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SOLARITY OF BOUNDEDLY ∆-COMPACT MONOTONE

PATH-CONNECTED SETS

I. G. TSAR’KOV

Abstract. In 1980, F. Deutsch introduced a general type of convergence
of nets and sequences. In general, such convergences are nontopological.
Convergences of this type proved useful in establishing existence theo-
rems for many classical and abstract objects appearing in approximation
theory. In the present paper, we introduce a special type of Deutsch con-
vergence, which we call ∆-convergence. We study boundedly ∆-compact
sets in normed linear spaces—by definition, any net in the intersection
of such a set with any closed ball contains a subnet which ∆-converges
to a point of this intersection. We show that any boundedly ∆-compact
monotone path-connected set is a sun.

1. Introduction

We study boundedly ∆-compact sets— these are the sets such that the inter-
section of such a set with any closed ball is compact relative to ∆-convergence
(see Definition 2.2), which is a particular case of fairly general Deutsch conver-
gence (see Definition 2.1). We study the problem of solarity of boundedly ∆-
compact monotone path-connected sets in normed linear spaces.

The main results are Theorems 2.1 and 2.2.
Given a nonempty subset M of a normed linear space X over R, let ϱ(y,M) :=

infz∈M ∥z − y∥ be the distance from a point y ∈ M to the set M . Let PMx =
PM (x) := {y ∈ M | ∥y − x∥ = ϱ(x,M)} be the set of all nearest points from
M for x ∈ X. The mapping x 7→ PMx is the metric projection onto the set M .
Next,

B(x, r) = {y ∈ X | ∥y − x∥ ⩽ r} and S(x, r) = {y ∈ X | ∥y − x∥ = r}
are, respectively, the closed ball and sphere with center x and radius r ⩾ 0;
B = B(0, 1) and S = S(0, 1) are, respectively, the unit ball and the unit sphere.

Further, B̊(x, r) := {y ∈ X | ∥y − x∥ < r} is the open ball with center x and
radius r. As usual, X∗ is the dual space of X, S∗ = S∗(X∗) is the dual unit
sphere.

Definition 1.1. Let ∅ ̸= M ⊂ X. A point x ∈ X \ M is a solar point for M
if there exists a point y ∈ PMx ̸= ∅ (called a luminosity point) such that y ∈
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PM ((1−λ)y+λx) for each λ ⩾ 0 (geometrically, this means that there is a (solar)
ray emanating from y and passing through x such that y is a nearest point fromM
for any point from this ray.

Definition 1.2. A closed set M ⊂ X is called a sun if every point x ∈ X \M is
a solar point for M .

Suns are the most natural objects for which the generalized Kolmogorov crite-
rion for an element of best approximation is fulfilled. They have certain proper-
ties of separability: a ball can be separated from such set using a larger ball or a
support cone (see, e.g., [4]).

As already noted, our aim here is to obtain fairly general conditions on a subset
of a normed linear space which guarantee that this set is a sun. We will show
that any boundedly ∆-compact (in the sense of Definition 2.2) monotone path-
connected subset of a normed linear space is a sun (Theorems 2.1 and 2.2). It is
well known that any sun in X is convex if and only if X is smooth (see [4]).

2. Solarity of monotone path-connectedness of boundedly
∆-compact sets

Following Deutsch (see, [10], and also [4, § 4.4]), we recall the definition of
a general type of convergence of nets (sequences) in a normed linear space.

Definition 2.1. Let X be a normed linear space. A Deutsch convergence (or

τ -convergence) xδ
τ→ x of nets (sequences) in X satisfies the following axioms:

(i) τ is translation invariant, i.e., xδ
τ→ x implies that xδ + y

τ→ x+ y for each
y ∈ X;

(ii) τ is majorized by norm convergence, i.e., xδ
τ→ x implies that ∥x∥ ≤

lim sup ∥xδ∥;
(iii) τ is homogeneous, i.e., xδ

τ→ x implies that αxδ
τ→ αx for each α ∈ R.

Example 2.1. Let us give some particular cases of Deutsch convergences.

a) norm convergence: xδ
n→ x if ∥xδ − x∥ → 0;

b) weak convergence: xδ
w→ x if x∗(xδ) → x∗(x) for each x∗ ∈ X∗;

c) ∗-weak convergence in the dual space X = Y ∗: y∗δ
w∗
→ y∗ if y∗δ (y) → y∗(y) for

each y ∈ Y ;
d) pointwise convergence in C(Q) on a (net-specific) subset of the compact

set Q: xδ
∆→ x if there exists a dense subset Q0 of Q on which xδ(t) → x(t) for

each t ∈ Q0;
e) pointwise convergence in C[a, b] at all points of [a, b] except finitely many

points: xδ
φ→ x if there exists Q0 ⊂ Q such that [a, b]\Q0 is finite and xδ(t) → x(t)

for each t ∈ Q0;

f) convergence of sequences almost everywhere in Lp(µ): xn
a.e.→ x if µ({t |

xn(t) ̸→ x(t)}) = 0;

g) almost weak convergence: xδ
aw→ x if there exists a w∗-dense subset Λ of

the set of extreme points of the dual unit ball of X∗ such that x∗(xδ) → x∗(x)
for each x∗ ∈ Λ. In C(Q), the aw-convergence coincides with the ∆-convergence
from item d).
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Let us define another natural case of Deutsch convergence. Here and in what
follows, extS∗ is the set of all extreme functionals of the dual unit sphere S∗.

Definition 2.2. A net {xγ}γ is said to ∆-converge to x if there exists an at most
countable set q ⊂ extS∗ which is w∗-dense in extS∗ and such that {x∗(xγ)}γ
converges to x on any point x∗ ∈ q. (This convergence is a particular case of
aw-convergence from item g)).

Let τ be a Deutsch convergence. A set M ⊂ X is boundedly Deutsch compact
(boundedly Deutsch sequentially compact) if any bounded net (sequence) from M
contains a subnet (a subsequence) Deutsch convergent to a point from M . (If
τ is the norm convergence, we get the classical definition of boundedly compact
sets.)

It is well known that any boundedly Deutsch compact (boundedly Deutsch
sequentially compact) set is an existence set (see, e.g., [4, Theorem 4.4]).

Definition 2.3. A set M ⊂ X is boundedly ∆-compact if any bounded net
from M has a ∆-convergent subnet to a point from M .

Particular cases of Deutsch convergence in C(Q) were used, in particular, for
derivation of theorems on existence of best approximants by rational functions,
exponential sums, and splines with free knots (see, e.g., [8], [10], [12], [13]).

Deutsch convergence (sequential convergence) τ is topological if there exists
a topology onX relative to which the convergence of nets (sequences) is equivalent
to τ -convergence. In a)–c) of Example 2.1, the convergence is topological. In d)–
g), the Deutsch convergences are not topological (see [10]).

We next consider a directed set A. Let X and Yα (α ∈ A) be normed linear

spaces with norms ∥ · ∥ and ∥ · ∥α, and {Aα}α∈A : X
onto−→ Yα be a family of

continuous linear operators, ∥Aα∥ ⩽ 1. Given a set M ⊂ X. We set Mα :=
Aα(M) (α ∈ A). Note that ϱα(Aα(x),Mα) ⩽ ϱ(x,M) for all x ∈ X and α ∈ Aα,
because ∥Aα∥ ⩽ 1 for each α ∈ Aα.

Below, we will obtain an analogue of the theorem and the remark after it
from [14] but under weaker conditions. The following result holds.

Theorem 2.1. Let M ⊂ X be a boundedly Deutsch compact set and Mα be a sun
in Yα (α ∈ A), Assume that the following conditions are satisfied:

1) for any net (xγ)γ∈A ⊂ M with limit point x ∈ M and for each ε > 0,
there exists β0 = β0(x, ε) such that ∥Aα0(x)∥ ≤ lim supγ∥Aα0(xγ)∥α0 + ε for each
α0 ⩾ β0;

2) ∥Aα(x)∥α ⩽ ∥Aβ(x)∥β for all α, β ∈ A, α ⩽ β, and each x ∈ X;
3) ∥Aα(x)∥α → ∥x∥ for each x ∈ M .
Then M is a sun in X.

Proof. Let x0 ∈ X \M be an arbitrary point. We claim that there exists a point
y0 ∈ PM (x0) such that y0 ∈ PM (y0 + λ(x0 − y0)) for each λ > 0. We can
assume without loss of generality that x0 = 0, ϱ(x0,M) = 1. Hence Aα(x0) = 0
for each α. Since Mα is a sun in Xα, there exists a point yα ∈ Mα such that
yα ∈ PMα(yα + λ(0− yα)) for all λ > 0 and α ∈ A. Therefore,

ϱα((1− λ)yα,Mα) = ∥λyα∥α = λ∥yα∥α for all λ > 0 and α ∈ A.
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Consider an arbitrary point xα ∈ M such that Aα(xα) = yα (α ∈ A). Let x ∈ X
be any (Deutsch) limit point. By condition 2) of the theorem,

∥Aα0(xα)∥α0 ⩽ ∥Aα(xα)∥α = ∥yα∥α = ϱα(0,Mα) ⩽ 1

for all α0, α ∈ A with α0 ⩽ α, and hence, by condition 1) of the theorem, for each
ε > 0, there exists β0 = β0(x, ε) such that ∥Aα0(x)∥ ≤ 1 + ε for each α0 ⩾ β0.
Hence ∥x∥ ⩽ 1 by condition 3) of the theorem. Since 1 = ϱ(0,M) ⩽ ∥x∥ ⩽ 1, it
follows that ∥x∥ = 1 and PM (0).

We now claim that ϱ(x + λ(0 − x),M) = λ∥x∥. Assume on the contrary

that, for some λ > 0, there exists a point z ∈ M ∩ B̊((1 − λ)x, λ∥x∥), i.e.,
∥z − (1 − λ)x∥ ⩽ λ∥x∥ − ε for some ε > 0. Let zα := Aα(z) (zα ∈ Mα).
Since Mα is a sun in Yα, we have ∥zα − (1 − λ)xα∥α ⩾ λ∥xα∥α for each α.
Passing to the limit in the inequality, using condition 3), employing the inequality
∥zα − (1− λ)xα∥α = ∥Aα(z − (1− λ)x)∥α → ∥z − (1− λ)x∥ and the convergence
λ∥xα∥α → λ∥x∥, we have ∥z − (1− λ)x∥ ⩾ λ∥x∥, a contradiction. So,

M ∩ B̊((1− λ)x, λ∥x∥) = ∅ and ϱ((1− λ)x,M) ⩾ λ∥x∥.
On the other hand, ∥(1− λ)x− x∥ = λ∥x∥ and x ∈ PM (0), i.e., x is a luminosity
point from M for x0 = 0 in X. Hence M is a sun. This proves the theorem. □

Remark 2.1. Let M ⊂ X be a boundedly Deutsch compact set satisfying condi-
tions 1)–3) of Theorem 2.1, and let δ > 0, R ⩾ ϱ(x0,M)+δ, MR := M∩B(x, 3R).
Assume that, for each ε > 0, there exist α0 ∈ A and a point yεα ∈ (MR)α such
that

∥z−(yεα+λ((x0)α−yεα))∥α ⩾ ∥yεα−(yεα+λ((x0)α−yα)
ε)∥α−ε = λ∥(x0)α−yεα∥α−ε

for all α ⩾ α0, yεα + λ((x0)α − yεα) ∈ Bα((x0)α, δ) (λ ⩾ 0), and z ∈ (MR)α.
Then there is a point x ∈ M which is a nearest point in M for each point
x0 + λ(x0 − x) ∈ B(x0, δ) (λ ⩾ 0) in X.

Definition 2.4. A set M ⊂ X is monotone path-connected if any two points
from M can be connected by a continuous monotone curve (arc) k( · ) ⊂ M ;
a continuous curve k(τ), 0 ⩽ τ ⩽ 1, in a normed linear space X is monotone
if f(k(τ)) is a monotone function of τ for each f ∈ extS∗. For further details,
see [4, § 7.7.3], [5], [6], and [7].

Given a bounded set M in X, we let m(M) denote the intersection of all closed
balls which contain M ; in particular, m(x, y) is the intersection of all closed balls
containing the point x, y (the Banach–Mazur hull of points x and y, or the bull
hull of x and y).

Definition 2.5. A set M ⊂ X is Menger connected if m({x, y}) ∩ M ̸= {x, y}
for all different points x, y ∈ M (see [9] and [4]).

Remark 2.2. In any separable Banach space, each boundedly weakly compact
Menger connected set is monotone path-connected (see, e.g., Theorem 3.24 in [5]).

The class1 (BHS) of normed spaces X is defined by the property

m(x, y) = [[x, y]] for each x, y ∈ X

1(BHS) comes from the phrase “the ball hulls are precisely the segments”.
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(see, e.g., [4, § 7.7.2]), where [[x, y]] is the segment [[x, y]] is defined by

[[x, y]] := {z ∈ X | min{φ(x), φ(y)} ⩽ φ(z) ⩽ max{φ(x), φ(y)} ∀φ ∈ extS∗}.
(2.1)

(The inclusion m(x, y) ⊃ [[x, y]] always holds; see, e.g., Remark 24 in [6].)
K. Franchetti and S. Roversi (see, e.g., [4]) introduced the class of normed

spaces (which we denote by (FR)) defined by the property

extS∗ is w∗-separable.

Here, in the definition of the class (FR) we always assume that the set F =
(fi)i∈I ⊂ extS∗ is w∗-dense in extS∗, card I ⩽ ℵ0. Below, we assume without
loss of generality that I = N. Any separable space lies in the class (FR)∩ (BHS).

Remark 2.3. The class (FR)∩(BHS) includes all C(Q)-spaces (even non-separable),
Q is a compact set.

Monotone path-connectedness and Menger connectedness are frequently useful
in deriving solar-like properties of sets. In particular, in C(Q), a boundedly
compact set is a sun if and only if it is monotone path-connected (see, e.g., [5]
and [6]). For some recent advances here, see [1], [2], [3], [14], [15].

Example 2.2. The set

Ri := cl

{
ae(λλλ,x) + c

∣∣∣∣ λλλ ∈ Rd, a, c ∈ R
}

(2.2)

is monotone path-connected in C(D), where D is a convex compact body in Rd

(here clA is the closure of a set A). The set Ri is boundedly compact, and hence
Ri is a sun in C(D). The univariate case of (2.2) was examined by Rice [11].

Theorem 2.2. Let X ∈ (FR). Then any boundedly ∆-compact monotone path-
connected set in X is a sun in X.

Remark 2.4. The conclusion of Theorem 2.2 also holds in any normed linear
space for boundedly aw-compact monotone path-connected sets (the definition of
aw-convergence is given in Example 2.1, g)).

We introduce some notation. We assume that A is a subset of extS∗ such
that A ⊔ −A = extS∗ and A contains no pair of antipodal functionals. Let
α = {xi}ni=1 ⊂ A be a finite tuple of linearly independent functionals. On the set
of all such tuples, we introduce the partial order defined by

α1 ⩾ α2 ⇔ α2 ⊂ α1.

For each such α, consider the subspace

Lα := {x ∈ X | x∗k(x) = 0, k = 1, n}.
By Yα we denote the space ℓα := (x∗1, . . . , x

∗
n)(X) and equip it with the norm

∥ · ∥α := max
k=1,n

|x∗k(x)|.

Note that Yα is a finite-dimensional space. Let Pα : X → Yα be the linear
operator Pα : X → Yα defined by Pα(x) := xα := (x∗1, . . . , x

∗
n)(x). Note that

P−1
y (xα) := x+ Lα for each x ∈ X (we assume that P−1

α (xα) is embedded in X
as a subspace). The norm of the operator Pα is 1. Further, let Bα(x, r) and
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B̊α(x, r) denote, respectively, the closed and open balls in Yα, and Bα and B̊α be,
respectively, the closed and open unit balls in Yα. We have Pα(B) = Bα. Given
an arbitrary set E ⊂ X, we define Eα := Pα(E).

Proof. The finite-dimensional case being trivial, we assume that dimX = ∞.
By assumption, there exists a countable family E = {xi}i∈N ⊂ extS∗ which
is w∗-dense in extS∗. For any finite family α = (y∗1, . . . , y

∗
n), consider the set

Mα := Pα(M) and points xα := Pα(x) (x ∈ X). It is easily seen that

[[xα, yα]] = Pα([[x, y]]) x, y ∈ X, xα(t) := Pα(x(t)),

is a monotone path in Yα if x(t) ∈ C([0, 1], X) is a monotone path in X. In
addition, if the monotone path x( · ) connects points x, y ∈ X (i.e., x(0) = x and
x(1) = y), then x(t) ∈ [[x, y]] for each t ∈ [0, 1], and the monotone path xα(t) ∈
[[xα, yα]] connects the points xα, yα ∈ Yα. The set M is monotone path-connected
in X, and hence Mα is monotone path-connected in the finite-dimensional space
Yα. Hence Mα is a sun in Yα (see, e.g., Theorem 7 in [6]).

As linear operators Aα (see Theorem 2.1) we consider the operators Pα, and
as a directed index set A we consider the inclusion ordered set of all finite tuples
α = (y∗1, . . . , y

∗
n) from E,

α ⩽ β ⇔ α ⊂ β.

Let {xγ}γ∈A be an arbitrary net in X with some limit point x0 ∈ X. By assump-
tion, there exists a functional x∗0 ∈ extS∗ such that x∗0(x0) = ∥x0∥. Hence, for
each ε > 0, there exists a functional y∗0 ∈ E such that y∗0(x0) ⩾ ∥x0∥ − ε. Then
∥(x0)α∥α ⩽ ∥x0∥ ⩽ y∗0(x0) + ε for each tuple α. Hence, for each α0 ⩾ {y∗0}. we
have

∥Aα0(x0)∥ ⩽ lim sup
γ

∥Aα0(xγ)∥α0 + ε,

i.e., condition 1) of Theorem 2.1 is met. It is easily seen that conditions 2) and 3)
of Theorem 2.1 are also satisfied. Now Theorem 2.1 implies that M is a sun
in X. □
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