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FRACTIONAL SPACES GENERATED BY THE SECOND
ORDER DIFFERENTIAL OPERATOR WITH PERIODIC
CONDITIONS

ALLABEREN ASHYRALYEV, FATIH SABAHATTIN TETIKOGLU, AND YASAR SOZEN

Abstract. In this study, we consider the second-order differential oper-
ator A” defined by

A%u = —(a(z)uz(2)), + ou(z),0 2 0,z € R,

with domain
2

D(A*) = Qu:u,u” € C(R),u(r) =ulz+27),x € R,/u(a:)da: =0
0

Estimates for the Green’s function are obtained. It is proved that for

any a € (0,1), the norms in the spaces E, = Eo(C (R),A%) and
C2> (R) are equivalent. The positivity of the operator A” in Hélder
spaces C2e (R),a € (0, %), is proved. As an application, theorems on
well-posedness of local and nonlocal boundary value problems for elliptic

equations in Holder spaces are established.

1. Introduction

The role played by positivity of differential and difference operators in a Banach
space in the study of various properties of boundary value problems for partial
differential equations, of stability of difference schemes for partial differential
equations and of summation Fourier series is well-known (see [1, 8, 11, 20, 22,
23, 24, 27, 28, 31| and the references therein). The positivity of a wider class
of differential and difference operators with local boundary conditions in Banach
spaces has been studied by many researchers (see [2, 3, 4, 5, 6, 7, 9, 10, 13, 14,
15, 16, 17, 18, 19, 21, 25, 26, 29, 30] and the references therein).

Let E be a Banach space and A : D(A) C E — E be a linear unbounded
operator densely defined in FE. A is called a positive operator in the Banach
space if the operator (AI + A) has a bounded inverse in F and for any A > 0,
the following estimate holds [11]:

M
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Throughout the present paper, M denotes positive constants, which may differ
in time and thus is not a subject of precision. However, we will use M(«, 3, ...)
to stress the fact that the constant depends only on a, 3, ....

For a positive operator A in the Banach space F, let us introduce the fractional
spaces E, = Eo(FE, A), (0 < a < 1) consisting of those v € E for which the norm

vl g, = sup A% [[AQA + A)~o]| 5 + [[vll
A>0

is finite.

Let us introduce the Banach space CP (R), 8 € (0, 3) of all continuous 2r
periodic functions ¢(z) defined on R and satisfying a Holder condition for which
the following norm is finite

o(z +7) — p(2)]

lellesmy = llellgm) + sup ;
Co®) C®) z,x+7€[0,27],7#£0 ‘T"B

where C (R) is the Banach space of all continuous 27 periodic functions ¢(z)
defined on R with the norm

el = e lp()]-

In paper [28], a new method of summations of Fourier series converging in
2
C(R) =< p(z) € C(R) : p(z) = p(x+27),z € R,/gp(:z:)da: =0
0
is presented. It is based on the following result on the positivity of the differential
operator A® defined by the formula
A*u = —ugy () + ou(z),0 20 (1.1)

with domain

27
D(A*) = u:u(z),u’(z) € C(R),u(z) = u(z + 27,z € ]R,/u(z:)dx =0
0

Theorem 1.1. [28] The operator (A® + ) has a bounded in C (R) inverse for
oc=0, x>0 and the following estimate holds:

1+ 1672

-1
) H(“)(]R)—@(R)< 14+N (1.2)

H(A”JFAI

The positivity of differential and difference operators with nonlocal boundary
conditions in Banach spaces and its applications have not been studied well.
In the present paper, we consider the differential operator A* defined by the
formula
A%u(z) = — (a(x)ug(x)), + ou(z),0 >0,z € R (1.3)

with domain

2
D(A*) = u:u,u” € C(R),u(z) = u(x +27),z € R,/u(a:)dx =0
0



SECOND ORDER DIFFERENTIAL OPERATOR 3

Assume that a(xz) = a(x + 27),z € R and a(x) > a > 0 is a continuously differ-
entiable function defined on R. We will be interested in obtaining the resolvent
of the operator A* i.e., in solving the resolvent equation

A%u(z) + Mu(z) = ¢(z), z € R, (1.4)
27
where Ofgp(:v)c& =0.

Note that in general A® is not self-adjoint. However, under the condition

027r e(x)dxr = 0 it follows A* is self- adjoint Actually, under this condition

and the definition of D(A"), we have f A?u(x)dx = 0. That means conditions

27

dr =0 and A”J x)dx = 0 are equivalent.
J () q
0

Note that equatlon (1. 4) can be written in the following boundary value prob-
lem
— (a(2)us (7)), + (0 + N u(z) = p(z),z € R,
2
uw(z) =u(z +2m), [u(s)ds=0,z€R (15)
0

for the second order differential equation with periodic conditions.
The Green function of A% is constructed. The estimates for the Green function
are obtained. It is proved that for any a € (0, 2) the norms in the spaces

E. = E,(C (R), A®) and (22 (R) are equivalent. Here, C2 (R) is the subspace
of C?*(R) such that f x)dx = 0. The positivity of the operator A” in the

Holder spaces C2 (R ) a € (0,3) is proved. In the applications, theorems well-
posedness of local and nonlocal boundary value problems for elliptic equations in
Holder spaces are obtained.

2. The Green’s function of the second order differential operator
with periodic conditions

Assume that G*(z,y; A) is the fundamental solution of (1.4). Then,

/G’z x,y; Np(y)dy, z € R. (2.1)

It is well-known that G*(x,y; \) is defined as the solution of (1.4) for the special
right-hand case

S(zyy) =4 T 2.2
wn={ 5z} 22)
Therefore,
27
G* (o, N) = [ G725 N6z ), (2.3)

0
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Lemma 2.1. For any xg € R, the following formula for G*(x,y; \) holds
27
G(z,y;A) = G™ (2,3 A) + /Gm(ﬂf, 2 A) (A0 — A7) G™ (2, y; N)dz, 2,y €R,

0
(2.4)

where G* (x,y; \) is the fundamental solution of resolvent equation with constant
coefficient a(xg)

A"y (x) + Au(z) = p(z),z € R. (2.5)
Proof. 1t is easy to see that (1.4) is equivalent to the following equation

APu(z) + Au(z) = (),

where

() = (A" = A%) u(z) + p(2). (2.6)
Thus, using the definition of Green’s function and formula (2.1), we can write

2

u(z) = / G (. N (y)dy

2 2
= [ 6@y ety + / G (o, 0) (A7 = A7) [ Gy, 25 X))y
0
2
:/ G*(z,y; A /G‘T x,z;A) (A® — A™0) G*°(z,y; N)dz | p(y)dy.
0
Using formula (2.1), we obtaln
2 2
[ 6@y Newis= [ (67w
0 0

+ /Gx(w,z;)\) (A% — A™) G*(z,y; N)dz | ¢(y)dy.

This equation holds for any function ¢(z) € C (R). Hence,

G*(z,y; \) = G*(z,y; A /Gx x,z; A) (A% — A0) G*0(z,y; N)dz,z,y € R
or
2
Gz, y;A) = G™ (2,3 \) + /Gz(w, 2 A) (A" — A7) G™ (2, y; \)dz, 2,y € R.
0

Lemma 2.1 is proved.



SECOND ORDER DIFFERENTIAL OPERATOR 5

We note that

(A — A%) G*(z,y; \) = W (A —al) G*™(z,y; A). (2.7)
Applying (2.2), we get

AG™ (2,95 A) + A G™ (2, ;) = 6 (2,9) -

Then
(470 = 4 67 ) = I (4 NG i) 0 ) (28)
Applying (2.4) and (2.8), we get
G (z,y;A) = G(z,y;A) (2.9)
2m
+ /G”C(:L‘, z; )\)a(xo)(—)a(z){_(g +A)G™(z,y; A) + 0(2, y) }dz.
. alxo

We note that (2.9) holds for any x,y,zo € R and this identity can be considered
as an equation for the unknown function G(z,y; A).
It can be written as the operator equation

G (x,y; M) = G™ (2,43 ) + K (w0, \)G" (2,43 A). (2.10)
Here, K(xg, A) is a linear operator defined by the formula
K (20, )G* (2,93 A)

2
= /Gx(a?, 2 /\)W {=(c+ N)G*(z,y; \) + d (2,9)} d=.
0

We will study operator K(xg,A) in some space where it is contraction. Then,
there exists a unique solution of this operator equation and norm of G*(x,y; \)
is estimated by norm of G* (z,y; A) in this space (Theorem 2.1, Lemma 2.2).

Putting y = x¢ in (2.9), we get
G*(x,z0; \) = G*(x,x0; )
a(zo) — a(2)

2
+ /Gx(:c, Z; /\)W {=(0+ XN)G*(z,20; \) + 6 (2, 20) } d=.
0

or
G*(x,z0; \) = G™(x,z0; \) (2.11)

2
x . a($0> _a(z) (o (5 2o 2
+ O/G (@230 DI (04 067 (00}
Putting zp = y in (2.11), we get
2m
G*(z,y; \) = Gy(x,y;)\)—(U—l—)\)/Gm(az,z;)\)a(y)_a(z)Gy(z,y;)\)dz. (2.12)

a(y)
0
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We will prove that equation (2.12) has a unique solution in a Banach space E;
with norm

IG(,: N = Vo A max |Gz, y;\)| e3 VI @), (2.13)

z,y€[0,27]
where here and throughout the article
Y(z,y) = min {27 — |z —y, [z —y[} .
Note that we have

_J oa(z,y) ,y<u=,
“%”—{5@w r<y,

where
Oé(.il?,y) :min{QW—$+y,$—y},ﬁ(l‘,y) :min{27r+:n—y,y—:17}.

It is easy to see that

_Jo2r—x2z+y ,0<y<z—m,
_Jy—z S TSY ST+,

Note that we have the following pointwise estimates for GY(z,y; A) and its deriv-
ative with respect to z [8]:

M
|GY (2, y; \)| < \/U(% emaVIFA @), (2.16)
|GY (3 M)| < M(0) e VoA, (2.17)

Now, we consider operator equation (2.10) in Ej.
Theorem 2.1. The operator K(y,\) defined by formula

2
Ky, \)G"(z,y; \) = —(0 + )\)/G’”(m,z; /\)WGy(z,y; Ndz  (2.18)
0

s the contractive operator in Ej.

Proof. Let 0 < y < z,z € [0,27]. Then, using (2.12) and triangle inequality, we
get

\/m\G“(x,y; A o5 Votia(z,y) <Vo+ A 1GY (2, y; \)| e5Votia(zy)

27

Ho+ )2 [ eBVotialey) |Gy 20\ “’(y)(_)a(z)‘ 1GY(z,y; \)|dz . (2.19)
a(y
0

Applying the definition of norm |-|, , estimate (2.16) and inequality (2.19), we get
/o + \ ’Gw(x,y; )\)| e%\/a-‘r)\a(a:,y) < Me™@ O’+)\Oé(x,y)€%\/o'+)\o¢(1‘,y)

Yy
+Mﬂa+»3/?%““““MGWLzAN@—xnaw@wxﬂw
0
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LMo+ N / e3VIRE) |G (5, 2 )| (= — y) |GV (2, 5 V)| =
Y

27
LMo+ N / e3VIRE) |G (5, 2 )| (= — y) |GV (2, 5 N)| =
< Me$Y7Pe@D) 4 My (0)B(a, 5, A) [GCL 5 M),

where

Y
Bla,y, 2) = (o + \)} /6‘2’\/0+)\a(x7y)€—g TFAa(@.2) (y _ 5)e=aVaFABEu) g,
0

x

—|—(O’—{—)\)% 6%\/a+)\a(m,y)e—% a+)\a(:c,z)( —a o-l—)\a(z,y)dz

z—y)e
y
2m

+(U + )\)% 6%\/U+)\a(:c,y)e—%\/0+>\B(m,z)(Z _ —a a—l—)\a(z,y)dz

y)e
= Bl(xa Y, >‘) + BQ(.’E, Y, >‘) + B3($7 Y, A)
We will prove that
Bi(z,y,\) < M(a,o0,)\),k=1,2,3, (2.20)
where
M(a,o,\) — 0 when o — oo. (2.21)
First, we estimate Bj(x,y, ). From identities (2.14), (2.15) and the fact that
y < x it follows for 0 < z < y that
28(z,y) +a(z,2) —afz,y) =2(y —2) +(—2) — (e —y) =3(y—2) (2.22)

Using (2.22), we can write
y
Bi(w,y N = (o + )} [ 8V 2yaz,
0

The substitution p = §v/o + A3 (y — 2) yields

9
Bz, y,\) € ———. 2.23
1($ Yy ) a2\/07)\ ( )
Applying (2.23), we get
Ml(a)
Bi(z,y,\) < . 2.24

Thus, estimate (2.20) for £ = 1 follows from estimate (2.24).

Next, we estimate Ba(x,y, ). By identity (2.14) and the fact that y < z, we have
for y < z < x that

20(z,y) + a(z,z) —a(z,y) =2(z—y)+(z—2)— (z—y) =2 —y. (2.25)
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Then, using (2.25), we can write

x

By(z,y,\) = (0 + )\)% e~ 3V U+)‘(Z_y)(z —y)dz.

Yy
By the substitution p = §v/o + A (2 — y), we have
By ( A) < 4
x? ) ~ .
A Y a?vo + A
Applying this estimate, we get
M1 (a)
Ba(z,y,\) < . 2.26

Hence, estimate (2.20) for k = 2 follows from estimate (2.26).
Finally, let us estimate Bs(z,y,A). The fact y < = and identities (2.14), (2.15)
yield

QCM(Z,y) +5(m7z) —Oé(.%',y) - 2(2_y) + (Z —JI) - (l'—y) =3z —y—2$

From this it follows
27

By(z,y,A) = (047 [ e 3VoRGu=2)(; _ ),

27
< (o+N)2 /6_3 VorAE=y) (7 — y)dz,

where the last estimate uses the fact + < z < 2.
Using the substitution p = §v/o + A (z — y), we obtain

Ml(a)
Vo + X

Therefore, estimate (2.20) for k = 3 follows from estimate (2.27).

Bs(x,y,\) < (2.27)

Now, let us assume that * < y < 27,z € [0,27]. Then, using (2.12) and triangle
inequality, we get

Vo F NG (2,5 M) e3VPEN Vo X [GY (a, y; N)| €3 VT T E)

27

o+ )2 eg‘/0+’\5(m’y)|Gm(:v,z;)\)|W|G9(z,y;)\)\dz. (2.28)
0

Applying the definition of norm |-|, , estimate (2.16) and inequality (2.28), we get
Vo T NG (@, y; \)| 3 VoTA@y) ¢ pfe=avotAB(ey) o5 VotAs(a.y)

+My(o +2)2 [ eBVTEEN |G (@, 20| (y — 2) [GY (2,53 V)| d
0
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Yy
+Mi(o + N / SV |G (2, 22 )| (2 — y) |GY (2, 3 V)| d
2
LMo + N} / VTR |G (0, 2 )| (= — ) |GV (2,5 V)| d=
Yy
< Me_% a—&-)ﬁ(m,y) + Ml(o-)D(l‘a Y, >‘) ’G(v y >\)|1 5

where
X

D(l’,y, )\) _ (O‘ + )\)% /eg\/0+>\6(z,y)e—g ot+Aa(z,z) (y _ Z)e—a\/a+>\ﬂ(z,y)dz
0
Yy

—l—(O’ + A)% e%\/0'+)\B(x,y)67%\/U+/\B(a:,z) (y - Z)efa\/odr)\ﬁ(z,y)dz

21
/ e%\/m5($,y)€*%\/0+)\5(m,z) (Z - y)efa\/chr/\a(z,y) dz

N

+(o+A)
y
= Dl(x7 Y, )‘) + DZ(x7 Y, )‘) + Dg(flf, Y, )‘)
We will prove that
Di(z,y,\) < M(a,o,\),k=1,2,3, (2.29)
where
M(a,o,\) — 0 when o — oo. (2.30)
We first estimate Dj(x,y, ). Using identities (2.14), (2.15) and the fact that
x < ¥y, we have
28(zy) +oz,2) = Bw,y) =2(y—2) + (x —2) = (y —x) = 20+ y — 32,

This results
xT

Dz, )) = (04N} / e EVITACrry=3) (y _ 2y,
0

< (U—F)\)% e~ 2VOrAW=R) (y — 2)dz,
0

where the last estimate follows from fact that 0 < z < «.
Using the substition p = §vo + A (y — 2), we get

M (a)
NZEDY
Estimate (2.29) for £ = 1 follows from estimate (2.31).
Next, we estimate Dy(x,y, ). Identity (2.15) and the fact that z < y yield

268(z,y) + B(z,2) = B(x,y) =2(y—2)+ (2 —2) - (y—2) =y — 2.

Di(z,y,A) < (2.31)
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Thus, we can write
Y

Dy(x,y,\) = (0 + )\)% e VIR =2 (y — 2)dz.
The substition p = §v/o + A (y — 2) yields
M (a)
Vo+
Estimate (2.29) for k = 2 follows from estimate (2.32).
Finally, let us estimate Ds(x,y,\). From identities (2.14), (2.15) and the fact
that = < y it follows that
20(z,y) + B(w,2) = B(z,y) =2z —y)+ (z—2) - (y —z) =3 (2 —y).

Using this, we have

2
D@,y N) = (04} / e EVITABEY (2 y)de
Yy

2
< (U—F)\);/e_gva‘”‘(z_y)(z—y)dz.
y

By using the substition p = §v/o + A (y — 2), we obtain
M (a)
Vo + X

Estimate (2.29) for k = 3 follows from estimate (2.33).
Applying the triangle inequality and estimates (2.20) and (2.29), we can write

M, (a)

Ds(z,y,) < (2.33)

KENGE L < S 6, (234
Gl < Mafa) + L G0 (239

From (2.34) it follows that for sufficiently large o the operator K (y, \) defined by
formula (2.18) is the contractive operator in E7. Moreover, using estimate (2.35),
we can get

|G(-, 5 N)|; < M3(a,0), (2.36)
where M3(a,0) = 1%%4(12) . O
Vo

By estimate (2.36), we have the following pointwise estimate for G*(z,y; \).

Lemma 2.2 (Pointwise estimate for the Green function). For sufficiently large
o and A = 0, the following estimate holds:

|G* (2, y; M| < Aj% emaVotiv(@y) (2.37)
g

O
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In a similar manner, one can obtain the following pointwise estimate for de-
rivative of G*(x,y; \) with respect to x.

Lemma 2.3 (Pointwise estimate for derivative of the Green function). For suf-
ficiently large o and X = 0, the following estimate

GZ(z,y; \)| < M(a,0) eV @), (2.38)
1s valid. O

3. Structure of fractional spaces generated by the second order
differential operator with periodic conditions

We will study the positivity of A% in C (R).

Theorem 3.1. For sufficiently large o and A > 0, the operator (A + X) has a
bounded inverse in C (R) and the following estimate holds:
M1 (a, O')

< ——. (3.1)

T —1
|(A” + ) HC”(]R)—)C‘(]R)\ RIS

Proof. Applying formula (2.1), the triangle inequality and estimate (2.37), we
can write

r—T T+T
M(a, o) / CavoTN(2m— _ _
w(z)| < ) el o+(27 z+y)d + / e avo+A|z y|d
)| < 22D y y
0 T—m
2w M ( )
—av o+ A2z —y) < 1\a, o .
e dy| mas o) < = el
T+
for any = € R!. Therefore,
Ml(aa U)
ull ¢y < o n lellemy -
From that it follows estimate (3.1). Theorem 3.1 is proved. O

Clearly, the operator A* and its resolvent (A* + A\I )_1commute. By the defi-

o

nition of the norm in the fractional space E, = E4(C (R), A”), we get

[ (A% + AT < (A" 4+ AT

) pss, ) ey -

Thus, from Theorem 3.1 it follows that A® is a positive operator in the fractional

o

spaces E,(C (R), A*). Moreover, we have the following result.

Theorem 3.2. For a € (0,3), the norms of the spaces E.(C (R),A") and the
Hélder space C?* (R) are equivalent.

Proof. For any A > 0, we have the obvious equality
AT(AT + M) (@) = p(a) — MAT + A1) ")
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By formulas (1.4) and (2.1), we can write
2T
A A pl0) = o)+ A [ 67 i) (ole) - o(s)) ds
0

2m
+ )\/ [G® (z,5;A) — G (z,s;\)] ds p(x). (3.2)
0
Then,
AYAT(AT + A" Lp(2)
2m
= el 2 [ 6 (055 (ola) — () ds
0
2m
et / [G® (z,8;A) — G (z,8;\)] ds p(x) = Pi(z) + Pa(z) + P3(x),
0
where
o 2m
Pi(o) = @), P = X [ 67 (0550 (o) — () s,
0

2m
Pya) = 2% [ [6° (e, ) = G (50 0)] ds o).
0
Let us estimate Py(z),k = 1,2,3 in C (R) norm. First, we will estimate P;(z) in

C (R) norm. Using the definition of the norm of space C2* (R) and ’\(ZUJ:)TQ <1,
we can write

()] < o™ lmey
for any x € [0, 27]. Then,

HPIHC";(R) <o” HSDHc“Qa(R) . (3.3)

Next, we will estimate Py(z) in C (R) norm. Using estimate (2.37), we get

M (a, o)A+t o a2 —
|Po(z)| S —F———=— / e~ VRIS (o (3) — (s)| ds
V A
o+ ;

= T+
+ / e—a\/m@c—s) |g0(IL‘) _ S0(8)| ds + / e—a\/m(s—w) |90($) - (p(S)| ds

T

27
* / e VIR o(2) — (s)| ds | = Pai(@) + Poa(z) + Pas(@) + Pou(z),
T+



SECOND ORDER DIFFERENTIAL OPERATOR 13

where

M a70- )\a—"_l o —aN/ o T—XTS
Pufa) = GO [ oA g 0) — (o) s,

0

a.o a+1
Pula) = 0% / VT () — o(s) ds,

a,o a+1
Puf) = 02 /W (=) () — (s)] ds,

27r
M a,o )\a-l—l —a/o T+x—s
Poy(x) = % / e FACTEE=S) | o(2) — (s)] ds.

Using the condition ¢(s) = ¢(s+27), the definition of the norm of space C2* (R)
and the definition of Gamma function, we have

Mi(a,o) ot

T+

Py (z) < HQOH(jvga(R) (o + )\)aﬂ I'2a+1)
for any x € [0,27]. Then, we have
max Po(x) < H@Hcm )y Mi(a, o) (20 + 1). (3.4)

x€(0,27]

Let us estimate Pog(x). From the definition of the norm of space C2e (R) and the
definition of Gamma function it follows that for each z € [0, 27]

My (a, o) \ott

0+ 0o ' 2a+1).

Py () < H‘PH(}M(R)

This yields
g[lgg}Pzz( z) < |lell 2o @y Mi(a, o)l (2a +1). (3.5)

Let us estimate Pa3(x). By the definition of the norm of space C2e (R) and the
definition of Gamma function, we get

M1 (a, U)AaJrl

Pos(x) < foamy ———————1 (2 + 1
() < Iellome) "o 3 gy T (20 1)
for any = € [0, 27]. From this it follows that
e Par(z) < ¢l oy M0 0)F 20+ 1). (3.6)

Using the condition ¢(z) = ¢(z427), the definition of the norm of space C2* (R)
and the definition of Gamma function, we obtain that for any = € [0, 27]
Mi(a,o) ot

(0 1 Ao ' 2a+1).

Pau(a) < llllgn gy

Thus, we have

g[lgg}PM( ) < |l o gy Mi(a, o)l (2004 1) (3.7)
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Combining estimates (3.4)-(3.7), we obtain

. |Po(@)] < 9l ey Mal o) 20+ 1). (3.8)

Finally, we will estimate P3(z) in C (R) norm. Applying formula (2.12), we get

2w 2w
Py(z) = X\*T (o + )\)//Gx(x, z; )\)WGS(Z, s;N)dzds p(z).  (3.9)
00
We have
P B 1
e |P3(z)] < Ui ()], (3.10)
where B = max B(z) and
z€[0,27]
2w 2w
B(x) = A>T (0 +\) //Gx(x,Z;A)WGS(z,S;A)dzdS )
a(s
0
We will prove that
B(z) < M(a,o0) (3.11)

for any z € [0,27] and « € [0, 1). Using the triangle inequality, estimates (2.16)
and (2.37), we get

B(z) < Mo+ )) 77‘090 (z,2;\) )a(s)( )GS(z $;0\)| dzds
0 0

< X"Ha—i—)\// Gmxz/\“a() a2) |G® (2, 8;\)| dsdz

a(s)
T 27

a+10_ ml,z () ()| SZS sdz
+ A +)\//|G M=y 16 s ) dsd

2z

+ Aa+1(a+A)//|G$(x,z;A)|WGS(z,s;A)msdz
x27r 27
+ )\O‘+1(G+A)//|Gm(m,z;)\)|wGs(z,s;)\)|dsdz

xr z
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N

M(CL, U))\aJrl //ea\/odr)\a(a:,z)(z o S)efa\/odr)\a(z,s)dsdz
0 0

x 21

+ M(a,a))\a+1//eaV"J”\O‘(’”’Z)(s—z)eaV”J”\ﬁ(Z’s)dsdz
0 =z

2z

+ M(a, a))\aﬂ//e_ang‘B(%z)(z—s)e_avg"')‘a(z’s)dsdz
z 0
21 2w

+ M(a,o*))\o‘“//e_“”ﬂ”\ﬁ(x’z)(s—z)e_av"+/\’3(z’s)dsdz

= Bi(2) + Ba(x) + Bs(x) + Ba(),

where

Bi(z) = M(a, o)A+ / / VIR (5 g)em VN8 g,
0 0

T 27

Bg(x) _ M(a, U)Aa+1//ea\/a+Aa(I,z) (8 _ z)efax/a+)\ﬁ(z,s)dsdz7
0 =z

27z
Bg(CC) _ M(a, U))\a+1//6—a\/a+)\ﬁ(x,z)(z _ S)e—a\/o——l—)\a(z,s)dsdz’
0

x

21 2w
B4(l‘) _ M(a’g))\a-i-l //e—a\/0+)\ﬁ(a:,z)(s _ z)e—a\/U—l—)\B(z,s)deZ_

T

Let us first estimate Bi(x). Using (2.14), we get

Bi(xz) = M(a,a)/\o‘+1//e_““””\(“"_z)(z—s)e_““”/\(z_s)dsdz
00

Aa+1
< Aﬁ(a7a) 3
(o0 +A)2
Since
Aa+1gé—a

<1 3.12
(c+ ) (3.12)

ol

for any o € [0, 3], we have
By (z) < Ms(a, o). (3.13)
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By (2.14) and (2.15), we get

T 2m
By(xz) = M(aja))\aJrl//eaV”Jr)‘ @=2) (5 — 2)e" VI3 dsd
0 =z
a+1
< Mg(a,a))\iy
(0 +A)2
Using (3.12), we have
By(z) < My(a, ). (3.14)
From (2.14) and (2.15) it follows
2 z
Bs(x) = M(a,a)/\aJrl//e“V”Jr)‘ (=2) (3 — 5)e~ VIt E3) dsdz
z 0
a+1
< Mﬂmﬂ—i—ﬁ.
(0 +A)2
By using (3.12), we obtain
Bg(l’) < Mﬁ(a,a). (315)

From (2.15) it follows
2m 2w

By(z) = M(a,o)\*"! //e_‘“”‘M (=) (5 — 2)e”WVIHA (=2 ggdz,

)\a+1
< Mq(a,0)———
(0 +A)2
Using (3.12), we have
By(z) < Mg(a, o). (3.16)

Applying estimates (3.13)-(3.16), we get estimate (3.11). From estimates (3.10)

and (3.11) it follows

e [Py(a)] < Mo, 0) [l cangry- (317

Estimates (3.3), (3.8) and (3.17) yield

AYAT (AT + 2~
xéﬁl(f?ﬂ‘ (A" + XI)~lop(x)|

< [M(0) + Mo(a, )] lll ey + Ma(a, o)L (20 + 1) 0]l o
for any A > 0. Thus,
Il ey aey < Mio(a, o) [l maqy - (3.18)

Now, let us prove the reverse inequality. For any positive operator A* in the
Banach space, we can write

I= /A"”(A“” + \I)72d),
0
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where I is the identity operator. From this relation and formula (2.1) it follows
o0
o) = /(Am + M) TEAT(AT 4 X)L () dA
0

oo 21

//G”” (2,8, \) AT(A* + AI) "L (s) dsd.
0 0

Consequently,
2

(1) — o (22) ://(G”” (21,5 A) — G (9, 5: A)) A(AT + M)~ io(s)dsd\
0 0

00 27
= /)\_a / (G (1,8, \) — G (12,5, \)) N AT (AT + AI) "L (s)dsd.
0 0
Therefore,
00 2T

|¢@ﬂ—w@ﬂh{/AQ/Kﬂ@h&M—GUMﬁMH%WWM%@mmmy
0 0
Let

o0 2
T = |oy — o 2 /A—a/\GI (21, 5: ) — G (22, 5 \)| dsd\
0 0
Note that for |1 — x2| > 7 we have that

o (z1) — @ (z2)| _ [ (z1)] + [p (22)] 2
‘xl _ x2|204 S 20 < Wﬁ HCPHC(R) <M HSOHEQ(CD’(]R),AQC) .

Therefore, no loss of generality we can put o > x1 and x5 — x1 is the number
small than 7. For any z1,zy € [0,27] such that x9 > x1, we have

|0 (1) = ¢ (22)]
20 STl g, @) an) -

|z1 — 22
Now, we will prove that
M(o)
< al—za) (3.19)
We have
oo 1
7= for— a2 [ | 167 (or550) = G (55 ds
0 0
o 2
+/|Gm (1,8 A) — G (22,83 A\)| ds + / |G* (21, 8;\) — G" (z2,8;\)| ds
x1 x2

=T, + 15 + 15,
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where

[e.e]

Ty = |x1 — x2\2a/)\_a/|Gz (21,8, \) — G (22, 8;\)| ds d,
0

o0 2
— o= a2 [ 3 167 (o, 550) = G s V] ds i,
0

T3 = ’xl - x2‘—2a/A—a/’GI (mlas;)‘) - G” (IBQ,S;)\)| deA7
0 T2

Let us estimate T7. Using estimate (2.38), we get

1 To—T1
<oy — ]2 / / / |G% (z + x1,8;\)| dzds dA

xr1 T2—x] OO

< M(a,0) oy — @92 / / /)\ ae=aVA(He1-5) g\ 4z ds
0
)

Using the substitution p = av/A (z + 1 — s) and identities

o0
/)\—ae—a\/X(z—l-xl—s)d)\ = 2422 (z 4 71 — 5)20‘*2 T2 - 2a),
0
r1 xTo—x1
ooy gyt gy _ 2w e — o]
! 20 (1 — 20) ’
0 0
we obtain
Tl < Ml(a> O') .
20 (1 — 2a)

(3.20)

Now, let us estimate T». Using the triangle inequality and estimate (2.37), we

get

T2 00

Ty < Mi(a,0) |x1 — $2|_2a/ /)\_O‘_é [e_a‘ﬁ\(s_“) +emaVA@=9)| grds

1
< Ma(a,0)4(1 — 2av).
From this it follows that
Ty < M3(a,0).
Finally, we will estimate T3. By estimate (2.38), we obtain

2T To—T1 00

< M(a,0) |z — $2|2a/ / /)\_ae_aﬁ(s_z_ml)d)\dzds.
T2 0 0

(3.21)
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Using the substitution p = av/A (s — z — x1), and identities

oo

/)\aeaﬁ(szm)d)\ _ 2&20&72(8 s $1)2a72F(2 _ 204),
0
2T To2—I1 %
/ (s — z — 21)%* 2dzds < M,
2a(1 — 2a)
T2 0
we have
T3 < M(a,0) (z2 — 21) 2 20(2 — 2a)a2a*2M (3.22)
3 X ) 2 1 20 (1 _ 20[) . .
From estimate (3.22) it follows
M4(G, U)
T3 < —————. 3.23
5= 20(1 - 2a) (3:23)

Combining estimates (3.20)-(3.23), we conclude for 0 < x; < x2 < 27 and
To — x1 < 7 that
M(a,o0)
< —F—.
2a(1 — 2a)
Thus, (3.19) is proved. Thus, for any =1,z € [0, 27| we have
M(a, o)

—2a
|21 — @27 o (21) — @ (22)] < %a(l - 20) 11l 2, () ) -

This means that the following inequality holds:

M(o,a)

- < a
||<P”cza(R) S 2a(1 - 2a)

a) HSDHEa(é(R),Ax), (3.24)

Estimates (3.18) and (3.24) finish the proof of Theorem 3.2. O

o

Since A” is a positive operator in the fractional space E,(C (R), A*), from the
result of Theorem 3.2 it follows also that it is positive operator in the Holder
space C2% (R).

4. Applications

Now, we will consider the applications of Theorems 3.1, 3.2. First, we consider
the boundary value problem

7% — 8% (a(x)%) +ou(t,z) = f(t,z),0 <t < T,z € R,
u(0,z) = p(z),u(T,z) = Y(z),z € R, (41)
2m
u(t,z) = u(t,z +2m), [u(t,s)ds=0,0<t < T,z €R.
\ 0

Here, ¢(z),¢(x),a(x) and f(t,x) are sufficiently smooth 27-periodic functions in
x and they satisfy any compatibility conditions which guarantee problem (4.1)
has a smooth solution u(t, x).
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Theorem 4.1. Let 0 < o < % Then, for the solution of the boundary value

problem (4.1), we have the following coercive stability inequality

H“tt”c([o,T},é?a(R)) + HUHC([O,T],C‘MH(R))

< M(@) |19l gusaqmy + I1¥llaaray + 1fllo(om 6o m) |-

The proof of Theorem 4.1 is based on Theorem 3.2 on the structure of the
fractional spaces E, = E,(C (R),A”), Theorem 3.1 on the positivity of the
operator A*, on the following theorems on coercive stability of boundary value
problem for the abstract elliptic equation and on the structure of the fractional
space E!, = E,(E, AY/?) which is the Banach space consisting of those v € E for
which the norm

AP+ ALy

Jolle, = supx° o *0lls

is finite.

Theorem 4.2. [11] The spaces Eq(E, A) and E}, (E, AY?) coincide for any 0 <
a < %, and their norms are equivalent.

Theorem 4.3. [11] Let f € C([0,T], E.),0 < a < 1. Then, for the solution of
the nonlocal boundary value problem

—u" + Au(t) = f(t),0 <t < T,u(0) = p,u(T) = (4.2)
in a Banach space E with positive operator A the coercive inequality holds:
HUHHC([O,T],E(;) + ”A“HC([O,T],E&)

M
< 81 [IAgl, + 1401, + s W leom e

Second, we consider the nonlocal boundary value problem for the elliptic equa-
tion

_Qultx) _ o (a(x)m) +ou(t,x) = f(t,x),0 <t <T,x € R,

o2~ Oz ox
U(O,.I‘) = U(Ta ZL’),ut(O,Jf) = Ut(T,JE),JZ‘ € ]Rv (43)
2
u(t,z) = u(t,z +2m), [ u(t,s)ds=0,0<t< T,z eR.
\ 0

Here, a(z) and f(t,z) are sufficiently smooth 27-periodic functions in x and they
satisfy any compatibility conditions which guarantee problem (4.3) has a smooth
solution u(t, x).

Theorem 4.4. Let 0 < a < % Then, for the solution of boundary value problem
(4.3), we have the following coercive stability inequality

HuttHC([O’T}’Cﬂ’?a(R)) + |‘U||C([0,T]7é2a+2(ﬂg)) < M(a) Hf”c([o,T},é'?a(R)) :
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The proof of Theorem 4.4 is based on Theorem 3.2 on the structure of the frac-
tional spaces Eq = E,(C (R), A%), Theorem 3.1 on the positivity of the operator
A®, Theorem 4.2 on the structure of the fractional space E!, = E,(E, A'/?) and
on the following theorem on coercive stability of the nonlocal boundary value

problem for the abstract elliptic equation.

Theorem 4.5. [12] Let f € C([0,T],E.), 0 < a < 1. Then, for the solution of
the nonlocal boundary value problem

—u" + Au(t) = f(t),0 < t < T,u(0) = u(T),u (0) = /(T (4.4)
in a Banach space E with positive operator A, the coercive inequality

M

Hu/,HC([O,T],E&) + ||AU||C([0,T],E&) < 04(17

— ) I leqo.r, 22

holds.
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