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AN APPLICATION OF THE CAUCHY-SCHWARZ
INEQUALITY FOR THE BEREZIN RADIUS IN RKHS

REZA RAHIMI, RAHMATOLLAH LASHKARIPOUR, AND MOJTABA BAKHERAD

Abstract. In this study, we present an extension of the Cauchy-Schwarz
inequality based on the angle between vectors, and utilize it to establish
several new inequalities involving the Berezin radius of bounded linear
operators on a reproducing kernel Hilbert space. These results generalize
and improve the existing inequalities in the literature.

1. Introduction

Let B(#) be the C*-algebra, of all bounded linear operators that act on a
nontrivial complex Hilbert space H with the inner product (-, -) and its associated
norm || - ||. For A € B(H), the symbol A* denotes the adjoint of A, and |A| =
(A*A)%. Let A = U|A| be the polar decomposition of A, where U € B(H) is a
partial isometry. Recall that the operator norm for A € B(H) is

[A]l := sup {|{Az,y)| : @,y € H, [|=]| = [[yl| = 1},
whereas the numerical radius is given by
w(A) :==sup{|(Az,x)| : x € H, ||z| = 1}.

It is well-known that w (+) is a norm on B (H), see [8].

Let © be a nonempty set. A functional Hilbert space H = H(O) is a Hilbert
space containing complex-valued functions on a set ©. This space has the prop-
erty that for each 7 € O, the evaluation map g — ¢(7) is continuous linear
functional on H. By the Riesz representation theorem for every v € O, there
exists a unique vector k; € H such that g(7) = (g, k) for all ¢ € H. The set
{k; : 7 € O} is known as the reproducing kernel of the space H. If {¢,}22, forms
an orthonormal basis for H, then the reproducing kernel can be expressed as

kr(2) = > n(T)on(2),
n=0

(see [14]). For each 7 € O, define the normalized kernel
.k
Tk
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Let A be a bounded linear operator on H. Its Berezin symbol, originally intro-
duced by Berezin [7], is a function A on © defined as

A7) = (Aky, kr).

The Berezin set and the Berezin radius(number) associated with A are respec-
tively given by

Ber(A) := {<A/2;T, k)T @} ,

and
ber(A) := sup |(Ak,, k,)|.
TEO
It is apparent that A is a bounded function on ©, whose values are contained
within the numerical range W (A), and hence for all A € B(H),

Ber(A) CW(A) and ber(A4) <w(A).

Therefore, the Berezin number has relations with both the numerical radius and
the operator norm.

Further properties of the Berezin number of an operator A, discussed in [16],
include

(1) ber(A) < || A]:

(2) ber(aA) = |a|ber(A) for any a € C;

(3) ber(A+ B) < ber(A) + ber(B) for all A, B € B(H).
It is important to note that, in general, ber(-) does not define a norm. However,
when H is a reproducing kernel Hilbert space of analytic functions, on the unit
disk D = {z € C: |2| < 1}, then the mapping ber(-) induces a norm on B(#H(D))
(see [13, 16]).

An essential attribute of the Berezin symbol is its uniqueness: if A(t) = B(r)
for every 7 € ©, then A = B. This indicates that the Berezin symbol provides
a one-to-one mapping between operators and functions. For more details in this
area, the reader is encouraged to consult [2, 3, 4, 5, 6, 9, 10, 11, 18, 22]. There
exists an analogous relation between the Berezin number and the Berezin norm,
which is defined as

[ Allber = sup { [{Ak, ko) : v € O}

From the definition, the Berezin norm satisfies the following properties:
(1) ber(A4) < [[Allber;
(2) |Allber < [IA[l;

)
(3) [[A"[[ber = [|Allber-
In [15], Huban et al. and in [14] Hajmohamadi et al. showed that, if A € B (H)

1
ber? (4) < 7 H\A]Q + yA*FHb . (1.1)

In [1], W. Audeh and M. Al-Labadi, presented some inequalities for numerical
radius inequalities for finite sums of operators. Motivated by this article, M.
Gurdal and V. Stojiljkovic gave some generalizing inequalities of the inequality
(1.1) states that: Let A;,B; € B(H) (i = 1,2,...,n) and f, g are non-negative
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continuous functions defined on the interval [0,00) that satisfy the condition
f(t)g(t)=tforallte0,00)anda; >0, " a; =1, then

n
ber” (Z ai(A; + Bi)> <272 Z|pee  for all 7> 2, (1.2)
i=1

where

n

Z = ai (7 (|4l + 7 (1Bil) + 6™ (AT + ™ (1B]])) -

i=1

Considering special cases, they obtained the following results:
(1) If setting A; = B; =0, a; = 1 and a; = 0 for all ¢ > 2, then

ber” (A + B) <272 [|(f* (1) + £ (IB) + ¢* (14") + 7 (1B*])) [ per (1-3)

for all r > 2;
(2) If setting Ay =By =A, A;,=B;=0,a; =1 and a; =0 for all i > 2 and
f(t) =g(t) = t7, then

1
ber” (A) < 3 I|A]" 4+ A% ||pe, for all r > 2. (1.4)

Also, they proved one generalization of the inequality (1.1) as follows:
Assume A € B(H). Then

ber” (A + B) |Z|lpey for all r > 2, (1.5)

where
Z=f"([A+B)+ 7 (|A-B) +g¢* (I(A+ B)*) + ¢ (I((A— B)*|).

In particular for the case A = B and f(t) = ¢g(t) = t%, they gave the following

inequality:
1 T *|T
53— A" + |A*" ||y, for all r > 2. (1.6)

On the other work, Huban et al. [15] proved the following inequality:

ber” (A) <

n r—1 n
ber” (; A;*CZ-Bi> < %ber (; ([B; 2 (ICs]) Bs]" +1i [Arg* (ICf) AJ)) :

(1.7)
By substituting A; = B =1, n=1,r=1and f(t) =g(t) = £2 into the above
inequality, they obtained the following inequality, which represents an improve-
ment of the inequality (1.1):

1 i 1 [
ber? (4) < Jber? (AP +il4") < S [|IAP + 3|4, - (1.8)

For any vectors z and y in an inner product space, the celebrated Cauchy-Schwarz
inequality asserts that

[z, )| < ]| - [lyll-
This inequality allows us to define the angle between two non-zero vectors x and

y as
()
“(@y) <qu - um) |
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In [21, Theorem 2.3], Sababheh et al. established the following refinement: Let
A € B(H) be a bounded linear operator on a Hilbert space H with the polar
decomposition A = U|A|, and let 2,y € H. Then for any « € [0, 1], the inequality

[(Az, y)| < M(HA,:c,y)\/ﬂA\Q%v@ (| A POy, y)
holds, where 04 ., = Z(|A|*z, |A|*"*U*y), and the function p is defined by

1 1+sin6
== (2 log (27 ) ).
1(0) 4< + cosf cot 6 Og(l—sin@))

The domain of p excludes points § = nz for n € Z, but since limg_, . u(0) = 1,

we extend the definition by setting u(nm) := 1. Furthermore, it is shown that p

is monotonically decreasing on [0, §], and increasing on [§, 7], with the bounds

1
ig,u(ﬂ)gl for all 8 > 0.

For further reading, see [17, 20].

In this paper, we present an extension of the Cauchy-Schwarz inequality in
terms of the angle between vectors. Also, by using this extension we present new
extensions and sharper bounds for Berezin-type inequalities concerning bounded
linear operators acting on reproducing kernel Hilbert spaces.

2. Results

In this section, we present an extension of the Cauchy-Schwarz inequality in
terms of the angle between vectors. Moreover, by using this extension, we give
some general bounds for certain inequalities related to the Berezin number.

We begin by recalling the following well-known lemmas, which play a funda-
mental role in the subsequent analysis, and are crucial to establish our main
results.

Lemma 2.1. Let a,b be two real numbers and r > 2. Then
la+b" +[a —b]" > 2(|a[" + [b]").
Lemma 2.2. (Minkowski’s inequality) Let a;,b; > 0 for i =1,2,...,n, and sup-

pose that r > 1. Then
no\ 7
+ (Z b;’) .
i=1

1
i=1 i=1
a" 4+ b < (a+b)" <27 a" +b").

S =

Lemma 2.3. Let a,b>0 andr > 1. Then

Lemma 2.4. Let a; be a positive real number (i = 1,2,...,n). Then for allr > 1

n r n
E a; | <n"? E a;.
i=1 i=1

Lemma 2.5. [19] Suppose that A € B(H) is positive and x € H is a norm one
vector. Then
(Az,x)" < (A"x,z) for allrT > 1.
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Lemma 2.6. [3, 20] Assume A € B(H) have the polar decomposition A = U|A]|,
and f, g are non-negative continuous functions defined on the interval [0, 00) that
satisfy the condition f (t) g (t) =t for allt € [0,00). Then

[k, k)| < (B, 1) V2 (A B, b g2 (14 o, ),

where ky, ke € H and «9A7i%,;< = Af(\AI)EMI(IAI)U*’%c'

Theorem 2.1. Let H = H(O), A;,B; € B(H) with the polar decompositions

A; = Uil4|, B; = Vi|B;| (i = 1,2,...,n), and let f, g be as in Lemma 2.0,

Oaiin = Lr0aiingaiuzin OBk = £r(BDIng( B VR %20 (0=1,2,0m)

with Yy a; = 1. If either 0 < 6;4 < HA-I%A <T 0<68 < O By S 5 for all
B

2
/\E@orgSGAiJ%A<HZA§7r,g§0 P <mforall\€®© (i=1,2,..,n),
then for any r > 2

Bikx v

ber” (Z aZ(Al + Bz))
=1

> ai (£ (Al + 2 (1Bil) + 6% (1471 + o™ (IB]]))

i=1

< 272" (0)

)

ber

where 0" = miny<;<, {04,08}, 0" = maxi<;<,{0,0P}, and

u(6) = max{u(8'), u(6")}.

Proof. Let ki be the normalized reproducing kernel of H. Employing the triangle
inequality and the Minkowski inequality, we get

T

(by the convexity of f(t) =t")
i)

n v n v
< {( alain i) ) (Sl i) )

=1

n
Szaz’

<(Ai + Bi)l%A,l%A>

[ (Adka b )|+ af

r
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Utilizing Lemma 2.6, the arithmetic-geometric mean inequality, and Lemma 2.5,
we deduce that

T

) ai(Ai + Bk, k)
=1

< (f: ai |( Ak ) ) r

=1

< 2rl [z": a; <Az‘l;?/\,];‘x>‘r + zn:ai <Bi1%,\,ff>\> T]

i=1 =1

- lz aitt” (04,4, ) (U2 (Al Boxs Br) 3 (g2 (1471 o, o) &
=1
3w (8,5, ) 2 (B o, )3 (92 (1B]) o, W]
=1

<22 [Z ait” (04,5,) (42 (AD B )" + (9 (147 B, b))

1=

S (05,5,) (P (B oo + (5 <|B:|>1%A,1%A>"‘)] .
=1

Now, we have two cases

(i) IfO<9A<0A <3 0<93<93i,@ <ZforallA\€O (i=12,..,n),

considering ¢ = mln{@f‘, 0P}, we obtain

T

)~ ai(Ai + Bk, k)
=1

2r2

Zazu ) (47 (A k) + (97 (AT s )
+Zazu ( P2 (IBil) ks ) + (g 2r(|B?|)15AJ%A>)]
<22 [Z ap” (0) (<f2r ([4i]) kx, ka) + (97" (JAF]) b, Fon)

i=1

2 (B s ) + (g (1B s ) )|

i=1

<22 (9) [Z ail % (JA) + 6% (|AD) + 1% (1Bil) + 9% (1BY]) . fm] .
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(i) 5 <6, ; <0} <7 5<0y; <OF <mforallA€® (i=1,2,..,n),
considering 6" = maX{GA 9P}, we obtain

n T

Zaz A +B k?)\,k’)\>
=1

< 27”—2

S et (6) (47 (1AD) o ) + (6" (142D o, o)

i=1

+> ai” (0") ((fZT (IBs]) kx, kx) + (9% (|1 B} ) ka, ’%A>>]
=1

<22 [Z aip” (0") (£ (1A Fons o) + (g (171 o, o)
=1
(B s ) + (g (1B o ) ) |

<22 (0) [Z @l (4D + g (ATD + 17 (1B + 9% (1B o, m] ~

i=1
Since % < u(0), (") <1, and considering u(6) = max{u(0"), u(6”)}, we have

T

A; + B /€>\, k‘)\>

< 27"—2 r

Zaz (P2 (1A + " ( !A*\)+f27"(!Bz'\)+92T<\B?\)’5A,/%A>]-
=1

Therefore, taking the supremum over all A € ©, we get the desired bound as
follows:

er” (i Gz‘(Ai + BZ)>
=1

> ai (£ (Al + 2 (1Bil) + 6% (1471 + o™ (IB]]))

i=1

<2727 (0)

ber
The second case is easily established in a similar way. The proof is complete. [

Remark 2.1. Since % < u(f) <1 for all > 0, we obtain

er’ <i ai(A; + BZ)>
i=1

n

<O || o a (12 (4D + 17 (B) +97 (147) + 6 (B)
i—1 ber
<223 as (5 (A + £ (Bi) + 6™ (147]) + 6 (1)

ber

This shows that Theorem 2.1 is stronger than (1.2).
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If we set A;, = B; =0, a1 =1, and a; = 0 for all ¢ > 2 in Theorem 2.1, we
obtain the following corollary.

Corollary 2.1. Let H = H(O) and A, B € B(H) with the polar decomposi-
tions A = U|A|, B = VI|B|. Also, let f, g be as in Lemma 2.6, GAI%A =

. . P . . ; A . s

£ p(1ARa(ADU=ky OB by = LBk g(B)V Ry I Either 0 < 00 <05, < 5,
0<60F <Oy <FforalAe®orf <6, <0 <m §<0y;, <6f<m
for all A € ©, then for any r > 2

ber” (A+ B) < 27727 (0) || /* (|A]) + £ (|BI) + 9% (1A*]) + ¢ (1B || ey »
where 0 = min{07",0P}, 0" = max{07",08}, and p(0) = max{u(0), n(0")}.
Remark 2.2. Since & < p(0) <1 for all § > 0, then for any r > 2

ber” (A+ B) < 272" (0) |77 (JAD) + £ (1BI) + ¢* (|A"]) + 7 (1B || per

<27 [/ (AD + 17 (B + 9™ (1AT) + 6% (18D [l per -

This demonstrates that Corollary 2.1 is stronger than (1.3).

If weset A=A =By =DB,a; =1and a; =0 for all i > 2, and let f(t) =t
and g(t) = t'7%, where 0 < @ < 1 in Theorem 2.1, then we obtain the following
result.

Corollary 2.2. Let H = H(O) and A € B(H) with the polar decomposition
A =Ul|A|. Also, let f, g be as in Lemma 2.6, and HAk = lf(‘ADk)\ JANU ks " If

ez’ther0§0/<9Af€ < g forall A€ © or G <0, <(9”<7rf0rall)\€@
then for any r > 2

ber” (A) <

)+ 9" (A D [per »
where pu(0) = max{u(0"), u(0")}.

Remark 2.3. Consider all the assumptions outlined in Corollary 2.2. It follows
from % < ,LL(H) <1 for all 8 > 0 that for any r > 2, we have

ber” (A) <

) +97 (|A"]) £ (AN + g7 (1A7)

Mer < 3 Dlber -

By substituting f (t) = g(t) = tY/? into the inequality provided above, we deduce
that

T /"LT(Q) T * *
ber” (4) < == [[[A]" + A" [lper < 5 AT+ AT ber »
which for r = 2, we get
2 *
ber' (4) < < larrae,,,

We present an improvement of the associated 1nequaht16s (1.1) and (1.4).

Example 2.1. Let © = {71, 7} be a nonempty set. Consider H = C? and func-
tional Hilbert space H(©) is a Hilbert space containing complex-valued functions
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on a set ©. This space has the property that each vector v = [:ﬂ can be defined
as a function g, on © as follow:

gv(Tl) =z, and gv(TQ) =Y.

Then
- 1 - 0
n=lol = ]
1 3 A 1
Let A= [_2 5} . For k., = [O} , we have
‘A]%/;: | 14117 —-0.2358| (1| | 1.4117
™ |—-0.2358 2.3887 | |0]  |—0.2358]"
and
|A|%U*l;: ~ | 1.4117  —0.2358]| [0.7682 —0.6425| (1|  [0.933509
™ |—-0.2358 2.3887 | |0.6402 0.7682 | |0 | 1.3481 |-
To calculate the angle 6 Ay, WO have the following:
1. 1 A
A2k, |AI2Uk,
s ) = A AR
b AR (AU
(1.4117)(0.933509) + (—0.2358)(1.3481) ~ 0.43

~ J(TA117)2 + (—0.2358)2,/(0.933500)2 + (1.3481)2
Thus, 6, ; =64.53° and so u(f,; )~ 0.6523.
shrq sRrq

One the other hand for k,, = [ﬂ , we deduce that

|A|%]2: | 14117  —0.2358| (0| _ |—0.2358
™7 [ —0.2358 2.3887 1 | 2.3887 |’
and
]A\%U*l; _ | 1.4117  —-0.2358] |0.7682 —0.6425| (0| _ |—1.08491
™71 -0.2358 2.3887 | [0.6402 0.7682 1 | 1.98596 |-

To calculate the angle 6 , ; , we have the following:
o

cos(t ;) = VAL Fra. |A[3U" )
A e A U |
(—0.2358)(—1.08491) + (2.3887)(1.98596)
v/ (—0.2358)2 + (2.3887)2/(—1.08491)2 + (1.98596)2
Thus HAJ%TQ = 23.01°. It follows from 0 < 9A,1571’9A,l%72 < 5 that we set 0 =
min{9A7k71,9A7k72} = 23.01°. Therefore, we have u(f) =~ 0.9474. Consequently
©2(0) ~ 0.89756676. Hence

~ 0.920439.

2(9
ber? (A) = 25 < “2( ) H\A|2 + yA*\QHb — 28.27335204

1
<= H|A[2+ \A*|2H — 315,
2 ber
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Theorem 2.2. Let H = H(O) and A, B € B(H). Also, let f, g be as in Lemma
2.6, A+ B, A—B have the polar decompositions A+B = U|A+B|, A—B =V |A—
Bl, 04 pj, = L 1A+ B)nsg(A+B) Uy @40y g = £

If either 0 < 0747 <0, pp <5,0<017F <0, p; <5 forall\e® or
5 < 9A+B,fg < 02A+B <m 5 < HA_BJ;A < 95473 < for all A € ©, then for any
r>2

F(A=BDkxg(|A=B)V*kr

ber" (A+ B)

S”(Q)

sir I (A+ B+ 7 (A= B) + g (I(A+ B)") + ¢* ((A = B))||er

where ' = min{9f+B, 9{‘_3}, 0" = max{OQAJrB, QQA_B} and

p(0) = max{pu(6'), u(0")}-

Proof. Let l%A be the normalized reproducing kernel of H. Now, we have two
cases:

() H0<O"P <0, pp <5 and0<01P <0, ,; <FforallAeo,

then for any r > 2, we have

(A4 Byl )| < [(Akx o) + (Bl )|

<ot (’(AI%A, m’r v ‘(BI%A, 1%A>‘T) (by Lemma 2.3)
)
<22 [ (0,55, ) (7 (A+B) k) g ((A+ B)*|) o, )
ﬂf@kﬂgwﬂnA—mﬂ%AMMWA—Bmwhhﬁ
<22 [ (67) (7 (|A+ Bl ka, k(g (I(A + B)*[) ka, a)

T (0) 1A Bl R ) (0 (1A= BY[) fx, n) |
<2 ur(eﬁ (7 QA+ Bl k) + (a7 (1(A+ B D s )

(0) (7 (1A = Bl s k) + (97 (1(A = BY ) o ) ) |

<272 ([((A+ Bk k)| +

’<(A — B)ky, k)

S“ﬁBUWM+BD+gWA+BWH%WM—BD+MWA—BWW%%)

(i) H0<0 P <0, p; <FandF <6, p; <0, " <rforal)eo,
then for any r > 2, we have

MO (57 (4 + B + g ((A+ BY') + £ (14 - B)

+9" (1A= B) s Fr) )|

}<(A + Bk, lgixw <
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Consider u(0) = max{u(0), u(6”)}, we obtain

(A+ Bl k)| < 2 (g (a4 B) + 97 (a4 BY) + 7 (14 B)

9 ((A = BY | ks

Therefore, taking the supremum over all A € ©, we get the desired bound. O

Substituting B with A and f(t) = g(¢t) = t2 in Theorem 2.2, we get the
following result.

Corollary 2.3. Let H = H(©), A € B(H) with the polar decomposition A =
— ; A . z
UlA[, and 0, = 4|A|%]ACA7|A|%U*]A€>\. If either 0 < 07 < 0,; <5 forallAe®

or%ﬁ@Akk<0§4§7rf0rall/\€@, then for any r > 2

ber” (4) < 2O A1 4 14 e

where j1(6) = max{p(64), (65}

Remark 2.4. Consider all the assumptions outlined in Corollary 2.3. It follows
from % < (@) <1 for all > 0 that for any r > 2, we have

. p(0) .
ber” (A4) < 23 A + 1A per
< 23 A+ 1A per -

It is evident that Corollary 2.2 improves upon Corollary 2.3 for r > 2, indicating
that Corollary 2.3 is better than (1.6).

Remark 2.5. Consider all the assumptions outlined in Corollary 2.2. Since % <
w1(0) <1 for all § > 0, then for any r > 2
ber” (A + B)
< 23 . Hfzr (|1A+ B[) + 2 (|A = B|) + ¢* ((A+ B)*]) + 4% ((A = B)")||pes
< s 77 A+ B+ 27 (A= B + 6 ((A+ B)]) + 6% (I(A = BY)ep-
This indicates that Theorem 2.2 is better than (1.5).

Another application of Theorem 2.2 is the following inequality.
Theorem 2.3. Let A, B be self-adjoint operators in B (H), and let 04sn P =

. . R R R . A+B
“(a+Bing(a+BIU ko P a=p o = p0A-B)in oAV T etther0 = 9A1+B <
9A+ij§§,0§01 <9A_B,fw§gf0rall)\€®0r%§0A+B7,%A<92 <
T, 5 < HA—B,IEA < 9?73 < for all A € ©, then for any r > 2

ber’ (4+ B) < 20 144 B 4 (4 - B e

where 0" = max{05P 6375}, ¢ = min{6 P 94-PY}, and

u(6) = max{u(8'), u(6")}.
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Proof. Let ky be the normalized reproducing kernel of 7, and let f (t) = g (t) = t3
in Theorem 2.2. If either 0 < 014+B < HAJFB’,;A <3 0< 9{‘_3 < HAiB’,%A <3 or
3 <O, <03 <m 5<0, g <0577 <wforall A €6, then for any
r > 2, we have

T MTQ T T * |7 *|T
ber' (A+B) < 2O |44 BI A~ BI (A4 BY'T + (A~ B[ yer

w(0)
S 23—r

”2|A+B|T +2 |A_ B|T||ber

() r r
< 92— H|A+B| +|A_B| Hber'

This completes the proof. O

Remark 2.6. Since % < (@) <1 for all > 0, then for any r > 2

(0
ber (A+ B) < 20 114+ B 4 1A~ BT

1
SW

|HA+B‘T+ ‘A_B‘erer‘

This indicates that Theorem 2.3 improves upon the inequality presented in [12,
inequality (3.8)].

By substituting B with A in the inequality mentioned above, we obtain the
following result.

Corollary 2.4. Let # = H(O) and A € B(H) be self-adjoint, and let 0, ; =

; A s s A
4|A|%1%A,|A|%U*l%y If either 0 < 07 < QA,IQX <3 forallA€®© or 5 < HA,I%A <Oy <
7w for all A € ©, then for any r > 2

r p (0 r
ber' (4) < 2 a7,

where p1(0) = max{u(07"), w(63)}.

Theorem 2.4. Let H = H(O) and A,B € B(H). Also, let f, g be as in
Lemma 2.6, AB have the polar decomposition AB = U|AB|, and 6 ,p; =

: AB s
éf(IABI)l%A,g(\ABI)U*I%A' If either 0 < 077 < HABJ%A < § for all X € © or
5 < GABJ%A < 95‘3 <7 for all X\ € O, then for any r > 2

ber (48) < 22|12 (AB) + ¢ ((AB)" )|

where j1(8) = max{pu(647), u(645))}.
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<

Proof. Let IA@\ be the normalized reproducing kernel of H. If 0 < 0{13 <0 ABgy <

5 for all A € ©, then for any r > 2, we have
~ s e s i 5L
((ABYEx k)| < 1 (0451, ) (F2ABI) oxs ) g2 (I(AB)']) ox, hen)
(by Lemma 2.6)

< H (HAB,I%A>

< 5 (2 (ABY b ba) + (97 ((ABY']) b )

(by the arithmetic-geometric mean inequality)

- ”@Aj’“) (£ 1ABY Ex oy + g2 ((AB)])) B, )

AU

5 (7 UAB) kaox + g2 ((ABY])) s )
(by the monotonicity of u)

IN

If5<6,, iy < 0{'B < 7, then for any r > 2, we have

~ A~ ~ ~ 1 ~ ~ 1
(ABYr )| < 1 (041, ) 72 (ABD s o) (02 ((AB) ] For, o)
(by Lemma 2.6)
H GABJ; A er s
< (2> (2 (ABI) fa fox) + (9 ((AB) ) s o))
(by the arithmetic-geometric mean inequality)
H (HAB,I%A>

= =28 (£ AB] b,k + 92 ((AB)'))) s )

_ n(037)

< S22 (2 UABY s o + 6 ((AB)D) o, v )
(by the monotonicity of u)

By considering 1(0) = max{u(0{'7), u(65'5)} for two cases, we have

(B, k| < L (2 1AB) b, fn + 02 ((ABYD) i ).

By taking the supremum over all A € ©, we achieve the desired result. O

Remark 2.7. Since % < u(f) <1, then for any r > 2
(e *
ber (4B) < ) || 2 (14B)) + g2 ((AB) ),

< 2 172 (ABD + & ((AB) ]y -

This indicates that Theorem 2.4 provides a sharper inequality than the inequality
presented in [12, inequality (3.11)].

Theorem 2.5. Let H = H(O), A;, B; € B(H), and C; € B(H) have the polar
decomposition C; = U;|Cy| (i = 1,2,...,n). Also, let f, g be as in Lemma 2.6,

. PU— R . y . R N ™
and HCi,BikA,AikA - 4f(|0i|)Bik,\79(|Ci|)Ui*Aik,\' If either 0 < 0; < ecivBikkvAik)\ <3
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forall X € © or § < HCi,Bil%A,AiicA <0; <7 forall €O (i=1,2,...,n), then for
any r > 1

er” <i A:CZB1>

< n' i; ber (En: B*f2 (ICi]) ] +1 [Afgz (’C;’)Al]r)> ’

=1

where 0 = minj<j<, 0;, 0" = maxi<i<, 6; and p(0) = max{p(d), u(6")}.

Proof. Let k» be the normalized reproducing kernel of H. Now, we have two cases:

() f0< 6 <0

Ci Bk Ay = 5 forall i =1,2,...,n and for all A € ©, then put

0’ = min{0y,6,,...,0,}. It follows from the monotonicity of pu, p(f, Bikox Afw) <
1(0:;) < pu(0'), and so

r

‘<<zn:A:Csz> ]%A,]%A> < <z": ’<AfC¢B¢/A€A7IA€A>’>T
=1 i=1
<n ! (i ‘<C’iBil%A,Ail§:A>)r) (by Lemma 2.4)
=1
<n (Z (/f (B miniio ) (BT (1) Biko, s )* (72 <|cz-|>Az-ku%A>g)) .

=1

(by Lemma 2.6)

<0 (0) S0 (BE PO B ) (567 (G Adk o )
i=1
n 1 7. I
<t (0) Y (B G B) k) (43" (107 A) R o)
i=1

(by Lemma 2.5)

1
2

r—1,6r 0/ n . . ) . ) o R
S%();«(Biﬂ(lcil)&) ix o) + (A9 (IC1) 4) Fon, ) )
(by the arithmetic-geometric mean inequality)

0 (0) [N e g2 . .
ST i:21<(Bif (ICi]) B:) k%kk>+zizzl<(14ig (IC7]) Aq) k’)\ykA>
(as |a +b| < V2|a +ib])

() v . . N
<5 S (B2 (G B +i(Aig” (1CTD) A)") s a )|

i=1

Therefore

(i) TF T <6

r

< (Z A;‘CiBZ) - /;A>
=1

nrfllur(gl) n i , . i} . o
<5 [ (B UON B i (41" (CE1) 4) ) o)

<0; <mforalli=1,2,....,n and for all A € ©, then put
0" = max{0y,0s,...,0,}.

Ci,Bikx, Ak
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It follows from by the monotonicity of u, (0, g4 4.,) < #(0:) < p(6”). Similar
to the first case, we get

< (Zn: A;‘CiBi> k, /%A>
=1

7’LT_1/,LT (9”) n . , . i i A
< 5 ;<((Bif2(’0i|)3i> +1i (Al g* (ICF]) Ai) )kA,k:,\> .

By considering p(0) = max{u(6'), u(0")}, if either 0 < 0; <0y, p i 45 < 5 or
7 < HCuBifw,Aifw <0 <mforalli=1,2,...,n and for all A € O, then for all
r > 1, we have

‘< (z ACB) b k>
=1

nrfl T (0 n . . . . . .
< \%() ;<((Bif2(|01|)Bi) +1i (A7 g (ICF]) 4;) )kA,kA> :

By taking the supremum over all A € ©, we achieve the desired result. O

T

T

Remark 2.8. Since 1 < p(0) < 1, then for any r > 1
n
er” (Z A:ClBZ>

< nrl\;{(ber <Z B A(ci) ] + [A?QQ (‘CZ*DAZ]T)>

=1

3

n1 = r * * r
< 7 ber (Z ([B;‘f2 (ICi]) Bi] + [AiQQ (IC; |)AJ )) :

i=1
It demonstrates an improvement of (1.7) .

For the functions f(t) = t® and g(t) = t!7%, where 0 < o < 1, we obtain the
following result.

Corollary 2.5. Assume A;, B; € B(H), and C; € B (H) with the polar decompo-
sition C; = U|Cy| (i = 1,2,...,n) and HCi,BikA,Ai/%A = 4|CZ_|QQBZ_,%MCZ_‘2(1,Q)U;Aifﬂ.
If either 0 < 6; < 902,73];%141’% < g forallx€© or 5 < eciniif/\yAiiCA <6, <m
forall A€ ®© (i=1,2,...,n), then for any r > 1

er’ (i A;( CZBZ>
=1

< D (; ([Brici Bi] +ifagjezpe= AiD) |

where 0 = minj<;<y, 0;, 0" = maxi<i<, 6;, and p(0) = max{p(0), u(6”)}.

For A; = B; = I(i=1,2,...,n) in Theorem 2.5, we obtain the following
corollary.
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Corollary 2.6. Let H = H(O), and C; € B(H) with the polar decomposition
C; = U|Ci|(G = 1,2,...,n). Also, let f, g be as in Lemma 2.6, and Hci B =
éf(ICi\)l%A,g(lCil)Ui*l%A‘ If either 0 < 0; < 901_7% < g for all A\ € © or g <4 <
0; <7 for all X € O, then for anyr > 1

(ZC) ) e (Z (£ (ICi]) + ig? <|c;|>)>,

=1

Ci ko

3

where 0 = minj<j<, 0;, 0" = maxi<i<, 6; and p(0) = max{p(d), u(6”)}.

Specifically, by taking n =1, r = 1, and f(t) = g(t) = t% in Corollary 2.6, we
obtain the following inequality.

Corollary 2.7. Assume H = H(O) and A € B(H) with the polar decomposition
A =U|A|, and also HAJ;X = L|Al%i%|A|%U%A. If either 0 < 6 < HA’,;A < forall

AeoBO OT%SQC”%)\<(92§7T][0TG”)\E@, then
1(0) .
ber (A) < —=ber (|A| +i|A"|),
(A4) < 3 (|A]+7]A%)
where u(8) = maxc{u(01), u(62)}
Remark 2.9. Since % < (@) <1 for all # > 0, then
11(6) .
——2ber (|A| +1|A
NG (JA[+14]A7)

\%ber (A +4|A%)).

It is obvious that ber? (4) < |||A]* + \A*PHber.

ber (A)

IN

IN

Therefore

ber? (A)

IN

2
K Q(Q)ber(A| FilAT]) < %berQ (1A +i|A*?)

IN

1 .
AR 4+ 14,

Therefore, the inequality stated in Corollary 2.7 is stronger than the inequality
given in (1.8).

Theorem 2.6. Let H = H(O), A,B € B(H), and A have the polar decompo-
sition A = U|A|. Also, let HBk, Al = Zf(\B\)kA GBI U Aby and f, g be as in
Lemma 2.6. If either 0 < 07 < HBkAAl%A < g for all A € © or % < QB];'AAI;'A <

Oy <7 for all A € ©, then for allr > 1

ber"(A*B) < K 2(0)

)+ (A"g* (|B]) A

Hber’

where p(0) = max{u(61), u(02)}.
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Proof. Let ky be the normalized reproducing kernel of H. By the Schwarz in-
equality, we have

‘<A*BIQ:A,I%A>‘ - ‘<Bl%A,A1%A>‘
< 1 (85 a5, ) VU2 (B b b g2 (1B Ak, Aly)

= 1 (0 4y aiy ) V2 (B ) (A% (1B¥]) Ay, ).

Applying the arithmetic-geometric mean inequality and then the convexity of
function f(t) =t¢", r > 1, we get

(4Bl )| < 1 (05, 00, <<f 2 (B b, ) + (A% (1B7) A, m)

2

IN

2 (1B]) by, b)" + (A%g2 (|BY]) Alon, )"\ ”
M(eBﬁkm)<<f UBD Ry + (475" (15 Ay A>>

= <eB,lAc,\,Afc/\) <<f2r (IBI) ka, k) + <(;4*g2 (|B*|)A)T];A7/;A>> 1

2 (1B]) + (A6 (1B*) A)) b k) |
sﬂ(eBﬁ,;m)C(f 150)+ (46 (5°) ) ka A>) |

Now, we have two cases:

(i) f0<6, < 05 ox Aoy < 3 for all A € ©, it follows from the monotonicity
of p1 that u(6, i Al%x) < u(6y), and so

r < ,W" g@l) <(f2r (‘BD + (A*92 (‘B*DAY) ]Af)\,if)\>

(i) If 5<0 By Ak < 0y < 7 for all A\ € ©, it follows from the monotonicity
of pu that u(0y ;. 47, ) < p(62), and so

(B )| < B0 (2 1)) 4 a2 (7)) )

By considering p(0) = max{u(61), u(02)}, if either 0 < 61 < 0, Ay, S 5 Or
ggeB,;AA,;A < 0y < 7, then for all r > 1

‘<A*BEA,1%A>

(B ) < 2O (2 (1) 4 (A6 (187 A7) R )

By taking the supremum over all A € ©, we achieve the desired result. O

Remark 2.10. For f(t) =t* and g (t) = t'=%, where 0 < a < 1, in Theorem 2.6,
we get

berT(A*B) S 1% 2(9) H|B‘2a7" + (A* |B*|2(170¢) A)T

ber
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Putting o = 1, we obtain

(0
ber” (A*B) < “T() HyBF’“ T AP

ber
1
< 5 H‘B’%ﬂ + ’A‘2T

ber

It demonstrates an improvement for [15, inequality (2.6)].

3. Conclusion

In this paper, we introduce an extension of the Cauchy-Schwarz inequality
based on the angle between vectors. Our results build upon the recent inequality
presented in [21, Theorem 2.3], allowing us to improve several existing Berezin-
type inequalities. Using this extension, we derive new extensions and sharper
bounds for Berezin-type inequalities related to bounded linear operators acting on
reproducing kernel Hilbert spaces. We highlight how our extension of the Cauchy-
Schwarz inequality can be utilized to establish several new inequalities involving
the Berezin number of bounded linear operators in a reproducing kernel Hilbert
space. These findings not only generalize but also improve existing inequalities
within the literature.
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