

FRACTIONAL SPACES GENERATED BY THE SECOND ORDER DIFFERENTIAL OPERATOR WITH PERIODIC CONDITIONS

ALLABEREN ASHYRALYEV, FATIH SABAHAHATTIN TETIKOGLU, AND YAŞAR SÖZEN

Abstract. In this study, we consider the second-order differential operator A^x defined by

$$A^x u = -(a(x)u_x(x))_x + \sigma u(x), \sigma \geq 0, x \in \mathbb{R},$$

with domain

$$D(A^x) = \left\{ u : u, u'' \in C(\mathbb{R}), u(x) = u(x + 2\pi), x \in \mathbb{R}, \int_0^{2\pi} u(x) dx = 0 \right\}.$$

Estimates for the Green's function are obtained. It is proved that for any $\alpha \in (0, \frac{1}{2})$, the norms in the spaces $E_\alpha = E_\alpha(\mathring{C}(\mathbb{R}), A^x)$ and $\mathring{C}^{2\alpha}(\mathbb{R})$ are equivalent. The positivity of the operator A^x in Hölder spaces $\mathring{C}^{2\alpha}(\mathbb{R})$, $\alpha \in (0, \frac{1}{2})$, is proved. As an application, theorems on well-posedness of local and nonlocal boundary value problems for elliptic equations in Hölder spaces are established.

1. Introduction

The role played by positivity of differential and difference operators in a Banach space in the study of various properties of boundary value problems for partial differential equations, of stability of difference schemes for partial differential equations and of summation Fourier series is well-known (see [1, 8, 11, 20, 22, 23, 24, 27, 28, 31] and the references therein). The positivity of a wider class of differential and difference operators with local boundary conditions in Banach spaces has been studied by many researchers (see [2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 21, 25, 26, 29, 30] and the references therein).

Let E be a Banach space and $A : D(A) \subset E \rightarrow E$ be a linear unbounded operator densely defined in E . A is called a positive operator in the Banach space if the operator $(\lambda I + A)$ has a bounded inverse in E and for any $\lambda \geq 0$, the following estimate holds [11]:

$$\|(\lambda I + A)^{-1}\|_{E \rightarrow E} \leq \frac{M}{\lambda + 1}.$$

2010 *Mathematics Subject Classification.* Primary 35J08; Secondary 35J58, 47B65.

Key words and phrases. Positivity of differential operators, Periodic boundary conditions, Boundary value problems, Green's function.

Throughout the present paper, M denotes positive constants, which may differ in time and thus is not a subject of precision. However, we will use $M(\alpha, \beta, \dots)$ to stress the fact that the constant depends only on α, β, \dots

For a positive operator A in the Banach space E , let us introduce the fractional spaces $E_\alpha = E_\alpha(E, A)$, $(0 < \alpha < 1)$ consisting of those $v \in E$ for which the norm

$$\|v\|_{E_\alpha} = \sup_{\lambda > 0} \lambda^\alpha \|A(\lambda I + A)^{-1}v\|_E + \|v\|_E$$

is finite.

Let us introduce the Banach space $C^\beta(\mathbb{R})$, $\beta \in (0, \frac{1}{2})$ of all continuous 2π periodic functions $\varphi(x)$ defined on \mathbb{R} and satisfying a Hölder condition for which the following norm is finite

$$\|\varphi\|_{C^\beta(\mathbb{R})} = \|\varphi\|_{\dot{C}(\mathbb{R})} + \sup_{x, x+\tau \in [0, 2\pi], \tau \neq 0} \frac{|\varphi(x+\tau) - \varphi(x)|}{|\tau|^\beta},$$

where $\dot{C}(\mathbb{R})$ is the Banach space of all continuous 2π periodic functions $\varphi(x)$ defined on \mathbb{R} with the norm

$$\|\varphi\|_{\dot{C}(\mathbb{R})} = \max_{x \in [0, 2\pi]} |\varphi(x)|.$$

In paper [28], a new method of summations of Fourier series converging in

$$\dot{C}(\mathbb{R}) = \left\{ \varphi(x) \in C(\mathbb{R}) : \varphi(x) = \varphi(x + 2\pi), x \in \mathbb{R}, \int_0^{2\pi} \varphi(x) dx = 0 \right\}$$

is presented. It is based on the following result on the positivity of the differential operator A^x defined by the formula

$$A^x u = -u_{xx}(x) + \sigma u(x), \sigma \geq 0 \quad (1.1)$$

with domain

$$D(A^x) = \left\{ u : u(x), u''(x) \in C(\mathbb{R}), u(x) = u(x + 2\pi), x \in \mathbb{R}, \int_0^{2\pi} u(x) dx = 0 \right\}.$$

Theorem 1.1. [28] *The operator $(A^x + \lambda)$ has a bounded in $\dot{C}(\mathbb{R})$ inverse for $\sigma = 0$, $\lambda \geq 0$ and the following estimate holds:*

$$\|(A^x + \lambda I)^{-1}\|_{\dot{C}(\mathbb{R}) \rightarrow \dot{C}(\mathbb{R})} \leq \frac{1 + 16\pi^2}{1 + \lambda}. \quad (1.2)$$

The positivity of differential and difference operators with nonlocal boundary conditions in Banach spaces and its applications have not been studied well.

In the present paper, we consider the differential operator A^x defined by the formula

$$A^x u(x) = -(a(x)u_x(x))_x + \sigma u(x), \sigma > 0, x \in \mathbb{R} \quad (1.3)$$

with domain

$$D(A^x) = \left\{ u : u, u'' \in C(\mathbb{R}), u(x) = u(x + 2\pi), x \in \mathbb{R}, \int_0^{2\pi} u(x) dx = 0 \right\}.$$

Assume that $a(x) = a(x + 2\pi)$, $x \in \mathbb{R}$ and $a(x) \geq a > 0$ is a continuously differentiable function defined on \mathbb{R} . We will be interested in obtaining the resolvent of the operator A^x , i.e., in solving the resolvent equation

$$A^x u(x) + \lambda u(x) = \varphi(x), x \in \mathbb{R}, \quad (1.4)$$

where $\int_0^{2\pi} \varphi(x) dx = 0$.

Note that in general A^x is not self-adjoint. However, under the condition $\int_0^{2\pi} \varphi(x) dx = 0$ it follows A^x is self-adjoint. Actually, under this condition and the definition of $D(A^x)$, we have $\int_0^{2\pi} A^x u(x) dx = 0$. That means conditions $\int_0^{2\pi} u(x) dx = 0$ and $\int_0^{2\pi} A^x u(x) dx = 0$ are equivalent.

Note that equation (1.4) can be written in the following boundary value problem

$$\begin{cases} -(a(x)u_x(x))_x + (\sigma + \lambda)u(x) = \varphi(x), x \in \mathbb{R}, \\ u(x) = u(x + 2\pi), \int_0^{2\pi} u(s) ds = 0, x \in \mathbb{R} \end{cases} \quad (1.5)$$

for the second order differential equation with periodic conditions.

The Green function of A^x is constructed. The estimates for the Green function are obtained. It is proved that for any $\alpha \in (0, \frac{1}{2})$, the norms in the spaces $E_\alpha = E_\alpha(\dot{C}(\mathbb{R}), A^x)$ and $\dot{C}^{2\alpha}(\mathbb{R})$ are equivalent. Here, $\dot{C}^{2\alpha}(\mathbb{R})$ is the subspace of $C^{2\alpha}(\mathbb{R})$ such that $\int_0^{2\pi} \varphi(x) dx = 0$. The positivity of the operator A^x in the Hölder spaces $\dot{C}^{2\alpha}(\mathbb{R})$, $\alpha \in (0, \frac{1}{2})$ is proved. In the applications, theorems well-posedness of local and nonlocal boundary value problems for elliptic equations in Hölder spaces are obtained.

2. The Green's function of the second order differential operator with periodic conditions

Assume that $G^x(x, y; \lambda)$ is the fundamental solution of (1.4). Then,

$$u(x) = \int_0^{2\pi} G^x(x, y; \lambda) \varphi(y) dy, x \in \mathbb{R}. \quad (2.1)$$

It is well-known that $G^x(x, y; \lambda)$ is defined as the solution of (1.4) for the special right-hand case

$$\delta(x, y) = \begin{cases} \infty, & x = y, \\ 0, & x \neq y. \end{cases} \quad (2.2)$$

Therefore,

$$G^x(x, y; \lambda) = \int_0^{2\pi} G^x(x, z; \lambda) \delta(z, y) dz. \quad (2.3)$$

Lemma 2.1. *For any $x_0 \in \mathbb{R}$, the following formula for $G^x(x, y; \lambda)$ holds*

$$G^x(x, y; \lambda) = G^{x_0}(x, y; \lambda) + \int_0^{2\pi} G^x(x, z; \lambda) (A^{x_0} - A^z) G^{x_0}(z, y; \lambda) dz, x, y \in \mathbb{R}, \quad (2.4)$$

where $G^{x_0}(x, y; \lambda)$ is the fundamental solution of resolvent equation with constant coefficient $a(x_0)$

$$A^{x_0}u(x) + \lambda u(x) = \varphi(x), x \in \mathbb{R}. \quad (2.5)$$

Proof. It is easy to see that (1.4) is equivalent to the following equation

$$A^{x_0}u(x) + \lambda u(x) = \psi(x),$$

where

$$\psi(x) = (A^{x_0} - A^x) u(x) + \varphi(x). \quad (2.6)$$

Thus, using the definition of Green's function and formula (2.1), we can write

$$\begin{aligned} u(x) &= \int_0^{2\pi} G^x(x, y; \lambda) \psi(y) dy \\ &= \int_0^{2\pi} G^x(x, y; \lambda) \varphi(y) dy + \int_0^{2\pi} G^x(x, y; \lambda) (A^y - A^{x_0}) \int_0^{2\pi} G^{x_0}(y, z; \lambda) \varphi(z) dz dy \\ &= \int_0^{2\pi} \left[G^x(x, y; \lambda) + \int_0^{2\pi} G^x(x, z; \lambda) (A^z - A^{x_0}) G^{x_0}(z, y; \lambda) dz \right] \varphi(y) dy. \end{aligned}$$

Using formula (2.1), we obtain

$$\begin{aligned} \int_0^{2\pi} G^{x_0}(x, y; \lambda) \varphi(y) dy &= \int_0^{2\pi} [G^x(x, y; \lambda) \\ &\quad + \int_0^{2\pi} G^x(x, z; \lambda) (A^z - A^{x_0}) G^{x_0}(z, y; \lambda) dz] \varphi(y) dy. \end{aligned}$$

This equation holds for any function $\varphi(x) \in C(\mathbb{R})$. Hence,

$$G^{x_0}(x, y; \lambda) = G^x(x, y; \lambda) + \int_0^{2\pi} G^x(x, z; \lambda) (A^z - A^{x_0}) G^{x_0}(z, y; \lambda) dz, x, y \in \mathbb{R}$$

or

$$G^x(x, y; \lambda) = G^{x_0}(x, y; \lambda) + \int_0^{2\pi} G^x(x, z; \lambda) (A^{x_0} - A^z) G^{x_0}(z, y; \lambda) dz, x, y \in \mathbb{R}.$$

Lemma 2.1 is proved. □

We note that

$$(A^{x_0} - A^z) G^{x_0}(z, y; \lambda) = \frac{a(x_0) - a(z)}{a(x_0)} (A^{x_0} - \sigma I) G^{x_0}(z, y; \lambda). \quad (2.7)$$

Applying (2.2), we get

$$\lambda G^{x_0}(z, y; \lambda) + A^{x_0} G^{x_0}(z, y; \lambda) = \delta(z, y).$$

Then

$$(A^{x_0} - A^z) G^{x_0}(z, y; \lambda) = \frac{a(x_0) - a(z)}{a(x_0)} \{-(\sigma + \lambda) G^{x_0}(z, y; \lambda) + \delta(z, y)\}. \quad (2.8)$$

Applying (2.4) and (2.8), we get

$$\begin{aligned} G^x(x, y; \lambda) &= G^{x_0}(x, y; \lambda) \\ &+ \int_0^{2\pi} G^x(x, z; \lambda) \frac{a(x_0) - a(z)}{a(x_0)} \{-(\sigma + \lambda) G^{x_0}(z, y; \lambda) + \delta(z, y)\} dz. \end{aligned} \quad (2.9)$$

We note that (2.9) holds for any $x, y, x_0 \in \mathbb{R}$ and this identity can be considered as an equation for the unknown function $G(x, y; \lambda)$.

It can be written as the operator equation

$$G^x(x, y; \lambda) = G^{x_0}(x, y; \lambda) + K(x_0, \lambda) G^x(x, y; \lambda). \quad (2.10)$$

Here, $K(x_0, \lambda)$ is a linear operator defined by the formula

$$\begin{aligned} K(x_0, \lambda) G^x(x, y; \lambda) &= \\ &= \int_0^{2\pi} G^x(x, z; \lambda) \frac{a(x_0) - a(z)}{a(x_0)} \{-(\sigma + \lambda) G^{x_0}(z, y; \lambda) + \delta(z, y)\} dz. \end{aligned}$$

We will study operator $K(x_0, \lambda)$ in some space where it is contraction. Then, there exists a unique solution of this operator equation and norm of $G^x(x, y; \lambda)$ is estimated by norm of $G^{x_0}(x, y; \lambda)$ in this space (Theorem 2.1, Lemma 2.2).

Putting $y = x_0$ in (2.9), we get

$$\begin{aligned} G^x(x, x_0; \lambda) &= G^{x_0}(x, x_0; \lambda) \\ &+ \int_0^{2\pi} G^x(x, z; \lambda) \frac{a(x_0) - a(z)}{a(x_0)} \{-(\sigma + \lambda) G^{x_0}(z, x_0; \lambda) + \delta(z, x_0)\} dz. \end{aligned}$$

or

$$\begin{aligned} G^x(x, x_0; \lambda) &= G^{x_0}(x, x_0; \lambda) \\ &+ \int_0^{2\pi} G^x(x, z; \lambda) \frac{a(x_0) - a(z)}{a(x_0)} \{-(\sigma + \lambda) G^{x_0}(z, x_0; \lambda) + \delta(z, x_0)\} dz. \end{aligned} \quad (2.11)$$

Putting $x_0 = y$ in (2.11), we get

$$G^x(x, y; \lambda) = G^y(x, y; \lambda) - (\sigma + \lambda) \int_0^{2\pi} G^x(x, z; \lambda) \frac{a(y) - a(z)}{a(y)} G^y(z, y; \lambda) dz. \quad (2.12)$$

We will prove that equation (2.12) has a unique solution in a Banach space E_1 with norm

$$|G(\cdot, \cdot; \lambda)|_1 = \sqrt{\sigma + \lambda} \max_{x, y \in [0, 2\pi]} |G(x, y; \lambda)| e^{\frac{a}{2} \sqrt{\sigma + \lambda} \gamma(x, y)}, \quad (2.13)$$

where here and throughout the article

$$\gamma(x, y) = \min \{2\pi - |x - y|, |x - y|\}.$$

Note that we have

$$\gamma(x, y) = \begin{cases} \alpha(x, y) & , y \leq x, \\ \beta(x, y) & , x \leq y, \end{cases}$$

where

$$\alpha(x, y) = \min \{2\pi - x + y, x - y\}, \beta(x, y) = \min \{2\pi + x - y, y - x\}.$$

It is easy to see that

$$\alpha(x, y) = \begin{cases} 2\pi - x + y & , 0 \leq y \leq x - \pi, \\ x - y & , x - \pi \leq y \leq x, \end{cases} \quad (2.14)$$

$$\beta(x, y) = \begin{cases} y - x & , x \leq y \leq x + \pi, \\ 2\pi + x - y & , x + \pi \leq y \leq 2\pi. \end{cases} \quad (2.15)$$

Note that we have the following pointwise estimates for $G^y(x, y; \lambda)$ and its derivative with respect to x [8]:

$$|G^y(x, y; \lambda)| \leq \frac{M(\sigma)}{\sqrt{\sigma + \lambda}} e^{-a\sqrt{\sigma + \lambda} \gamma(x, y)}, \quad (2.16)$$

$$|G_x^y(x, y; \lambda)| \leq M(\sigma) e^{-a\sqrt{\sigma + \lambda} \gamma(x, y)}. \quad (2.17)$$

Now, we consider operator equation (2.10) in E_1 .

Theorem 2.1. *The operator $K(y, \lambda)$ defined by formula*

$$K(y, \lambda)G^x(x, y; \lambda) = -(\sigma + \lambda) \int_0^{2\pi} G^x(x, z; \lambda) \frac{a(y) - a(z)}{a(y)} G^y(z, y; \lambda) dz \quad (2.18)$$

is the contractive operator in E_1 .

Proof. Let $0 \leq y \leq x, x \in [0, 2\pi]$. Then, using (2.12) and triangle inequality, we get

$$\begin{aligned} \sqrt{\sigma + \lambda} |G^x(x, y; \lambda)| e^{\frac{a}{2} \sqrt{\sigma + \lambda} \alpha(x, y)} &\leq \sqrt{\sigma + \lambda} |G^y(x, y; \lambda)| e^{\frac{a}{2} \sqrt{\sigma + \lambda} \alpha(x, y)} \\ &+ (\sigma + \lambda)^{\frac{3}{2}} \int_0^{2\pi} e^{\frac{a}{2} \sqrt{\sigma + \lambda} \alpha(x, y)} |G^x(x, z; \lambda)| \frac{|a(y) - a(z)|}{a(y)} |G^y(z, y; \lambda)| dz. \end{aligned} \quad (2.19)$$

Applying the definition of norm $|\cdot|_1$, estimate (2.16) and inequality (2.19), we get

$$\sqrt{\sigma + \lambda} |G^x(x, y; \lambda)| e^{\frac{a}{2} \sqrt{\sigma + \lambda} \alpha(x, y)} \leq M e^{-a\sqrt{\sigma + \lambda} \alpha(x, y)} e^{\frac{a}{2} \sqrt{\sigma + \lambda} \alpha(x, y)}$$

$$+ M_1 (\sigma + \lambda)^{\frac{3}{2}} \int_0^y e^{\frac{a}{2} \sqrt{\sigma + \lambda} \alpha(x, y)} |G^x(x, z; \lambda)| (y - z) |G^y(z, y; \lambda)| dz$$

$$\begin{aligned}
& + M_1(\sigma + \lambda)^{\frac{3}{2}} \int_y^x e^{\frac{a}{2}\sqrt{\sigma+\lambda}\alpha(x,y)} |G^x(x,z;\lambda)| (z-y) |G^y(z,y;\lambda)| dz \\
& + M_1(\sigma + \lambda)^{\frac{3}{2}} \int_x^{2\pi} e^{\frac{a}{2}\sqrt{\sigma+\lambda}\alpha(x,y)} |G^x(x,z;\lambda)| (z-y) |G^y(z,y;\lambda)| dz \\
& \leq M e^{-\frac{a}{2}\sqrt{\sigma+\lambda}\alpha(x,y)} + M_1(\sigma) B(x,y,\lambda) |G(\cdot,\cdot;\lambda)|_1,
\end{aligned}$$

where

$$\begin{aligned}
B(x,y,\lambda) &= (\sigma + \lambda)^{\frac{1}{2}} \int_0^y e^{\frac{a}{2}\sqrt{\sigma+\lambda}\alpha(x,y)} e^{-\frac{a}{2}\sqrt{\sigma+\lambda}\alpha(x,z)} (y-z) e^{-a\sqrt{\sigma+\lambda}\beta(z,y)} dz \\
& + (\sigma + \lambda)^{\frac{1}{2}} \int_y^x e^{\frac{a}{2}\sqrt{\sigma+\lambda}\alpha(x,y)} e^{-\frac{a}{2}\sqrt{\sigma+\lambda}\alpha(x,z)} (z-y) e^{-a\sqrt{\sigma+\lambda}\alpha(z,y)} dz \\
& + (\sigma + \lambda)^{\frac{1}{2}} \int_x^{2\pi} e^{\frac{a}{2}\sqrt{\sigma+\lambda}\alpha(x,y)} e^{-\frac{a}{2}\sqrt{\sigma+\lambda}\beta(x,z)} (z-y) e^{-a\sqrt{\sigma+\lambda}\alpha(z,y)} dz \\
& = B_1(x,y,\lambda) + B_2(x,y,\lambda) + B_3(x,y,\lambda).
\end{aligned}$$

We will prove that

$$B_k(x,y,\lambda) \leq M(a,\sigma,\lambda), k = 1, 2, 3, \quad (2.20)$$

where

$$M(a,\sigma,\lambda) \rightarrow 0 \text{ when } \sigma \rightarrow \infty. \quad (2.21)$$

First, we estimate $B_1(x,y,\lambda)$. From identities (2.14), (2.15) and the fact that $y \leq x$ it follows for $0 \leq z \leq y$ that

$$2\beta(z,y) + \alpha(x,z) - \alpha(x,y) = 2(y-z) + (x-z) - (x-y) = 3(y-z) \quad (2.22)$$

Using (2.22), we can write

$$B_1(x,y,\lambda) = (\sigma + \lambda)^{\frac{1}{2}} \int_0^y e^{-\frac{a}{2}\sqrt{(\sigma+\lambda)}3(y-z)} (y-z) dz.$$

The substitution $p = \frac{a}{2}\sqrt{\sigma+\lambda}3(y-z)$ yields

$$B_1(x,y,\lambda) \leq \frac{9}{a^2\sqrt{\sigma+\lambda}}. \quad (2.23)$$

Applying (2.23), we get

$$B_1(x,y,\lambda) \leq \frac{M_1(a)}{\sqrt{\sigma+\lambda}}. \quad (2.24)$$

Thus, estimate (2.20) for $k = 1$ follows from estimate (2.24).

Next, we estimate $B_2(x,y,\lambda)$. By identity (2.14) and the fact that $y \leq x$, we have for $y \leq z \leq x$ that

$$2\alpha(z,y) + \alpha(x,z) - \alpha(x,y) = 2(z-y) + (x-z) - (x-y) = z-y. \quad (2.25)$$

Then, using (2.25), we can write

$$B_2(x, y, \lambda) = (\sigma + \lambda)^{\frac{1}{2}} \int_y^x e^{-\frac{a}{2}\sqrt{\sigma+\lambda}(z-y)} (z-y) dz.$$

By the substitution $p = \frac{a}{2}\sqrt{\sigma+\lambda} (z-y)$, we have

$$B_2(x, y, \lambda) \leq \frac{4}{a^2\sqrt{\sigma+\lambda}}.$$

Applying this estimate, we get

$$B_2(x, y, \lambda) \leq \frac{M_1(a)}{\sqrt{\sigma+\lambda}}. \quad (2.26)$$

Hence, estimate (2.20) for $k = 2$ follows from estimate (2.26).

Finally, let us estimate $B_3(x, y, \lambda)$. The fact $y \leq x$ and identities (2.14), (2.15) yield

$$2\alpha(z, y) + \beta(x, z) - \alpha(x, y) = 2(z-y) + (z-x) - (x-y) = 3z - y - 2x.$$

From this it follows

$$\begin{aligned} B_3(x, y, \lambda) &= (\sigma + \lambda)^{\frac{1}{2}} \int_x^{2\pi} e^{-\frac{a}{2}\sqrt{\sigma+\lambda}(3z-y-2x)} (z-y) dz \\ &\leq (\sigma + \lambda)^{\frac{1}{2}} \int_x^{2\pi} e^{-\frac{a}{2}\sqrt{\sigma+\lambda}(z-y)} (z-y) dz, \end{aligned}$$

where the last estimate uses the fact $x \leq z \leq 2\pi$.

Using the substitution $p = \frac{a}{2}\sqrt{\sigma+\lambda} (z-y)$, we obtain

$$B_3(x, y, \lambda) \leq \frac{M_1(a)}{\sqrt{\sigma+\lambda}}. \quad (2.27)$$

Therefore, estimate (2.20) for $k = 3$ follows from estimate (2.27).

Now, let us assume that $x \leq y \leq 2\pi$, $x \in [0, 2\pi]$. Then, using (2.12) and triangle inequality, we get

$$\begin{aligned} \sqrt{\sigma+\lambda} |G^x(x, y; \lambda)| e^{\frac{a}{2}\sqrt{\sigma+\lambda}\beta(x, y)} &\leq \sqrt{\sigma+\lambda} |G^y(x, y; \lambda)| e^{\frac{a}{2}\sqrt{\sigma+\lambda}\beta(x, y)} \\ &+ (\sigma + \lambda)^{\frac{3}{2}} \int_0^{2\pi} e^{\frac{a}{2}\sqrt{\sigma+\lambda}\beta(x, y)} |G^x(x, z; \lambda)| \frac{|a(y) - a(z)|}{a(y)} |G^y(z, y; \lambda)| dz. \end{aligned} \quad (2.28)$$

Applying the definition of norm $|\cdot|_1$, estimate (2.16) and inequality (2.28), we get

$$\begin{aligned} \sqrt{\sigma+\lambda} |G^x(x, y; \lambda)| e^{\frac{a}{2}\sqrt{\sigma+\lambda}\beta(x, y)} &\leq M e^{-a\sqrt{\sigma+\lambda}\beta(x, y)} e^{\frac{a}{2}\sqrt{\sigma+\lambda}\beta(x, y)} \\ &+ M_1(\sigma + \lambda)^{\frac{3}{2}} \int_0^x e^{\frac{a}{2}\sqrt{\sigma+\lambda}\beta(x, y)} |G^x(x, z; \lambda)| (y-z) |G^y(z, y; \lambda)| dz \end{aligned}$$

$$\begin{aligned}
& + M_1(\sigma + \lambda)^{\frac{3}{2}} \int_x^y e^{\frac{a}{2}\sqrt{\sigma+\lambda}\beta(x,y)} |G^x(x,z;\lambda)| (z-y) |G^y(z,y;\lambda)| dz \\
& + M_1(\sigma + \lambda)^{\frac{3}{2}} \int_y^{2\pi} e^{\frac{a}{2}\sqrt{\sigma+\lambda}\beta(x,y)} |G^x(x,z;\lambda)| (z-y) |G^y(z,y;\lambda)| dz \\
& \leq M e^{-\frac{a}{2}\sqrt{\sigma+\lambda}\beta(x,y)} + M_1(\sigma) D(x,y,\lambda) |G(\cdot,\cdot;\lambda)|_1,
\end{aligned}$$

where

$$\begin{aligned}
D(x,y,\lambda) &= (\sigma + \lambda)^{\frac{1}{2}} \int_0^x e^{\frac{a}{2}\sqrt{\sigma+\lambda}\beta(x,y)} e^{-\frac{a}{2}\sqrt{\sigma+\lambda}\alpha(x,z)} (y-z) e^{-a\sqrt{\sigma+\lambda}\beta(z,y)} dz \\
& + (\sigma + \lambda)^{\frac{1}{2}} \int_x^y e^{\frac{a}{2}\sqrt{\sigma+\lambda}\beta(x,y)} e^{-\frac{a}{2}\sqrt{\sigma+\lambda}\beta(x,z)} (y-z) e^{-a\sqrt{\sigma+\lambda}\beta(z,y)} dz \\
& + (\sigma + \lambda)^{\frac{1}{2}} \int_y^{2\pi} e^{\frac{a}{2}\sqrt{\sigma+\lambda}\beta(x,y)} e^{-\frac{a}{2}\sqrt{\sigma+\lambda}\beta(x,z)} (z-y) e^{-a\sqrt{\sigma+\lambda}\alpha(z,y)} dz \\
& = D_1(x,y,\lambda) + D_2(x,y,\lambda) + D_3(x,y,\lambda).
\end{aligned}$$

We will prove that

$$D_k(x,y,\lambda) \leq M(a,\sigma,\lambda), k = 1, 2, 3, \quad (2.29)$$

where

$$M(a,\sigma,\lambda) \rightarrow 0 \text{ when } \sigma \rightarrow \infty. \quad (2.30)$$

We first estimate $D_1(x,y,\lambda)$. Using identities (2.14), (2.15) and the fact that $x \leq y$, we have

$$2\beta(z,y) + \alpha(x,z) - \beta(x,y) = 2(y-z) + (x-z) - (y-x) = 2x + y - 3z.$$

This results

$$\begin{aligned}
D_1(x,y,\lambda) &= (\sigma + \lambda)^{\frac{1}{2}} \int_0^x e^{-\frac{a}{2}\sqrt{\sigma+\lambda}(2x+y-3z)} (y-z) dz \\
&\leq (\sigma + \lambda)^{\frac{1}{2}} \int_0^x e^{-\frac{a}{2}\sqrt{\sigma+\lambda}(y-z)} (y-z) dz,
\end{aligned}$$

where the last estimate follows from fact that $0 \leq z \leq x$.

Using the substitution $p = \frac{a}{2}\sqrt{\sigma+\lambda}(y-z)$, we get

$$D_1(x,y,\lambda) \leq \frac{M(a)}{\sqrt{\sigma+\lambda}}. \quad (2.31)$$

Estimate (2.29) for $k = 1$ follows from estimate (2.31).

Next, we estimate $D_2(x,y,\lambda)$. Identity (2.15) and the fact that $x \leq y$ yield

$$2\beta(z,y) + \beta(x,z) - \beta(x,y) = 2(y-z) + (z-x) - (y-x) = y - z.$$

Thus, we can write

$$D_2(x, y, \lambda) = (\sigma + \lambda)^{\frac{1}{2}} \int_x^y e^{-\frac{a}{2}\sqrt{\sigma+\lambda}(y-z)}(y-z)dz.$$

The substitution $p = \frac{a}{2}\sqrt{\sigma+\lambda}(y-z)$ yields

$$D_2(x, y, \lambda) \leq \frac{M(a)}{\sqrt{\sigma+\lambda}}. \quad (2.32)$$

Estimate (2.29) for $k = 2$ follows from estimate (2.32).

Finally, let us estimate $D_3(x, y, \lambda)$. From identities (2.14), (2.15) and the fact that $x \leq y$ it follows that

$$2\alpha(z, y) + \beta(x, z) - \beta(x, y) = 2(z - y) + (z - x) - (y - x) = 3(z - y).$$

Using this, we have

$$\begin{aligned} D_3(x, y, \lambda) &= (\sigma + \lambda)^{\frac{1}{2}} \int_y^{2\pi} e^{-\frac{a}{2}\sqrt{\sigma+\lambda}3(z-y)}(z-y)dz \\ &\leq (\sigma + \lambda)^{\frac{1}{2}} \int_y^{2\pi} e^{-\frac{a}{2}\sqrt{\sigma+\lambda}(z-y)}(z-y)dz. \end{aligned}$$

By using the substitution $p = \frac{a}{2}\sqrt{\sigma+\lambda}(y-z)$, we obtain

$$D_3(x, y, \lambda) \leq \frac{M(a)}{\sqrt{\sigma+\lambda}}. \quad (2.33)$$

Estimate (2.29) for $k = 3$ follows from estimate (2.33).

Applying the triangle inequality and estimates (2.20) and (2.29), we can write

$$|K(\cdot, \lambda)G(\cdot, \cdot; \lambda)|_1 \leq \frac{M_1(a)}{\sqrt{\sigma+\lambda}} |G(\cdot, \cdot; \lambda)|_1, \quad (2.34)$$

$$|G(\cdot, \cdot; \lambda)|_1 \leq M_2(a) + \frac{M_1(a)}{\sqrt{\sigma+\lambda}} |G(\cdot, \cdot; \lambda)|_1. \quad (2.35)$$

From (2.34) it follows that for sufficiently large σ the operator $K(y, \lambda)$ defined by formula (2.18) is the contractive operator in E_1 . Moreover, using estimate (2.35), we can get

$$|G(\cdot, \cdot; \lambda)|_1 \leq M_3(a, \sigma), \quad (2.36)$$

where $M_3(a, \sigma) = \frac{M_2(a)}{1 - \frac{M_1(a)}{\sqrt{\sigma}}}$. □

By estimate (2.36), we have the following pointwise estimate for $G^x(x, y; \lambda)$.

Lemma 2.2 (Pointwise estimate for the Green function). *For sufficiently large σ and $\lambda \geq 0$, the following estimate holds:*

$$|G^x(x, y; \lambda)| \leq \frac{M(a, \sigma)}{\sqrt{\sigma+\lambda}} e^{-a\sqrt{\sigma+\lambda}\gamma(x, y)} \quad (2.37)$$

□

In a similar manner, one can obtain the following pointwise estimate for derivative of $G^x(x, y; \lambda)$ with respect to x .

Lemma 2.3 (Pointwise estimate for derivative of the Green function). *For sufficiently large σ and $\lambda \geq 0$, the following estimate*

$$|G_x^x(x, y; \lambda)| \leq M(a, \sigma) e^{-a\sqrt{\sigma+\lambda}\gamma(x, y)}. \quad (2.38)$$

is valid. \square

3. Structure of fractional spaces generated by the second order differential operator with periodic conditions

We will study the positivity of A^x in $\mathring{C}(\mathbb{R})$.

Theorem 3.1. *For sufficiently large σ and $\lambda \geq 0$, the operator $(A^x + \lambda I)$ has a bounded inverse in $\mathring{C}(\mathbb{R})$ and the following estimate holds:*

$$\|(A^x + \lambda I)^{-1}\|_{\mathring{C}(\mathbb{R}) \rightarrow \mathring{C}(\mathbb{R})} \leq \frac{M_1(a, \sigma)}{\sigma + \lambda}. \quad (3.1)$$

Proof. Applying formula (2.1), the triangle inequality and estimate (2.37), we can write

$$\begin{aligned} |u(x)| &\leq \frac{M(a, \sigma)}{\sqrt{\sigma + \lambda}} \left[\int_0^{x-\pi} e^{-a\sqrt{\sigma+\lambda}(2\pi-x+y)} dy + \int_{x-\pi}^{x+\pi} e^{-a\sqrt{\sigma+\lambda}|x-y|} dy \right. \\ &\quad \left. + \int_{x+\pi}^{2\pi} e^{-a\sqrt{\sigma+\lambda}(2\pi+x-y)} dy \right] \max_{0 \leq y \leq 2\pi} |\varphi(y)| \leq \frac{M_1(a, \sigma)}{\sigma + \lambda} \|\varphi\|_{\mathring{C}(\mathbb{R}^1)} \end{aligned}$$

for any $x \in \mathbb{R}^1$. Therefore,

$$\|u\|_{\mathring{C}(\mathbb{R}^1)} \leq \frac{M_1(a, \sigma)}{\sigma + \lambda} \|\varphi\|_{\mathring{C}(\mathbb{R}^1)}.$$

From that it follows estimate (3.1). Theorem 3.1 is proved. \square

Clearly, the operator A^x and its resolvent $(A^x + \lambda I)^{-1}$ commute. By the definition of the norm in the fractional space $E_\alpha = E_\alpha(\mathring{C}(\mathbb{R}), A^x)$, we get

$$\|(A^x + \lambda I)^{-1}\|_{E_\alpha \rightarrow E_\alpha} \leq \|(A^x + \lambda I)^{-1}\|_{\mathring{C}(\mathbb{R}) \rightarrow \mathring{C}(\mathbb{R})}.$$

Thus, from Theorem 3.1 it follows that A^x is a positive operator in the fractional spaces $E_\alpha(\mathring{C}(\mathbb{R}), A^x)$. Moreover, we have the following result.

Theorem 3.2. *For $\alpha \in (0, \frac{1}{2})$, the norms of the spaces $E_\alpha(\mathring{C}(\mathbb{R}), A^x)$ and the Hölder space $\mathring{C}^{2\alpha}(\mathbb{R})$ are equivalent.*

Proof. For any $\lambda \geq 0$, we have the obvious equality

$$A^x(A^x + \lambda I)^{-1}\varphi(x) = \varphi(x) - \lambda(A^x + \lambda I)^{-1}\varphi(x).$$

By formulas (1.4) and (2.1), we can write

$$\begin{aligned} A^x (A^x + \lambda I)^{-1} \varphi(x) &= \frac{\sigma}{\sigma + \lambda} \varphi(x) + \lambda \int_0^{2\pi} G^x(x, s; \lambda) (\varphi(x) - \varphi(s)) ds \\ &+ \lambda \int_0^{2\pi} [G^s(x, s; \lambda) - G^x(x, s; \lambda)] ds \varphi(x). \end{aligned} \quad (3.2)$$

Then,

$$\begin{aligned} &\lambda^\alpha A^x (A^x + \lambda I)^{-1} \varphi(x) \\ &= \frac{\sigma \lambda^\alpha}{\sigma + \lambda} \varphi(x) + \lambda^{\alpha+1} \int_0^{2\pi} G^x(x, s; \lambda) (\varphi(x) - \varphi(s)) ds \\ &+ \lambda^{\alpha+1} \int_0^{2\pi} [G^s(x, s; \lambda) - G^x(x, s; \lambda)] ds \varphi(x) = P_1(x) + P_2(x) + P_3(x), \end{aligned}$$

where

$$\begin{aligned} P_1(x) &= \frac{\sigma \lambda^\alpha}{\sigma + \lambda} \varphi(x), \quad P_2(x) = \lambda^{\alpha+1} \int_0^{2\pi} G^x(x, s; \lambda) (\varphi(x) - \varphi(s)) ds, \\ P_3(x) &= \lambda^{\alpha+1} \int_0^{2\pi} [G^s(x, s; \lambda) - G^x(x, s; \lambda)] ds \varphi(x). \end{aligned}$$

Let us estimate $P_k(x)$, $k = 1, 2, 3$ in $\mathring{C}(\mathbb{R})$ norm. First, we will estimate $P_1(x)$ in $\mathring{C}(\mathbb{R})$ norm. Using the definition of the norm of space $\mathring{C}^{2\alpha}(\mathbb{R})$ and $\frac{\lambda^\alpha \sigma^{1-\alpha}}{\sigma + \lambda} \leq 1$, we can write

$$|P_1(x)| \leq \sigma^\alpha \|\varphi\|_{\mathring{C}^{2\alpha}(\mathbb{R})}$$

for any $x \in [0, 2\pi]$. Then,

$$\|P_1\|_{\mathring{C}(\mathbb{R})} \leq \sigma^\alpha \|\varphi\|_{\mathring{C}^{2\alpha}(\mathbb{R})}. \quad (3.3)$$

Next, we will estimate $P_2(x)$ in $\mathring{C}(\mathbb{R})$ norm. Using estimate (2.37), we get

$$\begin{aligned} |P_2(x)| &\leq \frac{M(a, \sigma) \lambda^{\alpha+1}}{\sqrt{\sigma + \lambda}} \left(\int_0^{x-\pi} e^{-a\sqrt{\sigma+\lambda}(2\pi-x+s)} |\varphi(x) - \varphi(s)| ds \right. \\ &+ \int_{x-\pi}^x e^{-a\sqrt{\sigma+\lambda}(x-s)} |\varphi(x) - \varphi(s)| ds + \int_x^{x+\pi} e^{-a\sqrt{\sigma+\lambda}(s-x)} |\varphi(x) - \varphi(s)| ds \\ &\left. + \int_{x+\pi}^{2\pi} e^{-a\sqrt{\sigma+\lambda}(2\pi+x-s)} |\varphi(x) - \varphi(s)| ds \right) = P_{21}(x) + P_{22}(x) + P_{23}(x) + P_{24}(x), \end{aligned}$$

where

$$\begin{aligned}
 P_{21}(x) &= \frac{M(a, \sigma) \lambda^{\alpha+1}}{\sqrt{\sigma + \lambda}} \int_0^{x-\pi} e^{-a\sqrt{\sigma+\lambda}(2\pi-x+s)} |\varphi(x) - \varphi(s)| ds, \\
 P_{22}(x) &= \frac{M(a, \sigma) \lambda^{\alpha+1}}{\sqrt{\sigma + \lambda}} \int_{x-\pi}^x e^{-a\sqrt{\sigma+\lambda}(x-s)} |\varphi(x) - \varphi(s)| ds, \\
 P_{23}(x) &= \frac{M(a, \sigma) \lambda^{\alpha+1}}{\sqrt{\sigma + \lambda}} \int_x^{x+\pi} e^{-a\sqrt{\sigma+\lambda}(s-x)} |\varphi(x) - \varphi(s)| ds, \\
 P_{24}(x) &= \frac{M(a, \sigma) \lambda^{\alpha+1}}{\sqrt{\sigma + \lambda}} \int_{x+\pi}^{2\pi} e^{-a\sqrt{\sigma+\lambda}(2\pi+x-s)} |\varphi(x) - \varphi(s)| ds.
 \end{aligned}$$

Using the condition $\varphi(s) = \varphi(s+2\pi)$, the definition of the norm of space $\mathring{C}^{2\alpha}(\mathbb{R})$ and the definition of Gamma function, we have

$$P_{21}(x) \leq \|\varphi\|_{\mathring{C}^{2\alpha}(\mathbb{R})} \frac{M_1(a, \sigma) \lambda^{\alpha+1}}{(\sigma + \lambda)^{\alpha+1}} \Gamma(2\alpha + 1)$$

for any $x \in [0, 2\pi]$. Then, we have

$$\max_{x \in [0, 2\pi]} P_{21}(x) \leq \|\varphi\|_{\mathring{C}^{2\alpha}(\mathbb{R})} M_1(a, \sigma) \Gamma(2\alpha + 1). \quad (3.4)$$

Let us estimate $P_{22}(x)$. From the definition of the norm of space $\mathring{C}^{2\alpha}(\mathbb{R})$ and the definition of Gamma function it follows that for each $x \in [0, 2\pi]$

$$P_{22}(x) \leq \|\varphi\|_{\mathring{C}^{2\alpha}(\mathbb{R})} \frac{M_1(a, \sigma) \lambda^{\alpha+1}}{(\sigma + \lambda)^{\alpha+1}} \Gamma(2\alpha + 1).$$

This yields

$$\max_{x \in [0, 2\pi]} P_{22}(x) \leq \|\varphi\|_{C^{2\alpha}(\mathbb{R})} M_1(a, \sigma) \Gamma(2\alpha + 1). \quad (3.5)$$

Let us estimate $P_{23}(x)$. By the definition of the norm of space $\mathring{C}^{2\alpha}(\mathbb{R})$ and the definition of Gamma function, we get

$$P_{23}(x) \leq \|\varphi\|_{\mathring{C}^{2\alpha}(\mathbb{R})} \frac{M_1(a, \sigma) \lambda^{\alpha+1}}{(\sigma + \lambda)^{\alpha+1}} \Gamma(2\alpha + 1)$$

for any $x \in [0, 2\pi]$. From this it follows that

$$\max_{x \in [0, 2\pi]} P_{23}(x) \leq \|\varphi\|_{\mathring{C}^{2\alpha}(\mathbb{R}^1)} M_1(a, \sigma) \Gamma(2\alpha + 1). \quad (3.6)$$

Using the condition $\varphi(x) = \varphi(x+2\pi)$, the definition of the norm of space $\mathring{C}^{2\alpha}(\mathbb{R})$ and the definition of Gamma function, we obtain that for any $x \in [0, 2\pi]$

$$P_{24}(x) \leq \|\varphi\|_{\mathring{C}^{2\alpha}(\mathbb{R})} \frac{M_1(a, \sigma) \lambda^{\alpha+1}}{(\sigma + \lambda)^{\alpha+1}} \Gamma(2\alpha + 1).$$

Thus, we have

$$\max_{x \in [0, 2\pi]} P_{24}(x) \leq \|\varphi\|_{\mathring{C}^{2\alpha}(\mathbb{R})} M_1(a, \sigma) \Gamma(2\alpha + 1). \quad (3.7)$$

Combining estimates (3.4)-(3.7), we obtain

$$\max_{x \in [0, 2\pi]} |P_2(x)| \leq \|\varphi\|_{\dot{C}^{2\alpha}(\mathbb{R})} M_2(a, \sigma) \Gamma(2\alpha + 1). \quad (3.8)$$

Finally, we will estimate $P_3(x)$ in $\dot{C}(\mathbb{R})$ norm. Applying formula (2.12), we get

$$P_3(x) = \lambda^{\alpha+1}(\sigma + \lambda) \int_0^{2\pi} \int_0^{2\pi} G^x(x, z; \lambda) \frac{a(s) - a(z)}{a(s)} G^s(z, s; \lambda) dz ds \varphi(x). \quad (3.9)$$

We have

$$\max_{x \in [0, 2\pi]} |P_3(x)| \leq B \max_{x \in [0, 2\pi]} |\varphi(x)|, \quad (3.10)$$

where $B = \max_{x \in [0, 2\pi]} B(x)$ and

$$B(x) = \lambda^{\alpha+1}(\sigma + \lambda) \left| \int_0^{2\pi} \int_0^{2\pi} G^x(x, z; \lambda) \frac{a(s) - a(z)}{a(s)} G^s(z, s; \lambda) dz ds \right|.$$

We will prove that

$$B(x) \leq M(a, \sigma) \quad (3.11)$$

for any $x \in [0, 2\pi]$ and $\alpha \in [0, \frac{1}{2})$. Using the triangle inequality, estimates (2.16)

and (2.37), we get

$$\begin{aligned} B(x) &\leq \lambda^{\alpha+1}(\sigma + \lambda) \int_0^{2\pi} \int_0^{2\pi} \left| G^x(x, z; \lambda) \frac{a(s) - a(z)}{a(s)} G^s(z, s; \lambda) \right| dz ds \\ &\leq \lambda^{\alpha+1}(\sigma + \lambda) \int_0^x \int_0^z |G^x(x, z; \lambda)| \frac{|a(s) - a(z)|}{a(s)} |G^s(z, s; \lambda)| ds dz \\ &\quad + \lambda^{\alpha+1}(\sigma + \lambda) \int_0^x \int_z^{2\pi} |G^x(x, z; \lambda)| \frac{|a(s) - a(z)|}{a(s)} |G^s(z, s; \lambda)| ds dz \\ &\quad + \lambda^{\alpha+1}(\sigma + \lambda) \int_x^{2\pi} \int_0^z |G^x(x, z; \lambda)| \frac{|a(s) - a(z)|}{a(s)} |G^s(z, s; \lambda)| ds dz \\ &\quad + \lambda^{\alpha+1}(\sigma + \lambda) \int_x^{2\pi} \int_z^{2\pi} |G^x(x, z; \lambda)| \frac{|a(s) - a(z)|}{a(s)} |G^s(z, s; \lambda)| ds dz \end{aligned}$$

$$\begin{aligned}
&\leq M(a, \sigma) \lambda^{\alpha+1} \int_0^x \int_0^z e^{-a\sqrt{\sigma+\lambda}\alpha(x,z)} (z-s) e^{-a\sqrt{\sigma+\lambda}\alpha(z,s)} ds dz \\
&+ M(a, \sigma) \lambda^{\alpha+1} \int_0^x \int_z^{2\pi} e^{-a\sqrt{\sigma+\lambda}\alpha(x,z)} (s-z) e^{-a\sqrt{\sigma+\lambda}\beta(z,s)} ds dz \\
&+ M(a, \sigma) \lambda^{\alpha+1} \int_x^{2\pi} \int_0^z e^{-a\sqrt{\sigma+\lambda}\beta(x,z)} (z-s) e^{-a\sqrt{\sigma+\lambda}\alpha(z,s)} ds dz \\
&+ M(a, \sigma) \lambda^{\alpha+1} \int_x^{2\pi} \int_z^{2\pi} e^{-a\sqrt{\sigma+\lambda}\beta(x,z)} (s-z) e^{-a\sqrt{\sigma+\lambda}\beta(z,s)} ds dz \\
&= B_1(x) + B_2(x) + B_3(x) + B_4(x),
\end{aligned}$$

where

$$\begin{aligned}
B_1(x) &= M(a, \sigma) \lambda^{\alpha+1} \int_0^x \int_0^z e^{-a\sqrt{\sigma+\lambda}\alpha(x,z)} (z-s) e^{-a\sqrt{\sigma+\lambda}\alpha(z,s)} ds dz, \\
B_2(x) &= M(a, \sigma) \lambda^{\alpha+1} \int_0^x \int_z^{2\pi} e^{-a\sqrt{\sigma+\lambda}\alpha(x,z)} (s-z) e^{-a\sqrt{\sigma+\lambda}\beta(z,s)} ds dz, \\
B_3(x) &= M(a, \sigma) \lambda^{\alpha+1} \int_x^{2\pi} \int_0^z e^{-a\sqrt{\sigma+\lambda}\beta(x,z)} (z-s) e^{-a\sqrt{\sigma+\lambda}\alpha(z,s)} ds dz, \\
B_4(x) &= M(a, \sigma) \lambda^{\alpha+1} \int_x^{2\pi} \int_z^{2\pi} e^{-a\sqrt{\sigma+\lambda}\beta(x,z)} (s-z) e^{-a\sqrt{\sigma+\lambda}\beta(z,s)} ds dz.
\end{aligned}$$

Let us first estimate $B_1(x)$. Using (2.14), we get

$$\begin{aligned}
B_1(x) &= M(a, \sigma) \lambda^{\alpha+1} \int_0^x \int_0^z e^{-a\sqrt{\sigma+\lambda}(x-z)} (z-s) e^{-a\sqrt{\sigma+\lambda}(z-s)} ds dz \\
&\leq M_1(a, \sigma) \frac{\lambda^{\alpha+1}}{(\sigma + \lambda)^{\frac{3}{2}}}.
\end{aligned}$$

Since

$$\frac{\lambda^{\alpha+1} \sigma^{\frac{1}{2}-\alpha}}{(\sigma + \lambda)^{\frac{3}{2}}} \leq 1 \tag{3.12}$$

for any $\alpha \in [0, \frac{1}{2}]$, we have

$$B_1(x) \leq M_2(a, \sigma). \tag{3.13}$$

By (2.14) and (2.15), we get

$$\begin{aligned} B_2(x) &= M(a, \sigma) \lambda^{\alpha+1} \int_0^x \int_z^{2\pi} e^{-a\sqrt{\sigma+\lambda}(x-z)} (s-z) e^{-a\sqrt{\sigma+\lambda}(s-z)} ds dz \\ &\leq M_3(a, \sigma) \frac{\lambda^{\alpha+1}}{(\sigma + \lambda)^{\frac{3}{2}}}. \end{aligned}$$

Using (3.12), we have

$$B_2(x) \leq M_4(a, \sigma). \quad (3.14)$$

From (2.14) and (2.15) it follows

$$\begin{aligned} B_3(x) &= M(a, \sigma) \lambda^{\alpha+1} \int_x^{2\pi} \int_0^z e^{-a\sqrt{\sigma+\lambda}(z-x)} (z-s) e^{-a\sqrt{\sigma+\lambda}(z-s)} ds dz \\ &\leq M_5(a, \sigma) \frac{\lambda^{\alpha+1}}{(\sigma + \lambda)^{\frac{3}{2}}}. \end{aligned}$$

By using (3.12), we obtain

$$B_3(x) \leq M_6(a, \sigma). \quad (3.15)$$

From (2.15) it follows

$$\begin{aligned} B_4(x) &= M(a, \sigma) \lambda^{\alpha+1} \int_x^{2\pi} \int_z^{2\pi} e^{-a\sqrt{\sigma+\lambda}(z-x)} (s-z) e^{-a\sqrt{\sigma+\lambda}(s-z)} ds dz \\ &\leq M_7(a, \sigma) \frac{\lambda^{\alpha+1}}{(\sigma + \lambda)^{\frac{3}{2}}} \end{aligned}$$

Using (3.12), we have

$$B_4(x) \leq M_8(a, \sigma). \quad (3.16)$$

Applying estimates (3.13)-(3.16), we get estimate (3.11). From estimates (3.10)

and (3.11) it follows

$$\max_{x \in [0, 2\pi]} |P_3(x)| \leq M_9(a, \sigma) \|\varphi\|_{\dot{C}^{2\alpha}(\mathbb{R})}. \quad (3.17)$$

Estimates (3.3), (3.8) and (3.17) yield

$$\begin{aligned} &\max_{x \in [0, 2\pi]} |\lambda^\alpha A^x (A^x + \lambda I)^{-1} \varphi(x)| \\ &\leq [M(\sigma) + M_9(a, \sigma)] \|\varphi\|_{\dot{C}^{2\alpha}(\mathbb{R})} + M_2(a, \sigma) \Gamma(2\alpha + 1) \|\varphi\|_{\dot{C}^{2\alpha}(\mathbb{R})} \end{aligned}$$

for any $\lambda \geq 0$. Thus,

$$\|\varphi\|_{E_\alpha(\dot{C}(\mathbb{R}), A^x)} \leq M_{10}(a, \sigma) \|\varphi\|_{\dot{C}^{2\alpha}(\mathbb{R})}. \quad (3.18)$$

Now, let us prove the reverse inequality. For any positive operator A^x in the Banach space, we can write

$$I = \int_0^\infty A^x (A^x + \lambda I)^{-2} d\lambda,$$

where I is the identity operator. From this relation and formula (2.1) it follows

$$\begin{aligned}\varphi(x) &= \int_0^\infty (A^x + \lambda I)^{-1} A^x (A^x + \lambda I)^{-1} \varphi(x) d\lambda \\ &= \int_0^\infty \int_0^{2\pi} G^x(x, s; \lambda) A^x (A^x + \lambda I)^{-1} \varphi(s) ds d\lambda.\end{aligned}$$

Consequently,

$$\begin{aligned}\varphi(x_1) - \varphi(x_2) &= \int_0^\infty \int_0^{2\pi} (G^x(x_1, s; \lambda) - G^x(x_2, s; \lambda)) A^x (A^x + \lambda I)^{-1} \varphi(s) ds d\lambda \\ &= \int_0^\infty \lambda^{-\alpha} \int_0^{2\pi} (G^x(x_1, s; \lambda) - G^x(x_2, s; \lambda)) \lambda^\alpha A^x (A^x + \lambda I)^{-1} \varphi(s) ds d\lambda.\end{aligned}$$

Therefore,

$$|\varphi(x_1) - \varphi(x_2)| \leq \int_0^\infty \lambda^{-\alpha} \int_0^{2\pi} |G^x(x_1, s; \lambda) - G^x(x_2, s; \lambda)| ds d\lambda \|\varphi\|_{E_\alpha(\mathring{C}(\mathbb{R}), A^x)}.$$

Let

$$T = |x_1 - x_2|^{-2\alpha} \left[\int_0^\infty \lambda^{-\alpha} \int_0^{2\pi} |G^x(x_1, s; \lambda) - G^x(x_2, s; \lambda)| ds d\lambda \right].$$

Note that for $|x_1 - x_2| \geq \pi$ we have that

$$\frac{|\varphi(x_1) - \varphi(x_2)|}{|x_1 - x_2|^{2\alpha}} \leq \frac{|\varphi(x_1)| + |\varphi(x_2)|}{\pi^{2\alpha}} \leq \frac{2}{\pi^{2\alpha}} \|\varphi\|_{\mathring{C}(\mathbb{R})} \leq M \|\varphi\|_{E_\alpha(\mathring{C}(\mathbb{R}), A^x)}.$$

Therefore, no loss of generality we can put $x_2 > x_1$ and $x_2 - x_1$ is the number small than π . For any $x_1, x_2 \in [0, 2\pi]$ such that $x_2 > x_1$, we have

$$\frac{|\varphi(x_1) - \varphi(x_2)|}{|x_1 - x_2|^{2\alpha}} \leq T \|\varphi\|_{E_\alpha(\mathring{C}(\mathbb{R}), A^x)}.$$

Now, we will prove that

$$T \leq \frac{M(\sigma)}{2\alpha(1-2\alpha)}. \quad (3.19)$$

We have

$$\begin{aligned}T &= |x_1 - x_2|^{-2\alpha} \int_0^\infty \lambda^{-\alpha} \left[\int_0^{x_1} |G^x(x_1, s; \lambda) - G^x(x_2, s; \lambda)| ds \right. \\ &\quad \left. + \int_{x_1}^{x_2} |G^x(x_1, s; \lambda) - G^x(x_2, s; \lambda)| ds + \int_{x_2}^{2\pi} |G^x(x_1, s; \lambda) - G^x(x_2, s; \lambda)| ds \right] \\ &= T_1 + T_2 + T_3,\end{aligned}$$

where

$$\begin{aligned} T_1 &= |x_1 - x_2|^{-2\alpha} \int_0^\infty \lambda^{-\alpha} \int_0^{x_1} |G^x(x_1, s; \lambda) - G^x(x_2, s; \lambda)| ds d\lambda, \\ T_2 &= |x_1 - x_2|^{-2\alpha} \int_0^\infty \lambda^{-\alpha} \int_{x_1}^{x_2} |G^x(x_1, s; \lambda) - G^x(x_2, s; \lambda)| ds d\lambda, \\ T_3 &= |x_1 - x_2|^{-2\alpha} \int_0^\infty \lambda^{-\alpha} \int_{x_2}^{2\pi} |G^x(x_1, s; \lambda) - G^x(x_2, s; \lambda)| ds d\lambda, \end{aligned}$$

Let us estimate T_1 . Using estimate (2.38), we get

$$\begin{aligned} T_1 &\leq |x_1 - x_2|^{-2\alpha} \int_0^\infty \lambda^{-\alpha} \int_0^{x_1} \int_0^{x_2 - x_1} |G_z^x(z + x_1, s; \lambda)| dz ds d\lambda \\ &\leq M(a, \sigma) |x_1 - x_2|^{-2\alpha} \int_0^{x_1} \int_0^{x_2 - x_1} \int_0^\infty \lambda^{-\alpha} e^{-a\sqrt{\lambda}(z+x_1-s)} d\lambda dz ds \end{aligned}$$

Using the substitution $p = a\sqrt{\lambda}(z + x_1 - s)$ and identities

$$\begin{aligned} \int_0^\infty \lambda^{-\alpha} e^{-a\sqrt{\lambda}(z+x_1-s)} d\lambda &= 2a^{2\alpha-2} (z + x_1 - s)^{2\alpha-2} \Gamma(2 - 2\alpha), \\ \int_0^{x_1} \int_0^{x_2 - x_1} (z + x_1 - s)^{2\alpha-2} dz ds &= \frac{[(x_2 - x_1)^{2\alpha} + x_1^{2\alpha} - x_2^{2\alpha}]}{2\alpha(1 - 2\alpha)}, \end{aligned}$$

we obtain

$$T_1 \leq \frac{M_1(a, \sigma)}{2\alpha(1 - 2\alpha)}. \quad (3.20)$$

Now, let us estimate T_2 . Using the triangle inequality and estimate (2.37), we get

$$\begin{aligned} T_2 &\leq M_1(a, \sigma) |x_1 - x_2|^{-2\alpha} \int_{x_1}^{x_2} \int_0^\infty \lambda^{-\alpha - \frac{1}{2}} \left[e^{-a\sqrt{\lambda}(s-x_1)} + e^{-a\sqrt{\lambda}(x_2-s)} \right] d\lambda ds \\ &\leq M_2(a, \sigma) 4\Gamma(1 - 2\alpha). \end{aligned}$$

From this it follows that

$$T_2 \leq M_3(a, \sigma). \quad (3.21)$$

Finally, we will estimate T_3 . By estimate (2.38), we obtain

$$T_3 \leq M(a, \sigma) |x_1 - x_2|^{-2\alpha} \int_{x_2}^{2\pi} \int_0^{x_2 - x_1} \int_0^\infty \lambda^{-\alpha} e^{-a\sqrt{\lambda}(s-z-x_1)} d\lambda dz ds.$$

Using the substitution $p = a\sqrt{\lambda}(s - z - x_1)$, and identities

$$\int_0^\infty \lambda^{-\alpha} e^{-a\sqrt{\lambda}(s-z-x_1)} d\lambda = 2a^{2\alpha-2}(s-z-x_1)^{2\alpha-2}\Gamma(2-2\alpha),$$

$$\int_{x_2}^{2\pi} \int_0^{x_2-x_1} (s-z-x_1)^{2\alpha-2} dz ds \leq \frac{(x_2-x_1)^{2\alpha}}{2\alpha(1-2\alpha)},$$

we have

$$T_3 \leq M(a, \sigma) (x_2 - x_1)^{-2\alpha} 2\Gamma(2-2\alpha) a^{2\alpha-2} \frac{(x_2 - x_1)^{2\alpha}}{2\alpha(1-2\alpha)}. \quad (3.22)$$

From estimate (3.22) it follows

$$T_3 \leq \frac{M_4(a, \sigma)}{2\alpha(1-2\alpha)}. \quad (3.23)$$

Combining estimates (3.20)-(3.23), we conclude for $0 \leq x_1 < x_2 \leq 2\pi$ and $x_2 - x_1 < \pi$ that

$$T \leq \frac{M(a, \sigma)}{2\alpha(1-2\alpha)}.$$

Thus, (3.19) is proved. Thus, for any $x_1, x_2 \in [0, 2\pi]$ we have

$$|x_1 - x_2|^{-2\alpha} |\varphi(x_1) - \varphi(x_2)| \leq \frac{M(a, \sigma)}{2\alpha(1-2\alpha)} \|\varphi\|_{E_\alpha(\mathring{C}(\mathbb{R}), A^x)}.$$

This means that the following inequality holds:

$$\|\varphi\|_{\mathring{C}^{2\alpha}(\mathbb{R})} \leq \frac{M(\sigma, a)}{2\alpha(1-2\alpha)} \|\varphi\|_{E_\alpha(\mathring{C}(\mathbb{R}), A^x)}. \quad (3.24)$$

Estimates (3.18) and (3.24) finish the proof of Theorem 3.2. \square

Since A^x is a positive operator in the fractional space $E_\alpha(\mathring{C}(\mathbb{R}), A^x)$, from the result of Theorem 3.2 it follows also that it is positive operator in the Hölder space $\mathring{C}^{2\alpha}(\mathbb{R})$.

4. Applications

Now, we will consider the applications of Theorems 3.1, 3.2. First, we consider the boundary value problem

$$\begin{cases} -\frac{\partial^2 u(t, x)}{\partial t^2} - \frac{\partial}{\partial x} \left(a(x) \frac{\partial u(t, x)}{\partial x} \right) + \sigma u(t, x) = f(t, x), & 0 < t < T, x \in \mathbb{R}, \\ u(0, x) = \varphi(x), u(T, x) = \psi(x), & x \in \mathbb{R}, \\ u(t, x) = u(t, x + 2\pi), \int_0^{2\pi} u(t, s) ds = 0, & 0 \leq t \leq T, x \in \mathbb{R}. \end{cases} \quad (4.1)$$

Here, $\varphi(x), \psi(x), a(x)$ and $f(t, x)$ are sufficiently smooth 2π -periodic functions in x and they satisfy any compatibility conditions which guarantee problem (4.1) has a smooth solution $u(t, x)$.

Theorem 4.1. *Let $0 < \alpha < \frac{1}{2}$. Then, for the solution of the boundary value problem (4.1), we have the following coercive stability inequality*

$$\begin{aligned} & \|u_{tt}\|_{C([0,T],\dot{C}^{2\alpha}(\mathbb{R}))} + \|u\|_{C([0,T],\dot{C}^{2\alpha+2}(\mathbb{R}))} \\ & \leq M(\alpha) \left[\|\varphi\|_{\dot{C}^{2\alpha+2}(\mathbb{R})} + \|\psi\|_{\dot{C}^{2\alpha+2}(\mathbb{R})} + \|f\|_{C([0,T],\dot{C}^{2\alpha}(\mathbb{R}))} \right]. \end{aligned}$$

The proof of Theorem 4.1 is based on Theorem 3.2 on the structure of the fractional spaces $E_\alpha = E_\alpha(C(\mathbb{R}), A^x)$, Theorem 3.1 on the positivity of the operator A^x , on the following theorems on coercive stability of boundary value problem for the abstract elliptic equation and on the structure of the fractional space $E'_\alpha = E_\alpha(E, A^{1/2})$ which is the Banach space consisting of those $v \in E$ for which the norm

$$\|v\|_{E'_\alpha} = \sup_{\lambda > 0} \lambda^\alpha \left\| A^{1/2}(\lambda + A^{1/2})^{-1}v \right\|_{E_\alpha} + \|v\|_E$$

is finite.

Theorem 4.2. [11] *The spaces $E_\alpha(E, A)$ and $E'_{2\alpha}(E, A^{1/2})$ coincide for any $0 < \alpha < \frac{1}{2}$, and their norms are equivalent.*

Theorem 4.3. [11] *Let $f \in C([0, T], E'_\alpha)$, $0 < \alpha < 1$. Then, for the solution of the nonlocal boundary value problem*

$$-u'' + Au(t) = f(t), 0 < t < T, u(0) = \varphi, u(T) = \psi \quad (4.2)$$

in a Banach space E with positive operator A the coercive inequality holds:

$$\begin{aligned} & \|u''\|_{C([0,T],E'_\alpha)} + \|Au\|_{C([0,T],E'_\alpha)} \\ & \leq M \left[\|A\varphi\|_{E'_\alpha} + \|A\psi\|_{E'_\alpha} + \frac{M}{\alpha(1-\alpha)} \|f\|_{C([0,T],E'_\alpha)} \right]. \end{aligned}$$

Second, we consider the nonlocal boundary value problem for the elliptic equation

$$\begin{cases} -\frac{\partial^2 u(t,x)}{\partial t^2} - \frac{\partial}{\partial x} \left(a(x) \frac{\partial u(t,x)}{\partial x} \right) + \sigma u(t,x) = f(t,x), 0 < t < T, x \in \mathbb{R}, \\ u(0,x) = u(T,x), u_t(0,x) = u_t(T,x), x \in \mathbb{R}, \\ u(t,x) = u(t,x + 2\pi), \int_0^{2\pi} u(t,s) ds = 0, 0 \leq t \leq T, x \in \mathbb{R}. \end{cases} \quad (4.3)$$

Here, $a(x)$ and $f(t, x)$ are sufficiently smooth 2π -periodic functions in x and they satisfy any compatibility conditions which guarantee problem (4.3) has a smooth solution $u(t, x)$.

Theorem 4.4. *Let $0 < \alpha < \frac{1}{2}$. Then, for the solution of boundary value problem (4.3), we have the following coercive stability inequality*

$$\|u_{tt}\|_{C([0,T],\dot{C}^{2\alpha}(\mathbb{R}))} + \|u\|_{C([0,T],\dot{C}^{2\alpha+2}(\mathbb{R}))} \leq M(\alpha) \|f\|_{C([0,T],\dot{C}^{2\alpha}(\mathbb{R}))}.$$

The proof of Theorem 4.4 is based on Theorem 3.2 on the structure of the fractional spaces $E_\alpha = E_\alpha(\dot{C}(\mathbb{R}), A^x)$, Theorem 3.1 on the positivity of the operator A^x , Theorem 4.2 on the structure of the fractional space $E'_\alpha = E_\alpha(E, A^{1/2})$ and on the following theorem on coercive stability of the nonlocal boundary value problem for the abstract elliptic equation.

Theorem 4.5. [12] *Let $f \in C([0, T], E'_\alpha)$, $0 < \alpha < 1$. Then, for the solution of the nonlocal boundary value problem*

$$-u'' + Au(t) = f(t), 0 < t < T, u(0) = u(T), u'(0) = u'(T) \quad (4.4)$$

in a Banach space E with positive operator A , the coercive inequality

$$\|u''\|_{C([0, T], E'_\alpha)} + \|Au\|_{C([0, T], E'_\alpha)} \leq \frac{M}{\alpha(1-\alpha)} \|f\|_{C([0, T], E'_\alpha)}$$

holds.

Acknowledgements. The publication has been prepared with the support of the “RUDN University Program 5-100 and the target program BR05236656 of the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan.

References

- [1] S. Agmon, *Lectures on Elliptic Boundary-Value Problems*, D.Van Nostrand, New Jersey, 1996.
- [2] S. Agmon and A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, *Comm. Pure Appl. Math.*, **12**, (1959), 623–727.
- [3] S. Agmon and A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II, *Comm. Pure Appl. Math.*, **17**, (1964), 35–92.
- [4] S. Agmon and L. Nirenberg, Properties of solutions of ordinary differential equations in Banach spaces, *Comm. Pure Appl. Math.*, **20**, (1963), 121–239.
- [5] Kh.A. Alibekov and P.E. Sobolevskii, Stability and convergence of difference schemes of a high order for parabolic differential equations (in Russian), *Ukrain. Mat. Zh.*, **31**, (1979), no.6, 627–634.
- [6] Kh. A. Alibekov and P. E. Sobolevskii, Stability and convergence of difference schemes of the high order for parabolic partial differential equations (in Russian), *Ukrain. Mat. Zh.*, **32**, (1980), no. 3, 291–300.
- [7] A. Ashyralyev, A survey of results in the theory of fractional spaces generated by positive operators, *TWMS J. Pure Appl. Math.*, **6**, (2015), no.2, 129–157.
- [8] A. Ashyralyev and F. S. Tetikoglu, A note on fractional spaces generated by the positive operator with periodic conditions and applications, *Bound. Value Probl.*, **2015**, (2015), no.31, 1–17.
- [9] A. Ashyralyev and F. S. Tetikoglu, Structure of fractional spaces generated by the difference operator and its applications, *Numer. Funct. Anal. Optim.*, **38**, (2017), no.10, 1325–1340.
- [10] A. Ashyralyev and S. Akturk and Y. Sozen, The structure of fractional spaces generated by a two-dimensional elliptic differential operator and its applications, *Bound. Value Probl.*, **2014**, no.3, (2014), 1–17.

- [11] A. Ashyralyev and P. E. Sobolevskii, *New Difference Schemes for Partial Differential Equations*, Operator Theory Advances and Applications, Birkhäuser Verlag, Basel, Boston, Berlin, **148**, 2004.
- [12] A. Ashyralyev, On well-posedness of the nonlocal boundary value problems for elliptic equations, *Numer. Funct. Anal. Optim.*, **24**, (2003), 1–15.
- [13] A. Ashyralyev and A. Hamad A note on fractional powers of strongly positive operators and their applications, *Fract. Calculus Appl. Anal.*, **22(2)**, (2022), 302–325.
- [14] C. Ashyralyev, Stability estimates for solution of Neumann-type overdetermined elliptic problem, *Numer. Funct. Anal. Optim.*, **38(10)**, (2017), 1226–1243.
- [15] C. Ashyralyev and Y. Akkan, Numerical solution to inverse elliptic problem with neumann type overdetermination and mixed boundary conditions, *Electron. J. Differential Equations*, **2015 (188)**, (2015), 1–15.
- [16] C. Ashyralyev and G. Akyuz and M. Dedeturk, Approximate solution for an inverse problem of multidimensional elliptic equation with multipoint nonlocal and neumann boundary conditions, *Electron. J. Differential Equations*, **2017 (197)**, (2017), 1–16.
- [17] C. Ashyralyev, Numerical solution to Bitsadze-Samarskii type elliptic overdetermined multipoint NBVP, *Bound. Value Probl.*, **2017(74)**, (2017), 1–22.
- [18] S. I. Danelich, Positive difference operators with variable coefficients on the half-line (in Russian), 56p. Deposited VINITI 11. 5. 1987, no. 7747-B87, Voronezh. Gosud. Univ, 1987.
- [19] S. I. Danelich, Positive difference operators with variable coefficients on the half-line (in Russian), 16p. Deposited VINITI 11. 9. 1987, no. 7713-B87, Voronezh. Gosud. Univ., 1987.
- [20] H. O. Fattorini, *Second Order Linear Differential Equations in Banach Spaces*, Elsevier Sciense Publishing Company, North-Holland, Amsterdam, 1985.
- [21] A. Hamad, *Strongly Positive Operators With Nonlocal Conditions and Their Applications*, Yakin Dogu Üniverstitesi, Lefkosa, 2019.
- [22] T.S. Kalmenov and D. Suragan, Initial-boundary value problems for the wave equation, *Electron. J. Differential Equations*, **2014**, (2014) no.48, 1–6.
- [23] S. G. Krein, *Linear Differential Equations in a Banach Space. Translations of Mathematical Monographs*, Am. Math. Soc., Providence, 1968.
- [24] A. Lunardi, *Analytic Semigroups and Optimal Regularity in Parabolic Problems*, Birkhäuser Verlag, Basel, Boston, Berlin, 1995.
- [25] Yu. A. Simirnitskii and P. E. Sobolevskii, Positivity of multidimensional difference operators in the C -norm (in Russian), *Uspekhi Mat. Nauk*, **36**, (1981), no.4, 202–203.
- [26] Yu. A. Simirnitskii and P. E. Sobolevskii, Pointwise estimates of the Green function of the resolvent of a difference elliptic operator (in Russian), *Vychisl. Methody Mekh. Sploshn. Sredy*, **13**, (1982), no.4, 129–142.
- [27] A. L. Skubachevskii, *Elliptic Functional Differential Equations and Applications*, Birkhäuser Verlag, Basel, Boston, Berlin, 1997.
- [28] P. E. Sobolevskii, A new method of summation of Fourier series converging in C -norm, *Semigroup Forum*, **71**, (2005), 289–300.
- [29] P. E. Sobolevskii, The coercive solvability of difference equations (in Russian), *Dokl. Acad. Nauk SSSR*, **201**, (1971), no.5, 1063–1066.
- [30] M. Z. Solomyak, Estimation of norm of the resolvent of elliptic operator in spaces L^p , *Usp. Mat. Nauk*, **15**, (1960), no.6, 141–148.
- [31] V. V. Vlasov and N. A. Rautin, *Spectral Analysis of Functionl Differential Equations* (in Russian), MAKS Press, M., 2016.

Allaberen Ashyralyev

*Department of Mathematics, Bahcesehir University, 34353, Istanbul, Türkiye;
Peoples Friendship University Russia, Ul Miklukho Maklaya 6, Moscow 117198,
Russian Federation;*

Institute of Mathematics and Mathematical Modeling, 050010, Almaty, Kazakhstan

E-mail address: allaberen.ashyralyev@eng.bau.edu.tr, aallaberen@gmail.com

Fatih Sabahattin Tetikoglu

Durham College, Ontario, Canada

E-mail address: fstetik@gmail.com, fatih.tetikoglu@durhamcollege.ca

Yaşar Sözen

Hacettepe University, Department of Mathematics, 06800 Ankara, Türkiye

E-mail address: ysozen@hacettepe.edu.tr

Received: January 17, 2025; Revised: December 5, 2025; Accepted: January 18, 2026