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FRACTIONAL SPACES GENERATED BY THE SECOND

ORDER DIFFERENTIAL OPERATOR WITH PERIODIC

CONDITIONS

ALLABEREN ASHYRALYEV, FATIH SABAHATTIN TETIKOGLU, AND YAŞAR SÖZEN

Abstract. In this study, we consider the second-order differential oper-
ator Ax defined by

Axu = − (a(x)ux(x))x + σu(x), σ ⩾ 0, x ∈ R,
with domain

D(Ax) =

u : u, u′′ ∈ C (R) , u(x) = u(x+ 2π), x ∈ R,
2π∫
0

u(x)dx = 0

 .

Estimates for the Green’s function are obtained. It is proved that for
any α ∈ (0, 12 ), the norms in the spaces Eα = Eα(C̊ (R) , Ax) and

C̊2α (R) are equivalent. The positivity of the operator Ax in Hölder

spaces C̊2α (R) , α ∈ (0, 12 ), is proved. As an application, theorems on
well-posedness of local and nonlocal boundary value problems for elliptic
equations in Hölder spaces are established.

1. Introduction

The role played by positivity of differential and difference operators in a Banach
space in the study of various properties of boundary value problems for partial
differential equations, of stability of difference schemes for partial differential
equations and of summation Fourier series is well-known (see [1, 8, 11, 20, 22,
23, 24, 27, 28, 31] and the references therein). The positivity of a wider class
of differential and difference operators with local boundary conditions in Banach
spaces has been studied by many researchers (see [2, 3, 4, 5, 6, 7, 9, 10, 13, 14,
15, 16, 17, 18, 19, 21, 25, 26, 29, 30] and the references therein).

Let E be a Banach space and A : D(A) ⊂ E → E be a linear unbounded
operator densely defined in E. A is called a positive operator in the Banach
space if the operator (λI + A) has a bounded inverse in E and for any λ ⩾ 0,
the following estimate holds [11]:∥∥(λI +A)−1

∥∥
E→E

⩽
M

λ+ 1
.
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Throughout the present paper, M denotes positive constants, which may differ
in time and thus is not a subject of precision. However, we will use M(α, β, ...)
to stress the fact that the constant depends only on α, β, ....

For a positive operator A in the Banach space E, let us introduce the fractional
spaces Eα = Eα(E,A), (0 < α < 1) consisting of those v ∈ E for which the norm

∥v∥Eα
= sup

λ>0
λα

∥∥A(λI +A)−1v
∥∥
E
+ ∥v∥E

is finite.
Let us introduce the Banach space Cβ (R) , β ∈ (0, 12) of all continuous 2π

periodic functions φ(x) defined on R and satisfying a Hölder condition for which
the following norm is finite

∥φ∥Cβ(R) = ∥φ∥C̊(R) + sup
x,x+τ∈[0,2π],τ ̸=0

|φ(x+ τ)− φ(x)|
|τ |β

,

where C̊ (R) is the Banach space of all continuous 2π periodic functions φ(x)
defined on R with the norm

∥φ∥C̊(R) = max
x∈[0,2π]

|φ(x)|.

In paper [28], a new method of summations of Fourier series converging in

C̊ (R) =

φ(x) ∈ C(R) : φ(x) = φ(x+ 2π), x ∈ R,
2π∫
0

φ(x)dx = 0


is presented. It is based on the following result on the positivity of the differential
operator Ax defined by the formula

Axu = −uxx(x) + σu(x), σ ⩾ 0 (1.1)

with domain

D(Ax) =

u : u(x), u′′(x) ∈ C (R) , u(x) = u(x+ 2π), x ∈ R,
2π∫
0

u(x)dx = 0

 .

Theorem 1.1. [28] The operator (Ax + λ) has a bounded in C̊ (R) inverse for
σ = 0 , λ ⩾ 0 and the following estimate holds:∥∥(Ax + λI)−1

∥∥
C̊(R)→C̊(R) ⩽

1 + 16π2

1 + λ
. (1.2)

The positivity of differential and difference operators with nonlocal boundary
conditions in Banach spaces and its applications have not been studied well.

In the present paper, we consider the differential operator Ax defined by the
formula

Axu(x) = − (a(x)ux(x))x + σu(x), σ > 0, x ∈ R (1.3)

with domain

D(Ax) =

u : u, u′′ ∈ C (R) , u(x) = u(x+ 2π), x ∈ R,
2π∫
0

u(x)dx = 0

 .
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Assume that a(x) = a(x + 2π), x ∈ R and a(x) ⩾ a > 0 is a continuously differ-
entiable function defined on R. We will be interested in obtaining the resolvent
of the operator Ax, i.e., in solving the resolvent equation

Axu(x) + λu(x) = φ(x), x ∈ R, (1.4)

where
2π∫
0

φ(x)dx = 0.

Note that in general Ax is not self-adjoint. However, under the condition∫ 2π
0 φ(x)dx = 0 it follows Ax is self-adjoint. Actually, under this condition

and the definition of D(Ax), we have
2π∫
0

Axu(x)dx = 0. That means conditions

2π∫
0

u(x)dx = 0 and
2π∫
0

Axu(x)dx = 0 are equivalent.

Note that equation (1.4) can be written in the following boundary value prob-
lem 

− (a(x)ux(x))x + (σ + λ)u(x) = φ(x), x ∈ R,

u(x) = u(x+ 2π),
2π∫
0

u(s)ds = 0, x ∈ R (1.5)

for the second order differential equation with periodic conditions.
The Green function of Ax is constructed. The estimates for the Green function

are obtained. It is proved that for any α ∈ (0, 12), the norms in the spaces

Eα = Eα(C̊ (R) , Ax) and C̊2α (R) are equivalent. Here, C̊2α (R) is the subspace

of C2α (R) such that
2π∫
0

φ(x)dx = 0. The positivity of the operator Ax in the

Hölder spaces C̊2α (R) , α ∈ (0, 12) is proved. In the applications, theorems well-
posedness of local and nonlocal boundary value problems for elliptic equations in
Hölder spaces are obtained.

2. The Green’s function of the second order differential operator
with periodic conditions

Assume that Gx(x, y;λ) is the fundamental solution of (1.4). Then,

u(x) =

2π∫
0

Gx(x, y;λ)φ(y)dy, x ∈ R. (2.1)

It is well-known that Gx(x, y;λ) is defined as the solution of (1.4) for the special
right-hand case

δ(x, y) =

{
∞ , x = y,
0 , x ̸= y.

(2.2)

Therefore,

Gx(x, y;λ) =

2π∫
0

Gx(x, z;λ)δ(z, y)dz. (2.3)
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Lemma 2.1. For any x0 ∈ R, the following formula for Gx(x, y;λ) holds

Gx(x, y;λ) = Gx0(x, y;λ) +

2π∫
0

Gx(x, z;λ) (Ax0 −Az)Gx0(z, y;λ)dz, x, y ∈ R,

(2.4)
where Gx0(x, y;λ) is the fundamental solution of resolvent equation with constant
coefficient a(x0)

Ax0u(x) + λu(x) = φ(x), x ∈ R. (2.5)

Proof. It is easy to see that (1.4) is equivalent to the following equation

Ax0u(x) + λu(x) = ψ(x),

where

ψ(x) = (Ax0 −Ax)u(x) + φ(x). (2.6)

Thus, using the definition of Green’s function and formula (2.1), we can write

u(x) =

2π∫
0

Gx(x, y;λ)ψ(y)dy

=

2π∫
0

Gx(x, y;λ)φ(y)dy +

2π∫
0

Gx(x, y;λ) (Ay −Ax0)

2π∫
0

Gx0(y, z;λ)φ(z)dzdy

=

2π∫
0

Gx(x, y;λ) +

2π∫
0

Gx(x, z;λ) (Az −Ax0)Gx0(z, y;λ)dz

φ(y)dy.
Using formula (2.1), we obtain

2π∫
0

Gx0(x, y;λ)φ(y)dy =

2π∫
0

[Gx(x, y;λ)

+

2π∫
0

Gx(x, z;λ) (Az −Ax0)Gx0(z, y;λ)dz

φ(y)dy.
This equation holds for any function φ(x) ∈ C (R) . Hence,

Gx0(x, y;λ) = Gx(x, y;λ) +

2π∫
0

Gx(x, z;λ) (Az −Ax0)Gx0(z, y;λ)dz, x, y ∈ R

or

Gx(x, y;λ) = Gx0(x, y;λ) +

2π∫
0

Gx(x, z;λ) (Ax0 −Az)Gx0(z, y;λ)dz, x, y ∈ R.

Lemma 2.1 is proved.
□
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We note that

(Ax0 −Az)Gx0(z, y;λ) =
a(x0)− a(z)

a(x0)
(Ax0 − σI)Gx0(z, y;λ). (2.7)

Applying (2.2), we get

λGx0(z, y;λ) +Ax0Gx0(z, y;λ) = δ (z, y) .

Then

(Ax0 −Az)Gx0(z, y;λ) =
a(x0)− a(z)

a(x0)
{−(σ + λ)Gx0(z, y;λ) + δ (z, y)} . (2.8)

Applying (2.4) and (2.8), we get

Gx(x, y;λ) = Gx0(x, y;λ) (2.9)

+

2π∫
0

Gx(x, z;λ)
a(x0)− a(z)

a(x0)
{−(σ + λ)Gx0(z, y;λ) + δ(z, y)}dz.

We note that (2.9) holds for any x, y, x0 ∈ R and this identity can be considered
as an equation for the unknown function G(x, y;λ).

It can be written as the operator equation

Gx(x, y;λ) = Gx0(x, y;λ) +K(x0, λ)G
x(x, y;λ). (2.10)

Here, K(x0, λ) is a linear operator defined by the formula

K(x0, λ)G
x(x, y;λ)

=

2π∫
0

Gx(x, z;λ)
a(x0)− a(z)

a(x0)
{−(σ + λ)Gx0(z, y;λ) + δ (z, y)} dz.

We will study operator K(x0, λ) in some space where it is contraction. Then,
there exists a unique solution of this operator equation and norm of Gx(x, y;λ)
is estimated by norm of Gx0(x, y;λ) in this space (Theorem 2.1, Lemma 2.2).

Putting y = x0 in (2.9), we get

Gx(x, x0;λ) = Gx0(x, x0;λ)

+

2π∫
0

Gx(x, z;λ)
a(x0)− a(z)

a(x0)
{−(σ + λ)Gx0(z, x0;λ) + δ (z, x0)} dz.

or

Gx(x, x0;λ) = Gx0(x, x0;λ) (2.11)

+

2π∫
0

Gx(x, z;λ)
a(x0)− a(z)

a(x0)
{−(σ + λ)Gx0(z, x0;λ)} dz.

Putting x0 = y in (2.11), we get

Gx(x, y;λ) = Gy(x, y;λ)− (σ+λ)

2π∫
0

Gx(x, z;λ)
a(y)− a(z)

a(y)
Gy(z, y;λ)dz. (2.12)
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We will prove that equation (2.12) has a unique solution in a Banach space E1

with norm

|G(·, · ;λ)|1 =
√
σ + λ max

x,y∈[0,2π]
|G(x, y;λ)| e

a
2

√
σ+λ γ(x,y), (2.13)

where here and throughout the article

γ(x, y) = min {2π − |x− y|, |x− y|} .
Note that we have

γ(x, y) =

{
α(x, y) , y ⩽ x,
β(x, y) , x ⩽ y,

where

α(x, y) = min {2π − x+ y, x− y} , β(x, y) = min {2π + x− y, y − x} .
It is easy to see that

α(x, y) =

{
2π − x+ y , 0 ⩽ y ⩽ x− π,
x− y , x− π ⩽ y ⩽ x,

(2.14)

β(x, y) =

{
y − x , x ⩽ y ⩽ x+ π,
2π + x− y , x+ π ⩽ y ⩽ 2π.

(2.15)

Note that we have the following pointwise estimates for Gy(x, y;λ) and its deriv-
ative with respect to x [8]:

|Gy(x, y;λ)| ⩽ M(σ)√
σ + λ

e−a
√
σ+λ γ(x,y), (2.16)

|Gy
x(x, y;λ)| ⩽M(σ) e−a

√
σ+λ γ(x,y). (2.17)

Now, we consider operator equation (2.10) in E1.

Theorem 2.1. The operator K(y, λ) defined by formula

K(y, λ)Gx(x, y;λ) = −(σ + λ)

2π∫
0

Gx(x, z;λ)
a(y)− a(z)

a(y)
Gy(z, y;λ)dz (2.18)

is the contractive operator in E1.

Proof. Let 0 ⩽ y ⩽ x, x ∈ [0, 2π] . Then, using (2.12) and triangle inequality, we
get

√
σ + λ |Gx(x, y;λ)| e

a
2

√
σ+λα(x,y) ⩽

√
σ + λ |Gy(x, y;λ)| e

a
2

√
σ+λα(x,y)

+(σ + λ)
3
2

2π∫
0

e
a
2

√
σ+λα(x,y) |Gx(x, z;λ)| |a(y)− a(z)|

a(y)
|Gy(z, y;λ)| dz . (2.19)

Applying the definition of norm |·|1 , estimate (2.16) and inequality (2.19), we get
√
σ + λ |Gx(x, y;λ)| e

a
2

√
σ+λα(x,y) ⩽Me−a

√
σ+λα(x,y)e

a
2

√
σ+λα(x,y)

+M1(σ + λ)
3
2

y∫
0

e
a
2

√
σ+λα(x,y) |Gx(x, z;λ)| (y − z) |Gy(z, y;λ)| dz
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+M1(σ + λ)
3
2

x∫
y

e
a
2

√
σ+λα(x,y) |Gx(x, z;λ)| (z − y) |Gy(z, y;λ)| dz

+M1(σ + λ)
3
2

2π∫
x

e
a
2

√
σ+λα(x,y) |Gx(x, z;λ)| (z − y) |Gy(z, y;λ)| dz

⩽Me−
a
2

√
σ+λα(x,y) +M1(σ)B(x, y, λ) |G(·, · ;λ)|1 ,

where

B(x, y, λ) = (σ + λ)
1
2

y∫
0

e
a
2

√
σ+λα(x,y)e−

a
2

√
σ+λα(x,z)(y − z)e−a

√
σ+λβ(z,y)dz

+(σ + λ)
1
2

x∫
y

e
a
2

√
σ+λα(x,y)e−

a
2

√
σ+λα(x,z)(z − y)e−a

√
σ+λα(z,y)dz

+(σ + λ)
1
2

2π∫
x

e
a
2

√
σ+λα(x,y)e−

a
2

√
σ+λβ(x,z)(z − y)e−a

√
σ+λα(z,y)dz

= B1(x, y, λ) +B2(x, y, λ) +B3(x, y, λ).

We will prove that

Bk(x, y, λ) ⩽M(a, σ, λ), k = 1, 2, 3, (2.20)

where

M(a, σ, λ) → 0 when σ → ∞. (2.21)

First, we estimate B1(x, y, λ). From identities (2.14), (2.15) and the fact that
y ⩽ x it follows for 0 ⩽ z ⩽ y that

2β(z, y) + α(x, z)− α(x, y) = 2 (y − z) + (x− z)− (x− y) = 3 (y − z) (2.22)

Using (2.22), we can write

B1(x, y, λ) = (σ + λ)
1
2

y∫
0

e−
a
2

√
(σ+λ) 3(y−z)(y − z)dz.

The substitution p = a
2

√
σ + λ 3 (y − z) yields

B1(x, y, λ) ⩽
9

a2
√
σ + λ

. (2.23)

Applying (2.23), we get

B1(x, y, λ) ⩽
M1(a)√
σ + λ

. (2.24)

Thus, estimate (2.20) for k = 1 follows from estimate (2.24).

Next, we estimate B2(x, y, λ). By identity (2.14) and the fact that y ⩽ x, we have
for y ⩽ z ⩽ x that

2α(z, y) + α(x, z)− α(x, y) = 2(z − y) + (x− z)− (x− y) = z − y. (2.25)
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Then, using (2.25), we can write

B2(x, y, λ) = (σ + λ)
1
2

x∫
y

e−
a
2

√
σ+λ(z−y)(z − y)dz.

By the substitution p = a
2

√
σ + λ (z − y), we have

B2(x, y, λ) ⩽
4

a2
√
σ + λ

.

Applying this estimate, we get

B2(x, y, λ) ⩽
M1(a)√
σ + λ

. (2.26)

Hence, estimate (2.20) for k = 2 follows from estimate (2.26).
Finally, let us estimate B3(x, y, λ). The fact y ⩽ x and identities (2.14), (2.15)
yield

2α(z, y) + β(x, z)− α(x, y) = 2 (z − y) + (z − x)− (x− y) = 3z − y − 2x.

From this it follows

B3(x, y, λ) = (σ + λ)
1
2

2π∫
x

e−
a
2

√
σ+λ(3z−y−2x)(z − y)dz

⩽ (σ + λ)
1
2

2π∫
x

e−
a
2

√
σ+λ(z−y)(z − y)dz,

where the last estimate uses the fact x ⩽ z ⩽ 2π.
Using the substitution p = a

2

√
σ + λ (z − y), we obtain

B3(x, y, λ) ⩽
M1(a)√
σ + λ

. (2.27)

Therefore, estimate (2.20) for k = 3 follows from estimate (2.27).

Now, let us assume that x ⩽ y ⩽ 2π, x ∈ [0, 2π] . Then, using (2.12) and triangle
inequality, we get

√
σ + λ |Gx(x, y;λ)| e

a
2

√
σ+λβ(x,y) ⩽

√
σ + λ |Gy(x, y;λ)| e

a
2

√
σ+λβ(x,y)

+(σ + λ)
3
2

2π∫
0

e
a
2

√
σ+λβ(x,y) |Gx(x, z;λ)| |a(y)− a(z)|

a(y)
|Gy(z, y;λ)| dz . (2.28)

Applying the definition of norm |·|1 , estimate (2.16) and inequality (2.28), we get
√
σ + λ |Gx(x, y;λ)| e

a
2

√
σ+λβ(x,y) ⩽Me−a

√
σ+λβ(x,y)e

a
2

√
σ+λβ(x,y)

+M1(σ + λ)
3
2

x∫
0

e
a
2

√
σ+λβ(x,y) |Gx(x, z;λ)| (y − z) |Gy(z, y;λ)| dz
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+M1(σ + λ)
3
2

y∫
x

e
a
2

√
σ+λβ(x,y) |Gx(x, z;λ)| (z − y) |Gy(z, y;λ)| dz

+M1(σ + λ)
3
2

2π∫
y

e
a
2

√
σ+λβ(x,y) |Gx(x, z;λ)| (z − y) |Gy(z, y;λ)| dz

⩽Me−
a
2

√
σ+λβ(x,y) +M1(σ)D(x, y, λ) |G(·, · ;λ)|1 ,

where

D(x, y, λ) = (σ + λ)
1
2

x∫
0

e
a
2

√
σ+λβ(x,y)e−

a
2

√
σ+λα(x,z)(y − z)e−a

√
σ+λβ(z,y)dz

+(σ + λ)
1
2

y∫
x

e
a
2

√
σ+λβ(x,y)e−

a
2

√
σ+λβ(x,z)(y − z)e−a

√
σ+λβ(z,y)dz

+(σ + λ)
1
2

2π∫
y

e
a
2

√
σ+λβ(x,y)e−

a
2

√
σ+λβ(x,z)(z − y)e−a

√
σ+λα(z,y)dz

= D1(x, y, λ) +D2(x, y, λ) +D3(x, y, λ).

We will prove that

Dk(x, y, λ) ⩽M(a, σ, λ), k = 1, 2, 3, (2.29)

where

M(a, σ, λ) → 0 when σ → ∞. (2.30)

We first estimate D1(x, y, λ). Using identities (2.14), (2.15) and the fact that
x ⩽ y, we have

2β(z, y) + α(x, z)− β(x, y) = 2 (y − z) + (x− z)− (y − x) = 2x+ y − 3z.

This results

D1(x, y, λ) = (σ + λ)
1
2

x∫
0

e−
a
2

√
σ+λ (2x+y−3z)(y − z)dz

⩽ (σ + λ)
1
2

x∫
0

e−
a
2

√
σ+λ (y−z)(y − z)dz,

where the last estimate follows from fact that 0 ⩽ z ⩽ x.
Using the substition p = a

2

√
σ + λ (y − z), we get

D1(x, y, λ) ⩽
M (a)√
σ + λ

. (2.31)

Estimate (2.29) for k = 1 follows from estimate (2.31).
Next, we estimate D2(x, y, λ). Identity (2.15) and the fact that x ⩽ y yield

2β(z, y) + β(x, z)− β(x, y) = 2 (y − z) + (z − x)− (y − x) = y − z.
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Thus, we can write

D2(x, y, λ) = (σ + λ)
1
2

y∫
x

e−
a
2

√
σ+λ (y−z)(y − z)dz.

The substition p = a
2

√
σ + λ (y − z) yields

D2(x, y, λ) ⩽
M(a)√
σ + λ

. (2.32)

Estimate (2.29) for k = 2 follows from estimate (2.32).
Finally, let us estimate D3(x, y, λ). From identities (2.14), (2.15) and the fact
that x ⩽ y it follows that

2α(z, y) + β(x, z)− β(x, y) = 2 (z − y) + (z − x)− (y − x) = 3 (z − y) .

Using this, we have

D3(x, y, λ) = (σ + λ)
1
2

2π∫
y

e−
a
2

√
σ+λ 3(z−y)(z − y)dz

⩽ (σ + λ)
1
2

2π∫
y

e−
a
2

√
σ+λ (z−y)(z − y)dz.

By using the substition p = a
2

√
σ + λ (y − z), we obtain

D3(x, y, λ) ⩽
M(a)√
σ + λ

. (2.33)

Estimate (2.29) for k = 3 follows from estimate (2.33).
Applying the triangle inequality and estimates (2.20) and (2.29), we can write

|K(·, λ)G(·, ·;λ)|1 ≤
M1(a)√
σ + λ

|G(·, ·;λ)|1 , (2.34)

|G(·, ·;λ)|1 ≤M2(a) +
M1(a)√
σ + λ

|G(·, ·;λ)|1 . (2.35)

From (2.34) it follows that for sufficiently large σ the operator K(y, λ) defined by
formula (2.18) is the contractive operator in E1. Moreover, using estimate (2.35),
we can get

|G(·, ·;λ)|1 ⩽M3(a, σ), (2.36)

where M3(a, σ) =
M2(a)

1−M1(a)√
σ

. □

By estimate (2.36), we have the following pointwise estimate for Gx(x, y;λ).

Lemma 2.2 (Pointwise estimate for the Green function). For sufficiently large
σ and λ ⩾ 0, the following estimate holds:

|Gx(x, y;λ)| ⩽ M(a, σ)√
σ + λ

e−a
√
σ+λ γ(x,y) (2.37)

□
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In a similar manner, one can obtain the following pointwise estimate for de-
rivative of Gx(x, y;λ) with respect to x.

Lemma 2.3 (Pointwise estimate for derivative of the Green function). For suf-
ficiently large σ and λ ⩾ 0, the following estimate

|Gx
x(x, y;λ)| ⩽M(a, σ) e−a

√
σ+λ γ(x,y). (2.38)

is valid. □

3. Structure of fractional spaces generated by the second order
differential operator with periodic conditions

We will study the positivity of Ax in C̊ (R).

Theorem 3.1. For sufficiently large σ and λ ≥ 0, the operator (Ax + λ) has a

bounded inverse in C̊ (R) and the following estimate holds:∥∥(Ax + λI)−1
∥∥
C̊(R)→C̊(R) ⩽

M1(a, σ)

σ + λ
. (3.1)

Proof. Applying formula (2.1), the triangle inequality and estimate (2.37), we
can write

|u(x)| ⩽ M(a, σ)√
σ + λ

 x−π∫
0

e−a
√
σ+λ(2π−x+y)dy +

x+π∫
x−π

e−a
√
σ+λ|x−y|dy

+

2π∫
x+π

e−a
√
σ+λ(2π+x−y)dy

 max
0⩽y⩽2π

|φ(y)| ⩽ M1(a, σ)

σ + λ
∥φ∥C̊(R1)

for any x ∈ R1. Therefore,

∥u∥C̊(R1) ⩽
M1(a, σ)

σ + λ
∥φ∥C̊(R1) .

From that it follows estimate (3.1). Theorem 3.1 is proved. □

Clearly, the operator Ax and its resolvent (Ax + λI)−1commute. By the defi-

nition of the norm in the fractional space Eα = Eα(C̊ (R) , Ax), we get∥∥(Ax + λI)−1
∥∥
Eα→Eα

⩽
∥∥(Ax + λI)−1

∥∥
C̊(R)→C̊(R) .

Thus, from Theorem 3.1 it follows that Ax is a positive operator in the fractional
spaces Eα(C̊ (R) , Ax). Moreover, we have the following result.

Theorem 3.2. For α ∈ (0, 12), the norms of the spaces Eα(C̊ (R) , Ax) and the

Hölder space C̊2α (R) are equivalent.

Proof. For any λ ⩾ 0, we have the obvious equality

Ax(Ax + λI)−1φ(x) = φ(x)− λ(Ax + λI)−1φ(x).
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By formulas (1.4) and (2.1), we can write

Ax(Ax + λI)−1φ(x) =
σ

σ + λ
φ(x) + λ

2π∫
0

Gx (x, s;λ) (φ(x)− φ(s)) ds

+ λ

2π∫
0

[Gs (x, s;λ)−Gx (x, s;λ)] dsφ(x). (3.2)

Then,

λαAx(Ax + λI)−1φ(x)

=
σλα

σ + λ
φ(x) + λα+1

2π∫
0

Gx (x, s;λ) (φ(x)− φ(s)) ds

+λα+1

2π∫
0

[Gs (x, s;λ)−Gx (x, s;λ)] dsφ(x) = P1(x) + P2(x) + P3(x),

where

P1(x) =
σλα

σ + λ
φ(x), P2(x) = λα+1

2π∫
0

Gx (x, s;λ) (φ(x)− φ(s)) ds,

P3(x) = λα+1

2π∫
0

[Gs (x, s;λ)−Gx (x, s;λ)] dsφ(x).

Let us estimate Pk(x), k = 1, 2, 3 in C̊ (R) norm. First, we will estimate P1(x) in

C̊ (R) norm. Using the definition of the norm of space C̊2α (R) and λασ1−α

σ+λ ⩽ 1,
we can write

|P1(x)| ⩽ σα∥φ∥C̊2α(R)

for any x ∈ [0, 2π] . Then,

∥P1∥C̊(R) ⩽ σα ∥φ∥C̊2α(R) . (3.3)

Next, we will estimate P2(x) in C̊ (R) norm. Using estimate (2.37), we get

|P2(x)| ⩽
M(a, σ)λα+1

√
σ + λ

 x−π∫
0

e−a
√
σ+λ(2π−x+s) |φ(x)− φ(s)| ds

+

x∫
x−π

e−a
√
σ+λ(x−s) |φ(x)− φ(s)| ds+

x+π∫
x

e−a
√
σ+λ(s−x) |φ(x)− φ(s)| ds

+

2π∫
x+π

e−a
√
σ+λ(2π+x−s) |φ(x)− φ(s)| ds

 = P21(x) + P22(x) + P23(x) + P24(x),
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where

P21(x) =
M(a, σ)λα+1

√
σ + λ

x−π∫
0

e−a
√
σ+λ(2π−x+s) |φ(x)− φ(s)| ds,

P22(x) =
M(a, σ)λα+1

√
σ + λ

x∫
x−π

e−a
√
σ+λ(x−s) |φ(x)− φ(s)| ds,

P23(x) =
M(a, σ)λα+1

√
σ + λ

x+π∫
x

e−a
√
σ+λ(s−x) |φ(x)− φ(s)| ds,

P24(x) =
M(a, σ)λα+1

√
σ + λ

2π∫
x+π

e−a
√
σ+λ(2π+x−s) |φ(x)− φ(s)| ds.

Using the condition φ(s) = φ(s+2π), the definition of the norm of space C̊2α (R)
and the definition of Gamma function, we have

P21(x) ⩽ ∥φ∥C̊2α(R)
M1(a, σ)λ

α+1

(σ + λ)α+1 Γ (2α+ 1)

for any x ∈ [0, 2π] . Then, we have

max
x∈[0,2π]

P21(x) ⩽ ∥φ∥C̊2α(R)M1(a, σ)Γ (2α+ 1) . (3.4)

Let us estimate P22(x). From the definition of the norm of space C̊2α (R) and the
definition of Gamma function it follows that for each x ∈ [0, 2π]

P22(x) ⩽ ∥φ∥C̊2α(R)
M1(a, σ)λ

α+1

(σ + λ)α+1 Γ (2α+ 1) .

This yields
max

x∈[0,2π]
P22(x) ⩽ ∥φ∥C2α(R)M1(a, σ)Γ (2α+ 1) . (3.5)

Let us estimate P23(x). By the definition of the norm of space C̊2α (R) and the
definition of Gamma function, we get

P23(x) ⩽ ∥φ∥C̊2α(R)
M1(a, σ)λ

α+1

(σ + λ)α+1 Γ (2α+ 1)

for any x ∈ [0, 2π] . From this it follows that

max
x∈[0,2π]

P23(x) ⩽ ∥φ∥C̊2α(R1)M1(a, σ)Γ (2α+ 1) . (3.6)

Using the condition φ(x) = φ(x+2π), the definition of the norm of space C̊2α (R)
and the definition of Gamma function, we obtain that for any x ∈ [0, 2π]

P24(x) ⩽ ∥φ∥C̊2α(R)
M1(a, σ)λ

α+1

(σ + λ)α+1 Γ (2α+ 1) .

Thus, we have

max
x∈[0,2π]

P24(x) ⩽ ∥φ∥C̊2α(R)M1(a, σ)Γ (2α+ 1) . (3.7)
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Combining estimates (3.4)-(3.7), we obtain

max
x∈[0,2π]

|P2(x)| ⩽ ∥φ∥C̊2α(R)M2(a, σ)Γ (2α+ 1) . (3.8)

Finally, we will estimate P3(x) in C̊ (R) norm. Applying formula (2.12), we get

P3(x) = λα+1(σ + λ)

2π∫
0

2π∫
0

Gx(x, z;λ)
a(s)− a(z)

a(s)
Gs(z, s;λ)dzdsφ(x). (3.9)

We have

max
x∈[0,2π]

|P3(x)| ⩽ B max
x∈[0,2π]

|φ(x)| , (3.10)

where B = max
x∈[0,2π]

B(x) and

B(x) = λα+1(σ + λ)

∣∣∣∣∣∣
2π∫
0

2π∫
0

Gx(x, z;λ)
a(s)− a(z)

a(s)
Gs(z, s;λ)dzds

∣∣∣∣∣∣ .
We will prove that

B(x) ⩽M(a, σ) (3.11)

for any x ∈ [0, 2π] and α ∈ [0, 12). Using the triangle inequality, estimates (2.16)

and (2.37), we get

B(x) ⩽ λα+1(σ + λ)

2π∫
0

2π∫
0

∣∣∣∣Gx(x, z;λ)
a(s)− a(z)

a(s)
Gs(z, s;λ)

∣∣∣∣ dzds
⩽ λα+1(σ + λ)

x∫
0

z∫
0

|Gx(x, z;λ)| |a(s)− a(z)|
a(s)

|Gs(z, s;λ)| dsdz

+ λα+1(σ + λ)

x∫
0

2π∫
z

|Gx(x, z;λ)| |a(s)− a(z)|
a(s)

|Gs(z, s;λ)| dsdz

+ λα+1(σ + λ)

2π∫
x

z∫
0

|Gx(x, z;λ)| |a(s)− a(z)|
a(s)

|Gs(z, s;λ)| dsdz

+ λα+1(σ + λ)

2π∫
x

2π∫
z

|Gx(x, z;λ)| |a(s)− a(z)|
a(s)

|Gs(z, s;λ)| dsdz
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⩽ M(a, σ)λα+1

x∫
0

z∫
0

e−a
√
σ+λα(x,z)(z − s)e−a

√
σ+λα(z,s)dsdz

+ M(a, σ)λα+1

x∫
0

2π∫
z

e−a
√
σ+λα(x,z)(s− z)e−a

√
σ+λβ(z,s)dsdz

+ M(a, σ)λα+1

2π∫
x

z∫
0

e−a
√
σ+λβ(x,z)(z − s)e−a

√
σ+λα(z,s)dsdz

+ M(a, σ)λα+1

2π∫
x

2π∫
z

e−a
√
σ+λβ(x,z)(s− z)e−a

√
σ+λβ(z,s)dsdz

= B1(x) +B2(x) +B3(x) +B4(x),

where

B1(x) =M(a, σ)λα+1

x∫
0

z∫
0

e−a
√
σ+λα(x,z)(z − s)e−a

√
σ+λα(z,s)dsdz,

B2(x) =M(a, σ)λα+1

x∫
0

2π∫
z

e−a
√
σ+λα(x,z)(s− z)e−a

√
σ+λβ(z,s)dsdz,

B3(x) =M(a, σ)λα+1

2π∫
x

z∫
0

e−a
√
σ+λβ(x,z)(z − s)e−a

√
σ+λα(z,s)dsdz,

B4(x) =M(a, σ)λα+1

2π∫
x

2π∫
z

e−a
√
σ+λβ(x,z)(s− z)e−a

√
σ+λβ(z,s)dsdz.

Let us first estimate B1(x). Using (2.14), we get

B1(x) = M(a, σ)λα+1

x∫
0

z∫
0

e−a
√
σ+λ (x−z)(z − s)e−a

√
σ+λ (z−s)dsdz

⩽ M1(a, σ)
λα+1

(σ + λ)
3
2

.

Since

λα+1σ
1
2
−α

(σ + λ)
3
2

⩽ 1 (3.12)

for any α ∈ [0, 12 ], we have

B1(x) ⩽M2(a, σ). (3.13)
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By (2.14) and (2.15), we get

B2(x) = M(a, σ)λα+1

x∫
0

2π∫
z

e−a
√
σ+λ (x−z)(s− z)e−a

√
σ+λ (s−z)dsdz

⩽ M3(a, σ)
λα+1

(σ + λ)
3
2

.

Using (3.12), we have
B2(x) ≤M4(a, σ). (3.14)

From (2.14) and (2.15) it follows

B3(x) = M(a, σ)λα+1

2π∫
x

z∫
0

e−a
√
σ+λ (z−x)(z − s)e−a

√
σ+λ (z−s)dsdz

⩽ M5(a, σ)
λα+1

(σ + λ)
3
2

.

By using (3.12), we obtain

B3(x) ≤M6(a, σ). (3.15)

From (2.15) it follows

B4(x) = M(a, σ)λα+1

2π∫
x

2π∫
z

e−a
√
σ+λ (z−x)(s− z)e−a

√
σ+λ (s−z)dsdz.

⩽ M7(a, σ)
λα+1

(σ + λ)
3
2

Using (3.12), we have
B4(x) ≤M8(a, σ). (3.16)

Applying estimates (3.13)-(3.16), we get estimate (3.11). From estimates (3.10)

and (3.11) it follows

max
x∈[0,2π]

|P3(x)| ⩽M9(a, σ) ∥φ∥C̊2α(R) . (3.17)

Estimates (3.3), (3.8) and (3.17) yield

max
x∈[0,2π]

∣∣λαAx(Ax + λI)−1φ(x)
∣∣

⩽ [M(σ) +M9(a, σ)] ∥φ∥C̊2α(R) +M2(a, σ)Γ (2α+ 1) ∥φ∥C̊2α(R)
for any λ ⩾ 0. Thus,

∥φ∥Eα(C̊(R),Ax) ⩽M10(a, σ) ∥φ∥C̊2α(R) . (3.18)

Now, let us prove the reverse inequality. For any positive operator Ax in the
Banach space, we can write

I =

∞∫
0

Ax(Ax + λI)−2dλ,
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where I is the identity operator. From this relation and formula (2.1) it follows

φ (x) =

∞∫
0

(Ax + λI)−1Ax(Ax + λI)−1φ (x) dλ

=

∞∫
0

2π∫
0

Gx (x, s;λ)Ax(Ax + λI)−1φ (s) dsdλ.

Consequently,

φ (x1)− φ (x2) =

∞∫
0

2π∫
0

(Gx (x1, s;λ)−Gx (x2, s;λ))A
x(Ax + λI)−1φ(s)dsdλ

=

∞∫
0

λ−α

2π∫
0

(Gx (x1, s;λ)−Gx (x2, s;λ))λ
αAx(Ax + λI)−1φ(s)dsdλ.

Therefore,

|φ (x1)− φ (x2)| ⩽
∞∫
0

λ−α

2π∫
0

|Gx (x1, s;λ)−Gx (x2, s;λ)| dsdλ ∥φ∥Eα(C̊(R1),Ax) .

Let

T = |x1 − x2|−2α

 ∞∫
0

λ−α

2π∫
0

|Gx (x1, s;λ)−Gx (x2, s;λ)| dsdλ

 .
Note that for |x1 − x2| ⩾ π we have that

|φ (x1)− φ (x2)|
|x1 − x2|2α

⩽
|φ (x1)|+ |φ (x2)|

π2α
⩽

2

π2α
∥φ∥C̊(R) ⩽M ∥φ∥Eα(C̊(R),Ax) .

Therefore, no loss of generality we can put x2 > x1 and x2 − x1 is the number
small than π. For any x1, x2 ∈ [0, 2π] such that x2 > x1, we have

|φ (x1)− φ (x2)|
|x1 − x2|2α

⩽ T ∥φ∥Eα(C̊(R),Ax) .

Now, we will prove that

T ⩽
M(σ)

2α (1− 2α)
. (3.19)

We have

T = |x1 − x2|−2α

∞∫
0

λ−α

 x1∫
0

|Gx (x1, s;λ)−Gx (x2, s;λ)| ds

+

x2∫
x1

|Gx (x1, s;λ)−Gx (x2, s;λ)| ds+
2π∫

x2

|Gx (x1, s;λ)−Gx (x2, s;λ)| ds

= T1 + T2 + T3,
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where

T1 = |x1 − x2|−2α

∞∫
0

λ−α

x1∫
0

|Gx (x1, s;λ)−Gx (x2, s;λ)| ds dλ,

T2 = |x1 − x2|−2α

∞∫
0

λ−α

x2∫
x1

|Gx (x1, s;λ)−Gx (x2, s;λ)| ds dλ,

T3 = |x1 − x2|−2α

∞∫
0

λ−α

2π∫
x2

|Gx (x1, s;λ)−Gx (x2, s;λ)| ds dλ,

Let us estimate T1. Using estimate (2.38), we get

T1 ⩽ |x1 − x2|−2α

∞∫
0

λ−α

x1∫
0

x2−x1∫
0

|Gx
z (z + x1, s;λ)| dz ds dλ

⩽M(a, σ) |x1 − x2|−2α

x1∫
0

x2−x1∫
0

∞∫
0

λ−αe−a
√
λ (z+x1−s)dλ dz ds

Using the substitution p = a
√
λ (z + x1 − s) and identities

∞∫
0

λ−αe−a
√
λ (z+x1−s)dλ = 2a2α−2 (z + x1 − s)2α−2 Γ(2− 2α),

x1∫
0

x2−x1∫
0

(z + x1 − s)2α−2 dzds =

[
(x2 − x1)

2α + x2α1 − x2α2
]

2α (1− 2α)
,

we obtain

T1 ⩽
M1(a, σ)

2α (1− 2α)
. (3.20)

Now, let us estimate T2. Using the triangle inequality and estimate (2.37), we
get

T2 ⩽M1(a, σ) |x1 − x2|−2α

x2∫
x1

∞∫
0

λ−α− 1
2

[
e−a

√
λ (s−x1) + e−a

√
λ (x2−s)

]
dλds

⩽M2(a, σ)4Γ(1− 2α).

From this it follows that

T2 ≤M3(a, σ). (3.21)

Finally, we will estimate T3. By estimate (2.38), we obtain

T3 ⩽M(a, σ) |x1 − x2|−2α

2π∫
x2

x2−x1∫
0

∞∫
0

λ−αe−a
√
λ (s−z−x1)dλdzds.
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Using the substitution p = a
√
λ (s− z − x1), and identities

∞∫
0

λ−αe−a
√
λ(s−z−x1)dλ = 2a2α−2(s− z − x1)

2α−2Γ(2− 2α),

2π∫
x2

x2−x1∫
0

(s− z − x1)
2α−2dzds ⩽

(x2 − x1)
2α

2α(1− 2α)
,

we have

T3 ⩽M(a, σ) (x2 − x1)
−2α 2Γ(2− 2α)a2α−2 (x2 − x1)

2α

2α (1− 2α)
. (3.22)

From estimate (3.22) it follows

T3 ⩽
M4(a, σ)

2α(1− 2α)
. (3.23)

Combining estimates (3.20)-(3.23), we conclude for 0 ⩽ x1 < x2 ⩽ 2π and
x2 − x1 < π that

T ⩽
M(a, σ)

2α(1− 2α)
.

Thus, (3.19) is proved. Thus, for any x1, x2 ∈ [0, 2π] we have

|x1 − x2|−2α |φ (x1)− φ (x2)| ⩽
M(a, σ)

2α(1− 2α)
∥φ∥Eα(C̊(R),Ax) .

This means that the following inequality holds:

∥φ∥C̊2α(R) ⩽
M(σ, a)

2α(1− 2α)
∥φ∥Eα(C̊(R),Ax). (3.24)

Estimates (3.18) and (3.24) finish the proof of Theorem 3.2. □

Since Ax is a positive operator in the fractional space Eα(C̊ (R) , Ax), from the
result of Theorem 3.2 it follows also that it is positive operator in the Hölder
space C̊2α (R) .

4. Applications

Now, we will consider the applications of Theorems 3.1, 3.2. First, we consider
the boundary value problem

−∂2u(t,x)
∂t2

− ∂
∂x

(
a(x)∂u(t,x)∂x

)
+ σu(t, x) = f(t, x), 0 < t < T, x ∈ R,

u(0, x) = φ(x), u(T, x) = ψ(x), x ∈ R,

u(t, x) = u(t, x+ 2π),
2π∫
0

u(t, s)ds = 0, 0 ⩽ t ⩽ T, x ∈ R.

(4.1)

Here, φ(x), ψ(x), a(x) and f(t, x) are sufficiently smooth 2π-periodic functions in
x and they satisfy any compatibility conditions which guarantee problem (4.1)
has a smooth solution u(t, x).
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Theorem 4.1. Let 0 < α < 1
2 . Then, for the solution of the boundary value

problem (4.1), we have the following coercive stability inequality

∥utt∥C([0,T ],C̊2α(R)) + ∥u∥C([0,T ],C̊2α+2(R))

⩽M(α)
[
∥φ∥C̊2α+2(R) + ∥ψ∥C̊2α+2(R) + ∥f∥C([0,T ],C̊2α(R))

]
.

The proof of Theorem 4.1 is based on Theorem 3.2 on the structure of the
fractional spaces Eα = Eα(C (R) , Ax), Theorem 3.1 on the positivity of the
operator Ax, on the following theorems on coercive stability of boundary value
problem for the abstract elliptic equation and on the structure of the fractional
space E′

α = Eα(E,A
1/2) which is the Banach space consisting of those v ∈ E for

which the norm

∥v∥E′
α
= sup

λ>0
λα

∥∥∥A1/2(λ+A1/2)−1v
∥∥∥
Eα

+ ∥v∥E

is finite.

Theorem 4.2. [11] The spaces Eα(E,A) and E
′
2α(E,A

1/2) coincide for any 0 <
α < 1

2 , and their norms are equivalent.

Theorem 4.3. [11] Let f ∈ C([0, T ], E′
α), 0 < α < 1. Then, for the solution of

the nonlocal boundary value problem

−u′′ +Au(t) = f(t), 0 < t < T, u(0) = φ, u(T ) = ψ (4.2)

in a Banach space E with positive operator A the coercive inequality holds:∥∥u′′∥∥
C([0,T ],E′

α)
+ ∥Au∥C([0,T ],E′

α)

⩽M

[
∥Aφ∥E′

α
+ ∥Aψ∥E′

α
+

M

α(1− α)
∥f∥C([0,T ],E′

α)

]
.

Second, we consider the nonlocal boundary value problem for the elliptic equa-
tion

−∂2u(t,x)
∂t2

− ∂
∂x

(
a(x)∂u(t,x)∂x

)
+ σu(t, x) = f(t, x), 0 < t < T, x ∈ R,

u(0, x) = u(T, x), ut(0, x) = ut(T, x), x ∈ R,

u(t, x) = u(t, x+ 2π),
2π∫
0

u(t, s)ds = 0, 0 ⩽ t ⩽ T, x ∈ R.

(4.3)

Here, a(x) and f(t, x) are sufficiently smooth 2π-periodic functions in x and they
satisfy any compatibility conditions which guarantee problem (4.3) has a smooth
solution u(t, x).

Theorem 4.4. Let 0 < α < 1
2 . Then, for the solution of boundary value problem

(4.3), we have the following coercive stability inequality

∥utt∥C([0,T ],C̊2α(R)) + ∥u∥C([0,T ],C̊2α+2(R)) ⩽M(α) ∥f∥C([0,T ],C̊2α(R)) .
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The proof of Theorem 4.4 is based on Theorem 3.2 on the structure of the frac-
tional spaces Eα = Eα(C̊ (R) , Ax), Theorem 3.1 on the positivity of the operator

Ax, Theorem 4.2 on the structure of the fractional space E′
α = Eα(E,A

1/2) and
on the following theorem on coercive stability of the nonlocal boundary value
problem for the abstract elliptic equation.

Theorem 4.5. [12] Let f ∈ C([0, T ], E′
α), 0 < α < 1. Then, for the solution of

the nonlocal boundary value problem

−u′′ +Au(t) = f(t), 0 < t < T, u(0) = u(T ), u′(0) = u′(T ) (4.4)

in a Banach space E with positive operator A, the coercive inequality∥∥u′′∥∥
C([0,T ],E′

α)
+ ∥Au∥C([0,T ],E′

α)
⩽

M

α(1− α)
∥f∥C([0,T ],E′

α)

holds.
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Hacettepe University, Department of Mathematics, 06800 Ankara, Türkiye
E-mail address: ysozen@hacettepe.edu.tr

Received: January 17, 2025; Revised: December 5, 2025; Accepted: January 18, 2026


