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AN APPLICATION OF THE CAUCHY-SCHWARZ

INEQUALITY FOR THE BEREZIN RADIUS IN RKHS

REZA RAHIMI, RAHMATOLLAH LASHKARIPOUR, AND MOJTABA BAKHERAD

Abstract. In this study, we present an extension of the Cauchy-Schwarz
inequality based on the angle between vectors, and utilize it to establish
several new inequalities involving the Berezin radius of bounded linear
operators on a reproducing kernel Hilbert space. These results generalize
and improve the existing inequalities in the literature.

1. Introduction

Let B (H) be the C∗-algebra, of all bounded linear operators that act on a
nontrivial complex Hilbert space H with the inner product ⟨·, ·⟩ and its associated
norm ∥ · ∥. For A ∈ B (H), the symbol A∗ denotes the adjoint of A, and |A| =
(A∗A)

1
2 . Let A = U |A| be the polar decomposition of A, where U ∈ B (H) is a

partial isometry. Recall that the operator norm for A ∈ B(H) is

∥A∥ := sup {|⟨Ax, y⟩| : x, y ∈ H, ∥x∥ = ∥y∥ = 1} ,

whereas the numerical radius is given by

ω(A) := sup {|⟨Ax, x⟩| : x ∈ H, ∥x∥ = 1} .

It is well-known that ω (·) is a norm on B (H), see [8].
Let Θ be a nonempty set. A functional Hilbert space H = H(Θ) is a Hilbert

space containing complex-valued functions on a set Θ. This space has the prop-
erty that for each τ ∈ Θ, the evaluation map g 7→ g(τ) is continuous linear
functional on H. By the Riesz representation theorem for every τ ∈ Θ, there
exists a unique vector kτ ∈ H such that g(τ) = ⟨g, kτ ⟩ for all g ∈ H. The set
{kτ : τ ∈ Θ} is known as the reproducing kernel of the space H. If {ϕn}∞n=0 forms
an orthonormal basis for H, then the reproducing kernel can be expressed as

kτ (z) =
∞∑
n=0

ϕn(τ)ϕn(z),

(see [14]). For each τ ∈ Θ, define the normalized kernel

k̂τ =
kτ
∥kτ∥

.
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Let A be a bounded linear operator on H. Its Berezin symbol, originally intro-

duced by Berezin [7], is a function Ã on Θ defined as

Ã(τ) := ⟨Ak̂τ , k̂τ ⟩.

The Berezin set and the Berezin radius(number) associated with A are respec-
tively given by

Ber(A) :=
{
⟨Ak̂τ , k̂τ ⟩ : τ ∈ Θ

}
,

and

ber(A) := sup
τ∈Θ

|⟨Ak̂τ , k̂τ ⟩|.

It is apparent that Ã is a bounded function on Θ, whose values are contained
within the numerical range W (A), and hence for all A ∈ B (H),

Ber(A) ⊆ W (A) and ber(A) ≤ ω(A).

Therefore, the Berezin number has relations with both the numerical radius and
the operator norm.

Further properties of the Berezin number of an operator A, discussed in [16],
include

(1) ber(A) ≤ ∥A∥;
(2) ber(αA) = |α|ber(A) for any α ∈ C;
(3) ber(A+B) ≤ ber(A) + ber(B) for all A,B ∈ B (H).

It is important to note that, in general, ber(·) does not define a norm. However,
when H is a reproducing kernel Hilbert space of analytic functions, on the unit
disk D = {z ∈ C : |z| < 1}, then the mapping ber(·) induces a norm on B(H(D))
(see [13, 16]).

An essential attribute of the Berezin symbol is its uniqueness: if Ã(τ) = B̃(τ)
for every τ ∈ Θ, then A = B. This indicates that the Berezin symbol provides
a one-to-one mapping between operators and functions. For more details in this
area, the reader is encouraged to consult [2, 3, 4, 5, 6, 9, 10, 11, 18, 22]. There
exists an analogous relation between the Berezin number and the Berezin norm,
which is defined as

∥A∥ber := sup
{
|⟨Ak̂µ, k̂ν⟩| : µ, ν ∈ Θ

}
.

From the definition, the Berezin norm satisfies the following properties:

(1) ber(A) ≤ ∥A∥ber;
(2) ∥A∥ber ≤ ∥A∥;
(3) ∥A∗∥ber = ∥A∥ber.

In [15], Huban et al. and in [14] Hajmohamadi et al. showed that, if A ∈ B (H)

ber2 (A) ≤ 1

2

∥∥∥|A|2 + |A∗|2
∥∥∥
ber

. (1.1)

In [1], W. Audeh and M. Al-Labadi, presented some inequalities for numerical
radius inequalities for finite sums of operators. Motivated by this article, M.
Gurdal and V. Stojiljkovic gave some generalizing inequalities of the inequality
(1.1) states that: Let Ai, Bi ∈ B (H) (i = 1, 2, ..., n) and f , g are non-negative



AN APPLICATION OF THE CAUCHY-SCHWARZ INEQUALITY IN RKHS 3

continuous functions defined on the interval [0,∞) that satisfy the condition
f (t) g (t) = t for all t ∈ [0,∞) and ai ≥ 0,

∑n
i=1 ai = 1, then

berr

(
n∑

i=1

ai(Ai +Bi)

)
≤ 2r−2 ∥Z∥ber for all r ≥ 2, (1.2)

where

Z =

n∑
i=1

ai
(
f2r (|Ai|) + f2r (|Bi|) + g2r (|A∗

i |) + g2r (|B∗
i |)
)
.

Considering special cases, they obtained the following results:

(1) If setting Ai = Bi = 0, a1 = 1 and ai = 0 for all i ≥ 2, then

berr (A+B) ≤ 2r−2
∥∥(f2r (|A|) + f2r (|B|) + g2r (|A∗|) + g2r (|B∗|)

)∥∥
ber

(1.3)

for all r ≥ 2;
(2) If setting A1 = B1 = A, Ai = Bi = 0, a1 = 1 and ai = 0 for all i ≥ 2 and

f (t) = g (t) = t
1
2 , then

berr (A) ≤ 1

2
∥|A|r + |A∗|r∥ber for all r ≥ 2. (1.4)

Also, they proved one generalization of the inequality (1.1) as follows:
Assume A ∈ B (H). Then

berr (A+B) ≤ 1

23−r
∥Z∥ber for all r ≥ 2, (1.5)

where

Z = f2r (|A+B|) + f2r (|A−B|) + g2r (|(A+B)∗|) + g2r (|(A−B)∗|) .

In particular for the case A = B and f (t) = g (t) = t
1
2 , they gave the following

inequality:

berr (A) ≤ 1

23−r
∥|A|r + |A∗|r∥ber for all r ≥ 2. (1.6)

On the other work, Huban et al. [15] proved the following inequality:

berr

(
n∑

i=1

A∗
iCiBi

)
≤ nr−1

√
2
ber

(
n∑

i=1

([
B∗

i f
2 (|Ci|)Bi

]r
+ i
[
A∗

i g
2 (|C∗

i |)Ai

]r))
.

(1.7)

By substituting Ai = Bi = I, n = 1, r = 1 and f (t) = g (t) = t
1
2 into the above

inequality, they obtained the following inequality, which represents an improve-
ment of the inequality (1.1):

ber2 (A) ≤ 1

2
ber2

(
|A|2 + i|A∗|2

)
≤ 1

2

∥∥|A|2 + i|A∗|2
∥∥
ber

. (1.8)

For any vectors x and y in an inner product space, the celebrated Cauchy-Schwarz
inequality asserts that

|⟨x, y⟩| ≤ ∥x∥ · ∥y∥.
This inequality allows us to define the angle between two non-zero vectors x and
y as

∠(x, y) = cos−1

(
|⟨x, y⟩|
∥x∥ · ∥y∥

)
.
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In [21, Theorem 2.3], Sababheh et al. established the following refinement: Let
A ∈ B(H) be a bounded linear operator on a Hilbert space H with the polar
decomposition A = U |A|, and let x, y ∈ H. Then for any α ∈ [0, 1], the inequality

|⟨Ax, y⟩| ≤ µ(θA,x,y)
√

⟨|A|2αx, x⟩ · ⟨|A∗|2(1−α)y, y⟩

holds, where θA,x,y = ∠(|A|αx, |A|1−αU∗y), and the function µ is defined by

µ(θ) :=
1

4

(
2 + cos θ cot θ log

(
1 + sin θ

1− sin θ

))
.

The domain of µ excludes points θ = nπ for n ∈ Z, but since limθ→nπ µ(θ) = 1,
we extend the definition by setting µ(nπ) := 1. Furthermore, it is shown that µ
is monotonically decreasing on [0, π2 ], and increasing on [π2 , π], with the bounds

1

2
≤ µ(θ) ≤ 1 for all θ ≥ 0.

For further reading, see [17, 20].
In this paper, we present an extension of the Cauchy-Schwarz inequality in

terms of the angle between vectors. Also, by using this extension we present new
extensions and sharper bounds for Berezin-type inequalities concerning bounded
linear operators acting on reproducing kernel Hilbert spaces.

2. Results

In this section, we present an extension of the Cauchy-Schwarz inequality in
terms of the angle between vectors. Moreover, by using this extension, we give
some general bounds for certain inequalities related to the Berezin number.

We begin by recalling the following well-known lemmas, which play a funda-
mental role in the subsequent analysis, and are crucial to establish our main
results.

Lemma 2.1. Let a, b be two real numbers and r ≥ 2. Then

|a+ b|r + |a− b|r ≥ 2(|a|r + |b|r).

Lemma 2.2. (Minkowski’s inequality) Let ai, bi > 0 for i = 1, 2, ..., n, and sup-
pose that r > 1. Then(

n∑
i=1

(ai + bi)
r

) 1
r

≤

(
n∑

i=1

ari

) 1
r

+

(
n∑

i=1

bri

) 1
r

.

Lemma 2.3. Let a, b ≥ 0 and r ≥ 1. Then

ar + br ≤ (a+ b)r ≤ 2r−1(ar + br).

Lemma 2.4. Let ai be a positive real number (i = 1, 2, ..., n). Then for all r ≥ 1(
n∑

i=1

ai

)r

≤ nr−1
n∑

i=1

ari .

Lemma 2.5. [19] Suppose that A ∈ B (H) is positive and x ∈ H is a norm one
vector. Then

⟨Ax, x⟩r ≤ ⟨Arx, x⟩ for all r ≥ 1.
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Lemma 2.6. [3, 20] Assume A ∈ B (H) have the polar decomposition A = U |A|,
and f , g are non-negative continuous functions defined on the interval [0,∞) that
satisfy the condition f (t) g (t) = t for all t ∈ [0,∞). Then

∣∣∣⟨Ak̂λ, k̂ζ⟩∣∣∣ ≤ µ
(
θA,k̂λ,k̂ζ

)√
⟨f2 (|A|) k̂λ, k̂λ⟩⟨g2 (|A∗|) k̂ζ , k̂ζ⟩,

where k̂λ, k̂ζ ∈ H and θA,k̂λ,k̂ζ
= ∠f(|A|)k̂λ,g(|A|)U∗k̂ζ

.

Theorem 2.1. Let H = H(Θ), Ai, Bi ∈ B (H) with the polar decompositions
Ai = Ui|Ai|, Bi = Vi|Bi| (i = 1, 2, ..., n), and let f , g be as in Lemma 2.6,
θAi,k̂λ

= ∠f(|Ai|)k̂λ,g(|Ai|)U∗
i k̂λ

, θBi,k̂λ
= ∠f(|Bi|)k̂λ,g(|Bi|)V ∗

i k̂λ
, ai ≥ 0 (i = 1, 2, ..., n)

with
∑n

i=1 ai = 1. If either 0 ≤ θAi < θAi,k̂λ
≤ π

2 , 0 ≤ θBi < θBi,k̂λ
≤ π

2 for all

λ ∈ Θ or π
2 ≤ θAi,k̂λ

< θAi ≤ π, π
2 ≤ θBi,k̂λ

< θBi ≤ π for all λ ∈ Θ (i = 1, 2, ..., n),

then for any r ≥ 2

berr

(
n∑

i=1

ai(Ai +Bi)

)

≤ 2r−2µr(θ)

∥∥∥∥∥
n∑

i=1

ai
(
f2r (|Ai|) + f2r (|Bi|) + g2r (|A∗

i |) + g2r (|B∗
i |)
)∥∥∥∥∥

ber

,

where θ′ = min1≤i≤n{θAi , θBi }, θ′′ = max1≤i≤n{θAi , θBi }, and

µ(θ) = max{µ(θ′), µ(θ′′)}.

Proof. Let k̂λ be the normalized reproducing kernel of H. Employing the triangle
inequality and the Minkowski inequality, we get

∣∣∣∣∣⟨
n∑

i=1

ai(Ai +Bi)k̂λ, k̂λ⟩

∣∣∣∣∣
r

≤
n∑

i=1

ai

∣∣∣〈(Ai +Bi)k̂λ, k̂λ

〉∣∣∣r (by the convexity of f(t) = tr)

≤
n∑

i=1

(
a

1
r
i

∣∣∣〈Aik̂λ, k̂λ

〉∣∣∣+ a
1
r
i

∣∣∣〈Bik̂λ, k̂λ

〉∣∣∣)r

≤

( n∑
i=1

ai

∣∣∣〈Aik̂λ, k̂λ

〉∣∣∣r) 1
r

+

(
n∑

i=1

ai

∣∣∣〈Bik̂λ, k̂λ

〉∣∣∣r) 1
r

r

.



6 REZA RAHIMI, RAHMATOLLAH LASHKARIPOUR, AND MOJTABA BAKHERAD

Utilizing Lemma 2.6, the arithmetic-geometric mean inequality, and Lemma 2.5,
we deduce that

∣∣∣∣∣⟨
n∑

i=1

ai(Ai +Bi)k̂λ, k̂λ⟩

∣∣∣∣∣
r

≤

( n∑
i=1

ai

∣∣∣〈Aik̂λ, k̂λ

〉∣∣∣r) 1
r

+

(
n∑

i=1

ai

∣∣∣〈Bik̂λ, k̂λ

〉∣∣∣r) 1
r

r

≤ 2r−1

[
n∑

i=1

ai

∣∣∣〈Aik̂λ, k̂λ

〉∣∣∣r + n∑
i=1

ai

∣∣∣〈Bik̂λ, k̂λ

〉∣∣∣r]

≤ 2r−1

[
n∑

i=1

aiµ
r
(
θAi,k̂λ

)
⟨f2 (|Ai|) k̂λ, k̂λ⟩

r
2 ⟨g2 (|A∗

i |) k̂λ, k̂λ⟩
r
2

+
n∑

i=1

aiµ
r
(
θBi,k̂λ

)
⟨f2 (|Bi|) k̂λ, k̂λ⟩

r
2 ⟨g2 (|B∗

i |) k̂λ, k̂λ⟩
r
2

]

≤ 2r−2

[
n∑

i=1

aiµ
r
(
θAi,k̂λ

)(
⟨f2 (|Ai|) k̂λ, k̂λ⟩r + ⟨g2 (|A∗

i |) k̂λ, k̂λ⟩r
)

+
n∑

i=1

aiµ
r
(
θBi,k̂λ

)(
⟨f2 (|Bi|) k̂λ, k̂λ⟩r + ⟨g2 (|B∗

i |) k̂λ, k̂λ⟩r
)]

.

Now, we have two cases

(i) If 0 ≤ θAi < θAi,k̂λ
≤ π

2 , 0 ≤ θBi < θBi,k̂λ
≤ π

2 for all λ ∈ Θ (i = 1, 2, ..., n),

considering θ′ = min{θAi , θBi }, we obtain

∣∣∣∣∣⟨
n∑

i=1

ai(Ai +Bi)k̂λ, k̂λ⟩

∣∣∣∣∣
r

≤ 2r−2

[
n∑

i=1

aiµ
r
(
θ′
) (

⟨f2r (|Ai|) k̂λ, k̂λ⟩+ ⟨g2r (|A∗
i |) k̂λ, k̂λ⟩

)
+

n∑
i=1

aiµ
r
(
θ′
) (

⟨f2r (|Bi|) k̂λ, k̂λ⟩+ ⟨g2r (|B∗
i |) k̂λ, k̂λ⟩

)]

≤ 2r−2

[
n∑

i=1

aiµ
r
(
θ′
) (

⟨f2r (|Ai|) k̂λ, k̂λ⟩+ ⟨g2r (|A∗
i |) k̂λ, k̂λ⟩

+⟨f2r (|Bi|) k̂λ, k̂λ⟩+ ⟨g2r (|B∗
i |) k̂λ, k̂λ⟩

)]
≤ 2r−2µr

(
θ′
) [ n∑

i=1

ai⟨f2r (|Ai|) + g2r (|A∗
i |) + f2r (|Bi|) + g2r (|B∗

i |) k̂λ, k̂λ⟩

]
.
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(ii) If π
2 ≤ θAi,k̂λ

< θAi ≤ π, π
2 ≤ θBi,k̂λ

< θBi ≤ π for all λ ∈ Θ (i = 1, 2, ..., n),

considering θ′′ = max{θAi , θBi }, we obtain∣∣∣∣∣⟨
n∑

i=1

ai(Ai +Bi)k̂λ, k̂λ⟩

∣∣∣∣∣
r

≤ 2r−2

[
n∑

i=1

aiµ
r
(
θ′′
) (

⟨f2r (|Ai|) k̂λ, k̂λ⟩+ ⟨g2r (|A∗
i |) k̂λ, k̂λ⟩

)
+

n∑
i=1

aiµ
r
(
θ′′
) (

⟨f2r (|Bi|) k̂λ, k̂λ⟩+ ⟨g2r (|B∗
i |) k̂λ, k̂λ⟩

)]

≤ 2r−2

[
n∑

i=1

aiµ
r
(
θ′′
) (

⟨f2r (|Ai|) k̂λ, k̂λ⟩+ ⟨g2r (|A∗
i |) k̂λ, k̂λ⟩

+⟨f2r (|Bi|) k̂λ, k̂λ⟩+ ⟨g2r (|B∗
i |) k̂λ, k̂λ⟩

)]
≤ 2r−2µr

(
θ′′
) [ n∑

i=1

ai⟨f2r (|Ai|) + g2r (|A∗
i |) + f2r (|Bi|) + g2r (|B∗

i |) k̂λ, k̂λ⟩

]
.

Since 1
2 ≤ µ(θ′), µ(θ′′) ≤ 1, and considering µ(θ) = max{µ(θ′), µ(θ′′)}, we have∣∣∣∣∣⟨
n∑

i=1

ai(Ai +Bi)k̂λ, k̂λ⟩

∣∣∣∣∣
r

≤ 2r−2µr (θ)

[
n∑

i=1

ai⟨f2r (|Ai|) + g2r (|A∗
i |) + f2r (|Bi|) + g2r (|B∗

i |) k̂λ, k̂λ⟩

]
.

Therefore, taking the supremum over all λ ∈ Θ, we get the desired bound as
follows:

berr

(
n∑

i=1

ai(Ai +Bi)

)

≤ 2r−2µr(θ)

∥∥∥∥∥
n∑

i=1

ai
(
f2r (|Ai|) + f2r (|Bi|) + g2r (|A∗

i |) + g2r (|B∗
i |)
)∥∥∥∥∥

ber

.

The second case is easily established in a similar way. The proof is complete. □

Remark 2.1. Since 1
2 ≤ µ(θ) ≤ 1 for all θ ≥ 0, we obtain

berr

(
n∑

i=1

ai(Ai +Bi)

)

≤ 2r−2µr(θ)

∥∥∥∥∥
n∑

i=1

ai
(
f2r (|Ai|) + f2r (|Bi|) + g2r (|A∗

i |) + g2r (|B∗
i |)
)∥∥∥∥∥

ber

≤ 2r−2

∥∥∥∥∥
n∑

i=1

ai
(
f2r (|Ai|) + f2r (|Bi|) + g2r (|A∗

i |) + g2r (|B∗
i |)
)∥∥∥∥∥

ber

.

This shows that Theorem 2.1 is stronger than (1.2).
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If we set Ai = Bi = 0, a1 = 1, and ai = 0 for all i ≥ 2 in Theorem 2.1, we
obtain the following corollary.

Corollary 2.1. Let H = H(Θ) and A,B ∈ B (H) with the polar decomposi-
tions A = U |A|, B = V |B|. Also, let f , g be as in Lemma 2.6, θA,k̂λ

=

∠f(|A|)k̂λ,g(|A|)U∗k̂λ
, and θB,k̂λ

= ∠f(|B|)k̂λ,g(|B|)V ∗k̂λ
. If either 0 ≤ θA1 < θA,k̂λ

≤ π
2 ,

0 ≤ θB1 < θB,k̂λ
≤ π

2 for all λ ∈ Θ or π
2 ≤ θA,k̂λ

< θA1 ≤ π, π
2 ≤ θB,k̂λ

< θB1 ≤ π

for all λ ∈ Θ, then for any r ≥ 2

berr (A+B) ≤ 2r−2µr(θ)
∥∥f2r (|A|) + f2r (|B|) + g2r (|A∗|) + g2r (|B∗|)

∥∥
ber

,

where θ′ = min{θA1 , θB1 }, θ′′ = max{θA1 , θB1 }, and µ(θ) = max{µ(θ′), µ(θ′′)}.

Remark 2.2. Since 1
2 ≤ µ(θ) ≤ 1 for all θ ≥ 0, then for any r ≥ 2

berr (A+B) ≤ 2r−2µr(θ)
∥∥f2r (|A|) + f2r (|B|) + g2r (|A∗|) + g2r (|B∗|)

∥∥
ber

≤ 2r−2
∥∥f2r (|A|) + f2r (|B|) + g2r (|A∗|) + g2r (|B∗|)

∥∥
ber

.

This demonstrates that Corollary 2.1 is stronger than (1.3).

If we set A = A1 = B1 = B, a1 = 1 and ai = 0 for all i ≥ 2, and let f(t) = tα

and g(t) = t1−α, where 0 ≤ α ≤ 1 in Theorem 2.1, then we obtain the following
result.

Corollary 2.2. Let H = H(Θ) and A ∈ B (H) with the polar decomposition
A = U |A|. Also, let f , g be as in Lemma 2.6, and θA,k̂λ

= ∠f(|A|)k̂λ,g(|A|)U∗k̂λ
. If

either 0 ≤ θ′ < θA,k̂λ
≤ π

2 for all λ ∈ Θ or π
2 ≤ θA,k̂λ

< θ′′ ≤ π for all λ ∈ Θ,

then for any r ≥ 2

berr (A) ≤ µr(θ)

2

∥∥f2r (|A|) + g2r (|A∗|)
∥∥
ber

,

where µ(θ) = max{µ(θ′), µ(θ′′)}.

Remark 2.3. Consider all the assumptions outlined in Corollary 2.2. It follows
from 1

2 ≤ µ(θ) ≤ 1 for all θ ≥ 0 that for any r ≥ 2, we have

berr (A) ≤ µr(θ)

2

∥∥f2r (|A|) + g2r (|A∗|)
∥∥
ber

≤ 1

2

∥∥f2r (|A|) + g2r (|A∗|)
∥∥
ber

.

By substituting f(t) = g(t) = t1/2 into the inequality provided above, we deduce
that

berr (A) ≤ µr(θ)

2
∥|A|r + |A∗|r∥ber ≤

1

2
∥|A|r + |A∗|r∥ber ,

which for r = 2, we get

ber2 (A) ≤ µ2(θ)

2

∥∥∥|A|2 + |A∗|2
∥∥∥
ber

≤ 1

2

∥∥∥|A|2 + |A∗|2
∥∥∥
ber

.

We present an improvement of the associated inequalities (1.1) and (1.4).

Example 2.1. Let Θ = {τ1, τ2} be a nonempty set. Consider H = C2 and func-
tional Hilbert space H(Θ) is a Hilbert space containing complex-valued functions
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on a set Θ. This space has the property that each vector v =

[
x
y

]
can be defined

as a function gv on Θ as follow:

gv(τ1) = x, and gv(τ2) = y.

Then

k̂τ1 =

[
1
0

]
, k̂τ2 =

[
0
1

]
.

Let A =

[
1 3
−2 5

]
. For k̂τ1 =

[
1
0

]
, we have

|A|
1
2 k̂τ1 =

[
1.4117 −0.2358
−0.2358 2.3887

] [
1
0

]
=

[
1.4117
−0.2358

]
,

and

|A|
1
2U∗k̂τ1 =

[
1.4117 −0.2358
−0.2358 2.3887

] [
0.7682 −0.6425
0.6402 0.7682

] [
1
0

]
=

[
0.933509
1.3481

]
.

To calculate the angle θA,k̂τ1
, we have the following:

cos(θA,k̂τ1
) =

⟨|A|
1
2 k̂τ1 , |A|

1
2U∗k̂τ1⟩

∥|A|
1
2 k̂τ1∥|A|

1
2U∗k̂τ1∥

=
(1.4117)(0.933509) + (−0.2358)(1.3481)√

(1.4117)2 + (−0.2358)2
√

(0.933509)2 + (1.3481)2
≈ 0.43.

Thus, θA,k̂τ1
= 64.53◦, and so µ(θA,k̂τ1

) ≈ 0.6523.

One the other hand for k̂τ2 =

[
0
1

]
, we deduce that

|A|
1
2 k̂τ2 =

[
1.4117 −0.2358
−0.2358 2.3887

] [
0
1

]
=

[
−0.2358
2.3887

]
,

and

|A|
1
2U∗k̂τ2 =

[
1.4117 −0.2358
−0.2358 2.3887

] [
0.7682 −0.6425
0.6402 0.7682

] [
0
1

]
=

[
−1.08491
1.98596

]
.

To calculate the angle θA,k̂τ2
, we have the following:

cos(θA,k̂τ2
) =

⟨|A|
1
2 k̂τ2 , |A|

1
2U∗k̂τ2⟩

∥|A|
1
2 k̂τ2∥|A|

1
2U∗k̂τ2∥

=
(−0.2358)(−1.08491) + (2.3887)(1.98596)√

(−0.2358)2 + (2.3887)2
√
(−1.08491)2 + (1.98596)2

≈ 0.920439.

Thus θA,k̂τ2
= 23.01◦. It follows from 0 ≤ θA,k̂τ1

, θA,k̂τ2
≤ π

2 that we set θ =

min{θA,k̂τ1
, θA,k̂τ2

} = 23.01◦. Therefore, we have µ(θ) ≈ 0.9474. Consequently

µ2(θ) ≈ 0.89756676. Hence

ber2 (A) = 25 ⪇
µ2(θ)

2

∥∥∥|A|2 + |A∗|2
∥∥∥
ber

= 28.27335294

⪇
1

2

∥∥∥|A|2 + |A∗|2
∥∥∥
ber

= 31.5.
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Theorem 2.2. Let H = H(Θ) and A,B ∈ B (H). Also, let f , g be as in Lemma
2.6, A+B, A−B have the polar decompositions A+B = U |A+B|, A−B = V |A−
B|, θA+B,k̂λ

= ∠f(|A+B|)k̂λ,g(|A+B|)U∗k̂λ
, and θA−B,k̂λ

= ∠f(|A−B|)k̂λ,g(|A−B|)V ∗k̂λ
.

If either 0 ≤ θA+B
1 < θA+B,k̂λ

≤ π
2 , 0 ≤ θA−B

1 < θA−B,k̂λ
≤ π

2 for all λ ∈ Θ or
π
2 ≤ θA+B,k̂λ

< θA+B
2 ≤ π, π

2 ≤ θA−B,k̂λ
< θA−B

2 ≤ π for all λ ∈ Θ, then for any
r ≥ 2

berr (A+B)

≤ µr(θ)

23−r

∥∥f2r (|A+B|) + f2r (|A−B|) + g2r (|(A+B)∗|) + g2r (|(A−B)∗|)
∥∥
ber

,

where θ′ = min{θA+B
1 , θA−B

1 }, θ′′ = max{θA+B
2 , θA−B

2 } and

µ(θ) = max{µ(θ′), µ(θ′′)}.

Proof. Let k̂λ be the normalized reproducing kernel of H. Now, we have two
cases:

(i) If 0 ≤ θA+B
1 < θA+B,k̂λ

≤ π
2 , and 0 ≤ θA−B

1 < θA−B,k̂λ
≤ π

2 for all λ ∈ Θ,

then for any r ≥ 2, we have∣∣∣⟨(A+B)k̂λ, k̂λ⟩
∣∣∣r ≤ ∣∣∣⟨Ak̂λ, k̂λ⟩+ ⟨Bk̂λ, k̂λ⟩

∣∣∣r
≤ 2r−1

(∣∣∣⟨Ak̂λ, k̂λ⟩∣∣∣r + ∣∣∣⟨Bk̂λ, k̂λ⟩
∣∣∣r) (by Lemma 2.3)

≤ 2r−2
(∣∣∣⟨(A+B)k̂λ, k̂λ⟩

∣∣∣r + ∣∣∣⟨(A−B)k̂λ, k̂λ⟩
∣∣∣r)

≤ 2r−2
[
µr
(
θA+B,k̂λ

)
⟨f r (|A+B|) k̂λ, k̂λ⟩⟨gr (|(A+B)∗|) k̂λ, k̂λ⟩

+µr
(
θA−B,k̂λ

)
⟨f r (|A−B|) k̂λ, k̂λ⟩⟨gr (|(A−B)∗|) k̂λ, k̂λ⟩

]
≤ 2r−2

[
µr
(
θ′
)
⟨f r (|A+B|) k̂λ, k̂λ⟩⟨gr (|(A+B)∗|) k̂λ, k̂λ⟩

+µr
(
θ′
)
⟨f r (|A−B|) k̂λ, k̂λ⟩⟨gr (|(A−B)∗|) k̂λ, k̂λ⟩

]
≤ 2r−3

[
µr
(
θ′
) (

⟨f r (|A+B|) k̂λ, k̂λ⟩+ ⟨gr (|(A+B)∗|) k̂λ, k̂λ⟩
)

+µr
(
θ′
) (

⟨f r (|A−B|) k̂λ, k̂λ⟩+ ⟨gr (|(A−B)∗|) k̂λ, k̂λ⟩
)]

≤ µ(θ′)

23−r

〈
f r (|A+B|) + gr (|(A+B)∗|) + f r (|A−B|) + gr (|(A−B)∗|) k̂λ, k̂λ

〉
.

(ii) If 0 ≤ θA−B
1 < θA−B,k̂λ

≤ π
2 and π

2 ≤ θA−B,k̂λ
< θA−B

2 ≤ π for all λ ∈ Θ,

then for any r ≥ 2, we have∣∣∣⟨(A+B)k̂λ, k̂λ⟩
∣∣∣r ≤ µ(θ′′)

23−r
[(⟨f r (|A+B|) + gr (|(A+B)∗|) + f r (|A−B|)

+gr (|(A−B)∗|) k̂λ, k̂λ
〉)]

.
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Consider µ(θ) = max{µ(θ′), µ(θ′′)}, we obtain∣∣∣⟨(A+B)k̂λ, k̂λ⟩
∣∣∣r ≤ µr(θ)

23−r
⟨f r (|A+B|) + gr (|(A+B)∗|) + f r (|A−B|)

+gr (|(A−B)∗|) k̂λ, k̂λ
〉
.

Therefore, taking the supremum over all λ ∈ Θ, we get the desired bound. □

Substituting B with A and f (t) = g (t) = t
1
2 in Theorem 2.2, we get the

following result.

Corollary 2.3. Let H = H(Θ), A ∈ B (H) with the polar decomposition A =
U |A|, and θA,k̂λ

= ∠
|A|

1
2 k̂λ,|A|

1
2U∗k̂λ

. If either 0 ≤ θA1 < θA,k̂λ
≤ π

2 for all λ ∈ Θ

or π
2 ≤ θA,k̂λ

< θA2 ≤ π for all λ ∈ Θ, then for any r ≥ 2

berr (A) ≤ µr(θ)

23−r
∥|A|r + |A∗|r∥ber ,

where µ(θ) = max{µ(θA1 ), µ(θA2 )}.

Remark 2.4. Consider all the assumptions outlined in Corollary 2.3. It follows
from 1

2 ≤ µ(θ) ≤ 1 for all θ ≥ 0 that for any r ≥ 2, we have

berr (A) ≤ µr(θ)

23−r
∥|A|r + |A∗|r∥ber

≤ 1

23−r
∥|A|r + |A∗|r∥ber .

It is evident that Corollary 2.2 improves upon Corollary 2.3 for r > 2, indicating
that Corollary 2.3 is better than (1.6).

Remark 2.5. Consider all the assumptions outlined in Corollary 2.2. Since 1
2 ≤

µ(θ) ≤ 1 for all θ ≥ 0, then for any r ≥ 2

berr (A+B)

≤ µr(θ)

23−r

∥∥f2r (|A+B|) + f2r (|A−B|) + g2r (|(A+B)∗|) + g2r (|(A−B)∗|)
∥∥
ber

≤ 1

23−r

∥∥f2r (|A+B|) + f2r (|A−B|) + g2r (|(A+B)∗|) + g2r (|(A−B)∗|)
∥∥
ber

.

This indicates that Theorem 2.2 is better than (1.5).

Another application of Theorem 2.2 is the following inequality.

Theorem 2.3. Let A,B be self-adjoint operators in B (H), and let θA+B,k̂λ
=

∠f(|A+B|)k̂λ,g(|A+B|)U∗k̂λ
, θA−B,k̂λ

= ∠f(|A−B|)k̂λ,g(|A−B|)V ∗k̂λ
. If either 0 ≤ θA+B

1 <

θA+B,k̂λ
≤ π

2 , 0 ≤ θA−B
1 < θA−B,k̂λ

≤ π
2 for all λ ∈ Θ or π

2 ≤ θA+B,k̂λ
< θA+B

2 ≤
π, π

2 ≤ θA−B,k̂λ
< θA−B

2 ≤ π for all λ ∈ Θ, then for any r ≥ 2

berr (A+B) ≤ µr(θ)

22−r
∥|A+B|r + |(A−B)∗|r∥ber ,

where θ′′ = max{θA+B
2 , θA−B

2 }, θ′ = min{θA+B
1 , θA−B

1 }, and
µ(θ) = max{µ(θ′), µ(θ′′)}.
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Proof. Let k̂λ be the normalized reproducing kernel ofH, and let f (t) = g (t) = t
1
2

in Theorem 2.2. If either 0 ≤ θA+B
1 < θA+B,k̂λ

≤ π
2 , 0 ≤ θA−B

1 < θA−B,k̂λ
≤ π

2 or
π
2 ≤ θA+B,k̂λ

< θA+B
2 ≤ π, π

2 ≤ θA−B,k̂λ
< θA−B

2 ≤ π for all λ ∈ Θ, then for any

r ≥ 2, we have

berr (A+B) ≤ µr(θ)

23−r
∥|A+B|r + |A−B|r + |(A+B)∗|r + |(A−B)∗|r∥ber

≤ µr(θ)

23−r
∥2 |A+B|r + 2 |A−B|r∥ber

≤ µr(θ)

22−r
∥|A+B|r + |A−B|r∥ber .

This completes the proof. □

Remark 2.6. Since 1
2 ≤ µ(θ) ≤ 1 for all θ ≥ 0, then for any r ≥ 2

berr (A+B) ≤ µr(θ)

22−r
∥|A+B|r + |A−B|r∥ber

≤ 1

22−r
∥|A+B|r + |A−B|r∥ber .

This indicates that Theorem 2.3 improves upon the inequality presented in [12,
inequality (3.8)].

By substituting B with A in the inequality mentioned above, we obtain the
following result.

Corollary 2.4. Let H = H(Θ) and A ∈ B (H) be self-adjoint, and let θA,k̂λ
=

∠
|A|

1
2 k̂λ,|A|

1
2U∗k̂λ

. If either 0 ≤ θA1 < θA,k̂λ
≤ π

2 for all λ ∈ Θ or π
2 ≤ θA,k̂λ

< θA2 ≤
π for all λ ∈ Θ, then for any r ≥ 2

berr (A) ≤ µr(θ)

22−r
∥|A|r∥ber ,

where µ(θ) = max{µ(θA1 ), µ(θA2 )}.

Theorem 2.4. Let H = H(Θ) and A,B ∈ B (H). Also, let f , g be as in
Lemma 2.6, AB have the polar decomposition AB = U |AB|, and θAB,k̂λ

=

∠f(|AB|)k̂λ,g(|AB|)U∗k̂λ
. If either 0 ≤ θAB

1 < θAB,k̂λ
≤ π

2 for all λ ∈ Θ or
π
2 ≤ θAB,k̂λ

< θAB
2 ≤ π for all λ ∈ Θ, then for any r ≥ 2

ber (AB) ≤ µ(θ)

2

∥∥f2 (|AB|) + g2 (|(AB)∗|)
∥∥
ber

,

where µ(θ) = max{µ(θAB
1 ), µ(θAB

2 )}.
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Proof. Let k̂λ be the normalized reproducing kernel of H. If 0 ≤ θAB
1 < θAB,k̂λ

≤
π
2 for all λ ∈ Θ, then for any r ≥ 2, we have∣∣∣⟨(AB)k̂λ, k̂λ⟩

∣∣∣ ≤ µ
(
θAB,k̂λ

)
⟨f2 (|AB|) k̂λ, k̂λ⟩

1
2 ⟨g2 (|(AB)∗|) k̂λ, k̂λ⟩

1
2

(by Lemma 2.6)

≤
µ
(
θAB,k̂λ

)
2

(
⟨f2 (|AB|) k̂λ, k̂λ⟩+ ⟨g2 (|(AB)∗|) k̂λ, k̂λ⟩

)
(by the arithmetic-geometric mean inequality)

=
µ
(
θAB,k̂λ

)
2

〈(
f2 (|AB|) k̂λ, k̂λ + g2 (|(AB)∗|)

)
k̂λ, k̂λ

〉
≤

µ
(
θAB
1

)
2

〈(
f2 (|AB|) k̂λ, k̂λ + g2 (|(AB)∗|)

)
k̂λ, k̂λ

〉
.

(by the monotonicity of µ)

If π
2 ≤ θAB,k̂λ

< θAB
1 ≤ π, then for any r ≥ 2, we have∣∣∣⟨(AB)k̂λ, k̂λ⟩
∣∣∣ ≤ µ

(
θAB,k̂λ

)
⟨f2 (|AB|) k̂λ, k̂λ⟩

1
2 ⟨g2 (|(AB)∗|) k̂λ, k̂λ⟩

1
2

(by Lemma 2.6)

≤
µ
(
θAB,k̂λ

)
2

(
⟨f2 (|AB|) k̂λ, k̂λ⟩+ ⟨g2 (|(AB)∗|) k̂λ, k̂λ⟩

)
(by the arithmetic-geometric mean inequality)

=
µ
(
θAB,k̂λ

)
2

〈(
f2 (|AB|) k̂λ, k̂λ + g2 (|(AB)∗|)

)
k̂λ, k̂λ

〉
≤

µ
(
θAB
2

)
2

〈(
f2 (|AB|) k̂λ, k̂λ + g2 (|(AB)∗|)

)
k̂λ, k̂λ

〉
.

(by the monotonicity of µ)

By considering µ(θ) = max{µ(θAB
1 ), µ(θAB

2 )} for two cases, we have∣∣∣⟨(AB)k̂λ, k̂λ⟩
∣∣∣ ≤ µ (θ)

2

〈(
f2 (|AB|) k̂λ, k̂λ + g2 (|(AB)∗|)

)
k̂λ, k̂λ

〉
.

By taking the supremum over all λ ∈ Θ, we achieve the desired result. □

Remark 2.7. Since 1
2 ≤ µ(θ) ≤ 1, then for any r ≥ 2

ber (AB) ≤ µ(θ)

2

∥∥f2 (|AB|) + g2 (|(AB)∗|)
∥∥
ber

≤ 1

2

∥∥f2 (|AB|) + g2 (|(AB)∗|)
∥∥
ber

.

This indicates that Theorem 2.4 provides a sharper inequality than the inequality
presented in [12, inequality (3.11)].

Theorem 2.5. Let H = H(Θ), Ai, Bi ∈ B (H), and Ci ∈ B (H) have the polar
decomposition Ci = Ui|Ci| (i = 1, 2, ..., n). Also, let f , g be as in Lemma 2.6,
and θCi,Bik̂λ,Aik̂λ

= ∠f(|Ci|)Bik̂λ,g(|Ci|)U∗
i Aik̂λ

. If either 0 ≤ θi < θCi,Bik̂λ,Aik̂λ
≤ π

2
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for all λ ∈ Θ or π
2 ≤ θCi,Bik̂λ,Aik̂λ

< θi ≤ π for all λ ∈ Θ (i = 1, 2, ..., n), then for
any r ≥ 1

berr

(
n∑

i=1

A∗
iCiBi

)

≤ nr−1µr(θ)√
2

ber

(
n∑

i=1

([
B∗

i f
2 (|Ci|)Bi

]r
+ i
[
A∗

i g
2 (|C∗

i |)Ai

]r))
,

where θ′ = min1≤i≤n θi, θ
′′ = max1≤i≤n θi and µ(θ) = max{µ(θ′), µ(θ′′)}.

Proof. Let k̂λ be the normalized reproducing kernel ofH. Now, we have two cases:
(i) If 0 ≤ θi < θCi,Bik̂λ,Aik̂λ

≤ π
2 for all i = 1, 2, ..., n and for all λ ∈ Θ, then put

θ′ = min{θ1, θ2, ..., θn}. It follows from the monotonicity of µ, µ(θCi,Bik̂λ,Aik̂λ
) ≤

µ(θi) ≤ µ(θ′), and so∣∣∣∣∣
〈(

n∑
i=1

A∗
iCiBi

)
k̂λ, k̂λ

〉∣∣∣∣∣
r

≤

(
n∑

i=1

∣∣∣⟨A∗
iCiBik̂λ, k̂λ⟩

∣∣∣)r

≤ nr−1

(
n∑

i=1

∣∣∣〈CiBik̂λ, Aik̂λ
〉∣∣∣r) (by Lemma 2.4)

≤ nr−1

(
n∑

i=1

(
µr
(
θCi,Bik̂λ,Aik̂λ

)〈
B∗

i f
2 (|Ci|)Bik̂λ, k̂λ

〉 r
2
〈
A∗

i g
2 (|Ci|)Aik̂λ, k̂λ

〉 r
2

))
.

(by Lemma 2.6)

≤ nr−1µr (θ′) n∑
i=1

〈
B∗

i f
2 (|Ci|)Bik̂λ, k̂λ

〉 r
2
〈
A∗

i g
2 (|Ci|)Aik̂λ, k̂λ

〉 r
2

≤ nr−1µr (θ′) n∑
i=1

〈(
B∗

i f
2 (|Ci|)Bi

)r
k̂λ, k̂λ

〉 1
2
〈(

A∗
i g

2 (|C∗
i |)Ai

)r
k̂λ, k̂λ

〉 1
2

(by Lemma 2.5)

≤ nr−1µr (θ′)

2

n∑
i=1

(〈(
B∗

i f
2 (|Ci|)Bi

)r
k̂λ, k̂λ

〉
+
〈(

A∗
i g

2 (|C∗
i |)Ai

)r
k̂λ, k̂λ

〉)
(by the arithmetic-geometric mean inequality)

≤ nr−1µr (θ′)√
2

∣∣∣∣∣
n∑

i=1

〈(
B∗

i f
2 (|Ci|)Bi

)r
k̂λ, k̂λ

〉
+ i

n∑
i=1

〈(
A∗

i g
2 (|C∗

i |)Ai

)r
k̂λ, k̂λ

〉∣∣∣∣∣
(as |a+ b| ≤

√
2|a+ ib|)

≤ nr−1µr (θ′)√
2

∣∣∣∣∣
n∑

i=1

〈((
B∗

i f
2 (|Ci|)Bi

)r
+ i
(
A∗

i g
2 (|C∗

i |)Ai

)r)
k̂λ, k̂λ

〉∣∣∣∣∣ .
Therefore∣∣∣∣∣

〈(
n∑

i=1

A∗
iCiBi

)
k̂λ, k̂λ

〉∣∣∣∣∣
r

≤ nr−1µr (θ′)√
2

∣∣∣∣∣
n∑

i=1

〈((
B∗

i f
2 (|Ci|)Bi

)r
+ i
(
A∗

i g
2 (|C∗

i |)Ai

)r)
k̂λ, k̂λ

〉∣∣∣∣∣ .
(ii) If π

2 ≤ θCi,Bik̂λ,Aik̂λ
< θi ≤ π for all i = 1, 2, ..., n and for all λ ∈ Θ, then put

θ′′ = max{θ1, θ2, ..., θn}.
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It follows from by the monotonicity of µ, µ(θCi,Bik̂λ,Aik̂λ
) ≤ µ(θi) ≤ µ(θ′′). Similar

to the first case, we get∣∣∣∣∣
〈(

n∑
i=1

A∗
iCiBi

)
k̂λ, k̂λ

〉∣∣∣∣∣
r

≤ nr−1µr (θ′′)√
2

∣∣∣∣∣
n∑

i=1

〈((
B∗

i f
2 (|Ci|)Bi

)r
+ i
(
A∗

i g
2 (|C∗

i |)Ai

)r)
k̂λ, k̂λ

〉∣∣∣∣∣ .
By considering µ(θ) = max{µ(θ′), µ(θ′′)}, if either 0 ≤ θi < θCi,Bik̂λ,Aik̂λ

≤ π
2 or

π
2 ≤ θCi,Bik̂λ,Aik̂λ

< θi ≤ π for all i = 1, 2, ..., n and for all λ ∈ Θ, then for all

r ≥ 1, we have∣∣∣∣∣
〈(

n∑
i=1

A∗
iCiBi

)
k̂λ, k̂λ

〉∣∣∣∣∣
r

≤ nr−1µr (θ)√
2

∣∣∣∣∣
n∑

i=1

〈((
B∗

i f
2 (|Ci|)Bi

)r
+ i
(
A∗

i g
2 (|C∗

i |)Ai

)r)
k̂λ, k̂λ

〉∣∣∣∣∣ .
By taking the supremum over all λ ∈ Θ, we achieve the desired result. □

Remark 2.8. Since 1
2 ≤ µ(θ) ≤ 1, then for any r ≥ 1

berr

(
n∑

i=1

A∗
iCiBi

)

≤ nr−1µr(θ)√
2

ber

(
n∑

i=1

([
B∗

i f
2 (|Ci|)Bi

]r
+
[
A∗

i g
2 (|C∗

i |)Ai

]r))

≤ nr−1

√
2
ber

(
n∑

i=1

([
B∗

i f
2 (|Ci|)Bi

]r
+
[
A∗

i g
2 (|C∗

i |)Ai

]r))
.

It demonstrates an improvement of (1.7) .

For the functions f(t) = tα and g(t) = t1−α, where 0 ≤ α ≤ 1, we obtain the
following result.

Corollary 2.5. Assume Ai, Bi ∈ B (H), and Ci ∈ B (H) with the polar decompo-
sition Ci = U |Ci| (i = 1, 2, ..., n) and θCi,Bik̂λ,Aik̂λ

= ∠|Ci|2αBik̂λ,|Ci|2(1−α)U∗
i Aik̂λ

.

If either 0 ≤ θi < θCi,Bik̂λ,Aik̂λ
≤ π

2 for all λ ∈ Θ or π
2 ≤ θCi,Bik̂λ,Aik̂λ

< θi ≤ π

for all λ ∈ Θ (i = 1, 2, ..., n), then for any r ≥ 1

berr

(
n∑

i=1

A∗
iCiBi

)

≤ nr−1µr(θ)√
2

ber

(
n∑

i=1

([
B∗

i |Ci|2αBi

]r
+ i
[
A∗

i |C∗
i |

2(1−α)Ai

]r))
,

where θ′ = min1≤i≤n θi, θ
′′ = max1≤i≤n θi, and µ(θ) = max{µ(θ′), µ(θ′′)}.

For Ai = Bi = I(i = 1, 2, . . . , n) in Theorem 2.5, we obtain the following
corollary.
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Corollary 2.6. Let H = H(Θ), and Ci ∈ B (H) with the polar decomposition
Ci = Ui|Ci|(i = 1, 2, ..., n). Also, let f , g be as in Lemma 2.6, and θCi,k̂λ

=

∠f(|Ci|)k̂λ,g(|Ci|)U∗
i k̂λ

. If either 0 ≤ θi < θCi,k̂λ
≤ π

2 for all λ ∈ Θ or π
2 ≤ θCi,k̂λ

<

θi ≤ π for all λ ∈ Θ, then for any r ≥ 1

berr

(
n∑

i=1

Ci

)
≤ nr−1µr(θ)√

2
ber

(
n∑

i=1

(
f2r (|Ci|) + ig2r (|C∗

i |)
))

,

where θ′ = min1≤i≤n θi, θ
′′ = max1≤i≤n θi and µ(θ) = max{µ(θ′), µ(θ′′)}.

Specifically, by taking n = 1, r = 1, and f(t) = g(t) = t
1
2 in Corollary 2.6, we

obtain the following inequality.

Corollary 2.7. Assume H = H(Θ) and A ∈ B (H) with the polar decomposition
A = U |A|, and also θA,k̂λ

= ∠
|A| 1

2
k̂λ,|A|

1
2U∗k̂λ

. If either 0 ≤ θ1 < θA,k̂λ
≤ π

2 for all

λ ∈ Θ or π
2 ≤ θCi,k̂λ

< θ2 ≤ π for all λ ∈ Θ, then

ber (A) ≤ µ(θ)√
2
ber (|A|+ i |A∗|) ,

where µ(θ) = max{µ(θ1), µ(θ2)}.

Remark 2.9. Since 1
2 ≤ µ(θ) ≤ 1 for all θ ≥ 0, then

ber (A) ≤ µ(θ)√
2
ber (|A|+ i |A∗|)

≤ 1√
2
ber (|A|+ i |A∗|) .

It is obvious that ber2 (A) ≤
∥∥|A|2 + |A∗|2

∥∥
ber

. Therefore

ber2 (A) ≤ µ2(θ)

2
ber (|A|+ i |A∗|) ≤ 1

2
ber2

(
|A|2 + i|A∗|2

)
≤ 1

2

∥∥|A|2 + i|A∗|2
∥∥
ber

.

Therefore, the inequality stated in Corollary 2.7 is stronger than the inequality
given in (1.8).

Theorem 2.6. Let H = H(Θ), A,B ∈ B (H), and A have the polar decompo-
sition A = U |A|. Also, let θB,k̂λ,Ak̂λ

= ∠f(|B|)k̂λ,g(|B|)U∗Ak̂λ
, and f , g be as in

Lemma 2.6. If either 0 ≤ θ1 < θB,k̂λ,Ak̂λ
≤ π

2 for all λ ∈ Θ or π
2 ≤ θB,k̂λ,Ak̂λ

<

θ2 ≤ π for all λ ∈ Θ, then for all r ≥ 1

berr(A∗B) ≤ µr (θ)

2

∥∥f2r (|B|) + (A∗g2 (|B∗|)A)r
∥∥
ber

,

where µ(θ) = max{µ(θ1), µ(θ2)}.
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Proof. Let k̂λ be the normalized reproducing kernel of H. By the Schwarz in-
equality, we have∣∣∣〈A∗Bk̂λ, k̂λ

〉∣∣∣ = ∣∣∣〈Bk̂λ, Ak̂λ

〉∣∣∣
≤ µ

(
θB,k̂λ,Ak̂λ

)√
⟨f2 (|B|) k̂λ, k̂λ⟩⟨g2 (|B∗|)Ak̂λ, Ak̂λ⟩

= µ
(
θB,k̂λ,Ak̂λ

)√
⟨f2 (|B|) k̂λ, k̂λ⟩⟨A∗g2 (|B∗|)Ak̂λ, k̂λ⟩.

Applying the arithmetic-geometric mean inequality and then the convexity of
function f(t) = tr, r ≥ 1, we get∣∣∣〈A∗Bk̂λ, k̂λ

〉∣∣∣ ≤ µ
(
θB,k̂λ,Ak̂λ

)(⟨f2 (|B|) k̂λ, k̂λ⟩+ ⟨A∗g2 (|B∗|)Ak̂λ, k̂λ⟩
2

)

≤ µ
(
θB,k̂λ,Ak̂λ

)(⟨f2 (|B|) k̂λ, k̂λ⟩r + ⟨A∗g2 (|B∗|)Ak̂λ, k̂λ⟩r

2

) 1
r

≤ µ
(
θB,k̂λ,Ak̂λ

)(⟨f2r (|B|) k̂λ, k̂λ⟩+ ⟨(A∗g2 (|B∗|)A)rk̂λ, k̂λ⟩
2

) 1
r

≤ µ
(
θB,k̂λ,Ak̂λ

)(⟨
(
f2r (|B|) + (A∗g2 (|B∗|)A)r

)
k̂λ, k̂λ⟩

2

) 1
r

.

Now, we have two cases:

(i) If 0 ≤ θ1 < θB,k̂λ,Ak̂λ
≤ π

2 for all λ ∈ Θ, it follows from the monotonicity

of µ that µ(θB,k̂λ,Ak̂λ
) ≤ µ(θ1), and so∣∣∣〈A∗Bk̂λ, k̂λ

〉∣∣∣r ≤ µr (θ1)

2

〈(
f2r (|B|) + (A∗g2 (|B∗|)A)r

)
k̂λ, k̂λ

〉
(ii) If π

2 ≤ θB,k̂λ,Ak̂λ
< θ2 ≤ π for all λ ∈ Θ, it follows from the monotonicity

of µ that µ(θB,k̂λ,Ak̂λ
) ≤ µ(θ2), and so∣∣∣〈A∗Bk̂λ, k̂λ

〉∣∣∣r ≤ µr (θ2)

2

〈(
f2r (|B|) + (A∗g2 (|B∗|)A)r

)
k̂λ, k̂λ

〉
.

By considering µ(θ) = max{µ(θ1), µ(θ2)}, if either 0 ≤ θ1 < θB,k̂λ,Ak̂λ
≤ π

2 or
π
2 ≤ θB,k̂λ,Ak̂λ

< θ2 ≤ π, then for all r ≥ 1∣∣∣〈A∗Bk̂λ, k̂λ

〉∣∣∣r ≤ µr (θ)

2

〈(
f2r (|B|) + (A∗g2 (|B∗|)A)r

)
k̂λ, k̂λ

〉
.

By taking the supremum over all λ ∈ Θ, we achieve the desired result. □

Remark 2.10. For f (t) = tα and g (t) = t1−α, where 0 ≤ α ≤ 1, in Theorem 2.6,
we get

berr(A∗B) ≤ µr (θ)

2

∥∥∥|B|2αr + (A∗ |B∗|2(1−α)A)r
∥∥∥
ber

.
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Putting α = 1, we obtain

berr(A∗B) ≤ µr (θ)

2

∥∥∥|B|2r + |A|2r
∥∥∥
ber

≤ 1

2

∥∥∥|B|2r + |A|2r
∥∥∥
ber

.

It demonstrates an improvement for [15, inequality (2.6)].

3. Conclusion

In this paper, we introduce an extension of the Cauchy-Schwarz inequality
based on the angle between vectors. Our results build upon the recent inequality
presented in [21, Theorem 2.3], allowing us to improve several existing Berezin-
type inequalities. Using this extension, we derive new extensions and sharper
bounds for Berezin-type inequalities related to bounded linear operators acting on
reproducing kernel Hilbert spaces. We highlight how our extension of the Cauchy-
Schwarz inequality can be utilized to establish several new inequalities involving
the Berezin number of bounded linear operators in a reproducing kernel Hilbert
space. These findings not only generalize but also improve existing inequalities
within the literature.
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