T1)∆ut (x, T1)dx+

l∫
0

[
− ψt (x, T1) + λψ (x, T1)

]
∆u (x, T1)dx

+

N∑
i=0

T1∫
0

ξi+1(t−)∫
ξi(t+)

[
ψtt (x, t)− a2ψxx (x, t)− λψt (x, t)

]
∆u (x, t)dxdt

+

T1∫
Tf

l∫
0

2µ (x)u (x, t)∆u (x, t)dxdt

+a2
N∑
i=1

T1∫
0

[
ψx

(
ξi
(
t−
)
, t
)
− ψx

(
ξi
(
t+
)
, t
) ]

∆u (ξi (t) , t) dt

+a2
N∑
i=1

T1∫
0

[
k3i ψx (l, t)− k1i ψx (0, t)−

k5i
a2
φi (t)

]
∆u (ξi (t) , t) dt

+a2
N∑
i=1

T1−τ∫
0

[
k4i ψx (l, t+ τ)− k2i ψx (0, t+ τ)− k6i

a2
φi (t+ τ)

]
∆u (ξi (t) , t) dt

−a2
N∑
i=1

T1∫
0

[
ψ
(
ξi
(
t−
)
, t
)
− ψ

(
ξi
(
t+
)
, t
) ]

∆ux (ξi (t) , t) dt

+a2
T1∫
0

[
ψ (0, t)∆ux (0, t)− ψ (l, t)∆ux (l, t)

]
dt,

∆Ĩ3 =

N∑
i=1

φi (T1)∆ξi (T1)−
N∑
i=1

T1∫
0

[
φ̇i (t) + ai (t)φi (t)

]
∆ξi (t) dt

+
N∑
i=1

T1∫
0

[
a2k3i ψx (l, t)− a2k1i ψx (0, t)− k5i φi (t)

]
ux (ξi (t) , t)∆ξi (t) dt
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+
N∑
i=1

T1−τ∫
0

[
a2k4i ψx (l, t+ τ)−a2k2i ψx (0, t+ τ)−k6i φi (t+ τ)

]
ux (ξi (t) , t)∆ξi (t) dt

+2R
N∑
i=1

T1∫
0

sgn
(
g0i (t; ξi (t))

)
g+i (t; ξi (t))∆ξi (t)dt+O

(
∥∆k∥2R6N

)
.

Since no requirements have been imposed on the functions ψ (x, t) and φi (t),

i = 1, 2, . . . , N , we will require that the conditions ∆Ĩ2 = ∆Ĩ3 = 0 be satisfied,
i.e. that they be solutions of the initial-boundary value problem (3.11)–(3.17)
and the Cauchy problems (3.18)–(3.20), respectively.

For the components (3.4) of the gradient vector of the functional (2.33), taking
into account that they are determined by the linear parts of the increment of the
functional with the corresponding increments of the parameters, from ∆Ĩ1 we
obtain the following formulas:

∂ĨTf
(k; q, θ)

∂k1i
= −

T1∫
0

a2ψx (0, t)u (ξi (t) , t) dt+ 2ε3

(
k1i − k̂1i

)
, (3.31)

∂ĨTf
(k; q, θ)

∂k2i
= −

T1−τ∫
0

a2ψx (0, t+ τ)u (ξi (t) , t) dt+ 2ε3

(
k2i − k̂2i

)
, (3.32)

∂ĨTf
(k; q, θ)

∂k3i
= −

T1∫
0

a2ψx (l, t)u (ξi (t) , t) dt+ 2ε3

(
k3i − k̂3i

)
, (3.33)

∂ĨTf
(k; q, θ)

∂k4i
= −

T1−τ∫
0

a2ψx (l, t+ τ)u (ξi (t) , t) dt+ 2ε3

(
k4i − k̂4i

)
, (3.34)

∂ĨTf
(k; q, θ)

∂k5i
= −

T1∫
0

φi (t)u (ξi (t) , t) dt+ 2ε3

(
k5i − k̂5i

)
, (3.35)

∂ĨTf
(k; q, θ)

∂k6i
= −

T1−τ∫
0

φi (t+ τ)u (ξi (t) , t) dt+ 2ε3

(
k6i − k̂6i

)
. (3.36)

Taking into account (3.21), from formulas (3.31)–(3.36) we obtain the desired
formulas (3.5)–(3.10). □

Remark 3.1. The conjugate equation (3.11), if including the conditions (3.12)–
(3.14) for the jumps of the conjugate function at the measurement points using
the Dirac δ-function, can be written as

ψtt (x, t) = a2ψxx (x, t) + λψt (x, t)− 2µ (x)u (x, t)χ[Tf ,T1] (t)

+a2
N∑
i=1

δ (x− ξi (t))

[
k1i ψx (0, t) + k2i ψx (0, t+ τ)− k3i ψx (l, t)− k4i ψx (l, t+ τ)

]
,
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+

N∑
i=1

δ (x− ξi (t))

[
k5i φi (t) + k6i φi (t+ τ)

]
x ∈ (0, l) , t ∈ [0, T1 − τ) ,

ψtt (x, t) = a2ψxx (x, t) + λψt (x, t)− 2µ (x)u (x, t)χ[Tf ,T1] (t)

+
N∑
i=1

δ (x− ξi (t))

[
a2k1i ψx (0, t)− a2k3i ψx (l, t) + k5i φi (t)

]
,

x ∈ (0, l) , t ∈ [T1 − τ, T1) .

Thus, the approach to the numerical solution of the problem (2.1), (2.2), (2.21),
(2.22), (2.23), (2.15), (2.32), (2.33) is as follows. As was said at the beginning
of this section, to find the minimum time Tf required for the damping process,
i.e. to satisfy the condition (2.10), the ”incremental search method” is used to

determine the uncertainty interval for the minimum calming time Tf ∈
[
Tf , Tf

]
with the subsequent application of some one-dimensional search method (golden
section search, bisection method, etc.) to refine the optimal value of Tf .

At each given time Tf , to determine the corresponding optimal values of the
feedback parameters k, a minimizing sequence is constructed using, for example,
the procedure (3.3).

4. Results of numerical experiments

Let us present the results of numerical experiments obtained in solving the
problem under consideration (2.1)–(2.25) with the following values of the data
involved in the formulation:

a2 = 1, λ = 0, ∆T = 0.5, τ = 0.02, N0 = 3, N = 4,

µ1 (x) ≡ 1, µ2 (x) ≡ 1, x ∈ [0, 1] , ε3 = 1.0, R = 1, ε = 0.0002,

q1 ∈ Q1 = [1.32, 1.42] , ρQ1 (q1) = 10, θ1 ∈ Θ1 = [0.20, 0.24] , ρΘ1 (θ1) = 25,

q2 ∈ Q2 = [1.29, 1.39] , ρQ2 (q2) = 10, θ2 ∈ Θ2 = [0.54, 0.58] , ρΘ2 (θ2) = 25,

q3 ∈ Q3 = [1.28, 1.38] , ρQ3 (q3) = 10, θ3 ∈ Θ3 = [0.78, 0.82] , ρΘ3 (θ3) = 25,

a1 (t) ≡ 0, a2 (t) ≡ 0, a3 (t) ≡ 0, a4 (t) ≡ 0,

ξ01 = 0.11,
[
ξ1, ξ1

]
= [0.03, 0.22] , ξ02 = 0.37,

[
ξ2, ξ2

]
= [0.27, 0.48] ,

ξ03 = 0.62,
[
ξ3, ξ3

]
= [0.52, 0.73] , ξ04 = 0.86,

[
ξ4, ξ4

]
= [0.77, 0.97] .

The splash magnitude values have uniform distributions in Q1, Q2, and Q3,
and their possible impact points are uniformly distributed in the given admissible
regions Θ1, Θ2, and Θ3.

The dimension of the optimized vector of problem parameters is 24.
For one-dimensional minimization of the completion time of the process Tf ,

under conditions (3.2), we use the method of bisection method with preliminary

determining the initial bracketing interval
[
Tf , Tf

]
.

Let us describe the general scheme of implementation of the iterative procedure
(3.3) for a given value of Tf with the aim of minimizing the functional (2.32),
(2.33) using the methods of penalty function under constraints (2.31) and gradient
projection under constraints (2.30).
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For each value of the penalty coefficients, the functional was regularized using
known schemes [25, 27]. In this case, the regularization parameters were changed
three times, namely, at the initial value it was reduced by 10 times after the
completion of the iterations, and the optimal value k obtained at the previous
step was assigned as k̂ for the regularization of the functional (2.32), (2.33). The
initial value of the penalty coefficient R was set to 1, which was increased by a
factor of 10 at each subsequent stage. These stages were carried out until the
value of the main functional of the problem (2.32), (2.33) differed by more than
0.0001 at two consecutive stages.

To solve the direct and conjugate initial–boundary-value problems (2.1), (2.2),
(2.21), (2.22) and (3.11)–(3.17), a modified implicit three-layer grid method [23]
was used. To solve loaded initial–boundary-value problems, an implicit finite-
difference approximation scheme was used, which was investigated in the works
[3, 6]. To solve finite-difference approximating initial–boundary-value problems,
numerical methods proposed in the work [2] were used.

To solve the direct (2.23), (2.15) and the conjugate (3.18)–(3.20) Cauchy prob-
lems, a modified scheme of the Euler method with a time step ht = 0.01 was used.

In numerical calculations under the initial conditions (2.2) the value of σ for
the neighborhood of points θs was equal to 0.03.

In our computer experiments, we used the following everywhere continuously
differentiable function as the function µσ

(
x; θ̌
)
:

µσ
(
x; θ̌
)
=


1

2σ

[
1 + cos

(
x− θ̌

σ
π

)]
, x ∈

[
θ̌ − σ, θ̌ + σ

]
,

0, x ̸∈
[
θ̌ − σ, θ̌ + σ

]
,

which, as can be easily verified, satisfies the property (2.5).
Table 1 shows the results obtained for different given times Tf by minimizing

the functional J̃Tf
(k) from (3.1), in which different values of the feedback pa-

rameter vector k0 were used as the initial approximation for the iterative process
(3.3). As can be seen from the Table 1, the condition ε-settling of vibrations
(2.10) in the experiments carried out is fulfilled at Tf ≥ 1.65.

Table 2 presents the results of solving the auxiliary problem (3.1), obtained
using the three given initial approximations for the given time Tf = 1.5. As was
indicated above about the possible multi-extremality of the objective functional,
the optimization results obtained from different starting points differ in argu-
ments, although the difference in the values of the functional is not significant.
Here it is also necessary to take into account (as other specially conducted nu-
merical experiments have shown) that the functional of the problem has a ravine
structure.

Computer experiments were conducted to control the process of vibration
damping using the obtained optimal values of the synthesized feedback param-
eters under the assumption that the state measurements are carried out with
noises (error), namely:

ǔχi (t) = u (ξi (t) , t) [1 + χi (t)] , t ∈ [0, T1] , i = 1, 2, . . . , N.
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Table 1. Results of minimization of the functional (3.1) for dif-
ferent Tf and initial approximations k0.

Tf k0 J̃Tf

(
k0

)
k∗ J̃Tf

(k∗)

0.50

0.1758 0.8195 -0.9487 -0.1336

0.05712

-0.5686 0.2927 -1.5831 -0.2576

0.00188

0.1389 0.8103 -0.6741 -0.3989 0.8313 0.6252 0.3298 -0.2426
0.2944 0.4316 0.3106 0.4219 0.3440 0.4425 -1.7175 -0.6691
0.0817 0.7539 0.2294 0.5541 0.0819 1.0531 0.0468 0.3898
0.0203 -0.1043 0.4114 -0.1574 -0.1117 -0.1550 0.3043 0.2918
-0.0231 -0.0661 0.4020 -0.1632 -0.1135 -0.1154 0.1867 0.2630

0.75

-0.1177 -0.1465 -0.2245 -0.1747

0.05435

-0.0099 0.2451 -0.0651 -0.0267

0.00145

-0.1036 -0.1247 -0.1964 -0.1575 0.0113 0.0346 -0.0297 -0.0064
-0.1179 -0.1346 -0.2193 -0.1865 -0.0113 0.0301 -0.0305 -0.0344
-0.1048 -0.1087 -0.1846 -0.1659 0.0037 0.0598 0.0213 -0.0113
0.0051 -0.0041 0.0053 0.0004 0.0706 -0.0152 -0.0837 0.0390
0.0075 -0.0038 0.0058 0.0025 0.0698 -0.0155 -0.0910 0.0384

1.00

-0.6416 0.3797 -0.4275 -0.2041

0.05247

0.0121 0.0537 0.0270 0.0018

0.00114

0.4165 0.1263 0.6844 0.0989 0.0295 0.0838 0.0558 0.0184
0.0373 0.0299 -0.6083 -0.9425 0.0176 0.0837 0.0567 0.0052
0.6841 0.8113 0.5803 0.1782 0.0295 0.1077 0.0820 0.0217
-0.2138 0.1255 0.3835 -0.2482 0.0858 0.0416 -0.0141 -0.0124
-0.2671 0.1601 0.3161 -0.3036 0.0946 0.0359 -0.0418 -0.0414

1.25

-0.1622 -0.0770 -0.2142 -0.2480

0.04882

0.0619 -0.0578 -0.3777 -0.1444

0.00083

-0.1369 -0.0313 -0.1564 -0.2166 0.1430 0.1681 -0.1763 -0.0653
-0.1431 -0.0422 -0.2035 -0.2883 0.1226 -0.0804 -0.2664 -0.0516
-0.1320 0.0162 -0.1207 -0.2466 0.2020 0.0483 -0.1270 0.0428
0.0014 -0.0136 0.0231 -0.0009 0.0641 0.0492 -0.0557 -0.0825
0.0011 -0.0128 0.0220 -0.0052 0.0562 0.0505 -0.0575 -0.0753

1.50

-0.0425 -0.0362 -0.1243 -0.0855

0.04768

0.2547 -0.0291 -0.7072 -0.4322

0.00055

-0.0246 0.0043 -0.0774 -0.0693 0.6009 0.7103 -0.1448 -0.2776
-0.0374 -0.0923 -0.1067 -0.1023 0.2036 0.1012 -0.5550 -0.3712
-0.0271 0.0335 -0.0544 -0.0806 0.30064 0.3622 -0.1795 0.0661
-0.0024 -0.0272 0.0121 0.0326 -0.0206 -0.1043 0.1712 -0.0265
-0.0043 -0.0206 0.0218 0.0127 -0.0169 -0.1088 0.1675 -0.0299

1.65

-0.0888 -0.0104 -0.0668 -0.0256

0.01594

-0.1263 -0.1904 -0.4470 -0.3183

0.00018

0.0724 0.0165 -0.0378 -0.0107 0.2266 0.4969 0.1615 -0.0321
-0.0950 0.0187 -0.0352 -0.0318 -0.2512 -0.0901 -0.3884 -0.2830
0.0176 0.0431 -0.0768 -0.0138 -0.0449 0.3687 0.1087 0.0541
-0.0073 0.0071 -0.0239 0.0004 0.0370 -0.0589 0.0198 -0.0541
-0.0691 0.0065 -0.0251 0.0415 0.0378 -0.0651 0.0195 -0.0524

2.00

0.0121 0.0537 0.0270 0.0018

0.02459

-0.0333 0.0057 -0.0358 -0.0499

0.00042

0.0295 0.0838 0.0558 0.0184 0.0414 0.1237 0.0821 0.0180
0.0176 0.0837 0.0567 0.0052 -0.0187 0.0298 -0.0418 -0.0691
0.0295 0.1077 0.0820 0.0217 0.0363 0.1468 0.0885 0.0166
0.0085 0.0141 -0.0114 -0.0014 -0.0158 -0.0630 0.0025 0.0194
0.0084 0.0141 -0.0213 -0.0154 -0.0166 -0.0120 0.0026 0.0183

Here χi (t) for each t is a random variable uniformly distributed on the closed
interval [−ζ, ζ], ζ determines the maximum noise level. In the experiments con-
ducted, the values of ζ were chosen equal to 0.01, 0.03, 0.05, which corresponds
to a measurement noise of 1%, 3% and 5% from the exact (calculated) values of
the measured quantities.

In tables 1 and 2 the values of the feedback parameters k are given row
by row in the following order:

(
k11, k

1
2, . . . , k

1
4

)
,
(
k21, k

2
2, . . . , k

2
4

)
,
(
k31, k

3
2, . . . , k

3
4

)
,(

k41, k
4
2, . . . , k

4
4

)
,
(
k51, k

5
2, . . . , k

5
4

)
,
(
k61, k

6
2, . . . , k

6
4

)
.

Fig. 1 shows the graphs of the function J̃ (Tf ,k
∗) defining the vibration pro-

cess on the interval [Tf , Tf +∆T ], obtained with optimal feedback parameters
for Tf ∈ [0; 2] (solid line). The dashed line shows the graph of the function

J̃ (Tf ,k
∗) obtained by solving the original problem under the assumption that

the measurement points do not move, but their locations are optimized. In this
case, the feedback parameters form a vector k = (k1, k

2, k3, k4). It is evident
from these graphs that the quality of control of the string vibration damping
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Table 2. Results of minimization of the functional (3.1) and dif-
ferent initial approximations k0 for Tf = 1.5.

k0 J̃Tf

(
k0

)
k∗ J̃Tf

(k∗)

1

-0.0981 -0.0437 -0.1301 -0.1556

0.03752

0.2347 -0.4161 -0.8229 -0.2424

0.00043

-0.0343 0.0785 -0.0213 -0.1044 0.5242 0.4761 0.3562 0.4296
-0.1058 -0.0361 -0.1118 -0.1560 -0.0871 -0.1411 -0.7610 -0.4026
-0.1058 -0.0361 -0.1118 -0.1560 0.5674 0.3676 0.1836 0.4674
-0.1058 -0.0361 -0.1118 -0.1560 -0.1285 -0.0214 -0.2573 -0.1286
-0.1058 -0.0361 -0.1118 -0.1560 -0.1255 -0.0133 -0.2489 -0.1282

2

-0.0166 -0.1743 -0.2436 -0.0190

0.04250

0.1875 -0.0953 -0.8034 -0.4290

0.00045

0.1048 0.0596 -0.0130 0.0909 0.4944 0.7165 -0.2233 -0.3276
-0.0144 -0.1490 -0.2453 -0.0519 0.0612 0.2653 -0.8156 -0.5590
0.0836 0.0517 -0.0227 0.0796 0.2754 0.5308 -0.4748 0.0577
-0.0898 0.0137 -0.0157 0.0447 -0.1225 -0.1985 0.3272 -0.1289
-0.0721 0.0132 -0.0251 0.0420 -0.1226 -0.2207 0.2482 -0.1189

3

-0.0241 -0.0968 -0.2097 -0.0955

0.03892

0.3277 -0.0780 -0.5070 -0.1548

0.00041

0.0254 -0.0018 -0.1225 -0.0487 0.6291 0.4457 -0.0347 0.1181
-0.0001 -0.1082 -0.2008 -0.0601 0.0379 0.0936 -0.1688 -0.1422
0.0468 -0.0399 -0.1365 -0.0082 0.1713 0.3202 0.0951 0.0449
0.0264 0.1421 -0.1452 -0.0194 0.1645 0.0744 0.1280 0.1517
0.0141 0.1283 -0.1042 -0.1891 0.0758 0.0764 0.1878 0.1487

process when the measuring points move is significantly better compared to the
case when the measuring device locations are stationary. As can be seen from
the figures, ε-settling on the string is not achieved when the measuring points are
stationary.

Figure 1. Graphs of the function J̃ (Tf ,k
∗) obtained with mov-

ing measurement points ( —— ), and with their optimal stationary
locations ( – – – ).

An important indicator of the quality of control of the damping process when
using, in particular, with optimal feedback parameters, is the function

Ĵ (t,k∗) =

∫
Q

∫
Θ


t+∆T∫
t

l∫
0

µ (x) [u (x, τ)]2dxdτ

 ρQ(q)ρΘ (θ) dqdθ. (4.1)
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This function characterizes the result of process control on average for all
possible values of the initial conditions (2.2).

Fig. 2 solid line shows the graphs of the function (4.1) over time t ∈ [0; 2]
for the synthesized optimal vector of feedback parameters k∗. The dashed line
shows the graph of the function (4.1) in the case where the measurement points
did not move, but their stationary resolution locations and feedback parameters
k = (k1, k

2, k3, k4) were optimized.

Figure 2. Graphs of the function Ĵ (t,k∗) for moving measure-
ment points ( —— ) and for stationary measurement points ( – –
– ).

Fig. 3 shows the graph of the function

F (t;k∗) =

∫
Q

∫
Θ


l∫

0

µ (x) [u (x, t)]2dx

 ρQ(q)ρΘ (θ) dqdθ,

for the synthesized optimal vector of feedback parameters k∗ for t ∈ [0; 2].
Fig. 4 shows the graphs of the trajectories of the measurement sensors ξi (t) and

the corresponding controls wi (t) for the initial value of the feedback parameter
vector k0 (dashed lines) and for the synthesized optimal vector k∗ (solid lines).

Fig. 5 shows two graphs of the boundary control functions ϑ (t) = (ϑ1(t), ϑ2(t))
for the initial values of the parameter vector k0 (dashed lines) and for the syn-
thesized optimal feedback parameter vector k∗ (solid lines).

Fig. 6 shows the graphs of the final state of the string u (x, Tf ), x ∈ [0; 1],
Tf = 1.65 for the synthesized optimal parameter vector k∗ (solid line) without
noise and with noise of 3% and 5% (dashed lines).

As can be seen from the results of computer experiments given in table 1, when
using measurements at past moments in time in the feedback, the values of the
corresponding coefficients k2, k4, k6, according to the optimization results, differ
from zero. Consequently, their presence reduces the value of the functionality,
which proves the effectiveness of using measurements at past moments in time
for feedback.
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Figure 3. Graphs of the function F (t;k∗) for moving measure-
ment points for the synthesized optimal vector of feedback param-
eters k∗.

Conclusion

The paper studies the problem of synthesis of boundary control for the process
of damping the vibration of a string. The main feature of the problem statement
under consideration is that feedback is carried out using measurements taken by
state sensors moving along the string. The current values of the boundary con-
trols and the velocity of movement of the sensors are assigned depending on the
measured values of the state at the points where the sensors are located, both at
the current and past moments in time. Formulas for dependencies implement-
ing feedback are proposed. With respect to the constant coefficients (feedback
parameters) involved in these dependencies, formulas for the derivatives of the
objective functional were obtained. The formulas are used for the numerical so-
lution of the problem of determining the optimal values of feedback parameters
using first-order optimization methods.

The formulation of the problem presented in the work, the methodology for
its study, including the numerical solution of the control synthesis problem can
be used to solve problems of controlling the stabilization of membrane and plate
vibrations, as well as for feedback control of other technological processes, objects
with distributed parameters described by other types of initial–boundary-value
problems with other partial differential equations.
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