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ON THE APPROXIMATION BY RBF NEURAL NETWORKS

WITH TRANSLATIONS

AIDA KH. ASGAROVA

Abstract. This paper studies the approximation of continuous multi-
variate functions by radial basis function neural networks with two fixed
centers, in which all units share a common smoothing factor and incor-
porate additional translations. Under the assumption that the max and
min functions defined via the distance mappings from these centers are
continuous, we derive a formula for the exact computation of the ap-
proximation error in the uniform norm. Under this hypothesis, we also
obtain a characterization of best approximations from the considered
class in terms of extremal paths.

1. Introduction

Radial basis functions (RBFs) form a family of multivariate functions whose
values depend only on the distance from a prescribed center. In other words,
for a center c and a radius ρ, an RBF takes the same value at all points x
satisfying ∥x−c∥ = ρ. Based on RBFs, Broomhead and Lowe [9] introduced radial
basis function neural networks (RBFNNs), which have proved to be effective
tools for approximation problems. Initially developed for interpolation in high-
dimensional spaces, these networks are now widely used in various applications.
Typical areas include function approximation (see, e.g., [2, 19, 24, 15, 23, 30]),
prediction (see, e.g., [29, 32]), parameter estimation (see, e.g., [27, 28]), pattern
recognition (see, e.g., [22, 31]), and control problems (see, e.g., [18]).

A standard RBFNN consists of an input layer, a hidden layer, and an output
layer. Each hidden unit is associated with a center, and for an input vector
x = (x1, . . . , xd) it computes the distance to this center c ∈ Rd. The output of
a hidden unit is obtained by applying a nonlinear function to this distance, thus
producing a radial signal. The output layer forms a linear combination of all
hidden-unit outputs. For simplicity, we restrict attention to the case of a scalar
output. The extension to vector-valued outputs is immediate.

With d inputs and a single output, the network function is given by
m∑
i=1

wi g

(
∥x− ci∥

σi

)
.
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Here m ∈ N denotes the number of hidden units, (w1, . . . , wm) ∈ Rm are the
output weights, x ∈ Rd is the input vector, ci ∈ Rd are the centers, and σi > 0
are the smoothing factors. The function g : R → R is the activation function.

In practice, different activations may be used and the smoothing factors may
either vary across units or be kept fixed. We consider networks of the form

m∑
i=1

wi g

(
∥x− ci∥

σ
− θi

)
,

where a common smoothing factor σ is used for all hidden units and each term
is allowed an additional translation θi. For the universal approximation property
of such RBFNNs with translations, see [15].

It is worth noting that allowing translations increases the flexibility of the
network and improves its approximation capabilities. While a fixed smoothing
factor controls the scale of the radial responses, the shifts θi make it possible
to adjust their location and better capture local features of the target function.
Consequently, the class of realizable functions is enlarged and the approximation
error may be reduced without increasing the architectural complexity.

Let f(x) = f(x1, . . . , xd) be a continuous function defined on a compact set
Q ⊂ Rd. We approximate f by elements of the class

S = S(g, c1, c2, σ) =

{
m∑
i=1

wi g

(
∥x− ci∥

σ
− θi

)
: wi, θi ∈ R, ci ∈ {c1, c2}

}
.

Thus, the centers are restricted to two prescribed points c1 and c2, while the
weights and translations remain free parameters.

For example, when σ = 1, the set S(g, c1, c2, σ) coincides with the following
class of RBFNNs:

A = A(g, c1, c2) =

{
m∑
i=1

wi g(∥x− ci∥ − θi) : wi, θi ∈ R, ci = c1 or ci = c2

}
.

Certain approximation properties of this class were studied in [7, 15].
The error of approximation is defined by

E(f) = E(f,S) = inf
h∈S

∥f − h∥, ∥f − h∥ = max
x∈Q

|f(x)− h(x)|.

An element u ∈ S is called a best approximation to f from S if

∥f − u∥ = E(f,S).
The main goal of this paper is to derive a formula for the approximation error

for the class S(g, c1, c2, σ) and to obtain a characterization of best approxima-
tions from this class. We show that the quantity E(f) can be expressed in terms
of suitably defined functionals evaluated at the function f , and that best approx-
imants in S are characterized in terms of extremal paths.

2. Main results

Assume that Q ⊂ Rd and the centers c1, c2 ∈ Rd are fixed.

Definition 2.1. A finite or infinite ordered set

p = (p1,p2, . . .) ⊂ Rd, pi ̸= pi+1,



ON THE APPROXIMATION BY RBF NEURAL NETWORKS . . . 3

is called a path with respect to the centers c1 and c2 if it satisfies one of the
following conditions:

(1) ∥p1 − c1∥ = ∥p2 − c1∥, ∥p2 − c2∥ = ∥p3 − c2∥, ∥p3 − c1∥ = ∥p4 − c1∥,
and so on, alternating between the centers.

(2) ∥p1 − c2∥ = ∥p2 − c2∥, ∥p2 − c1∥ = ∥p3 − c1∥, ∥p3 − c2∥ = ∥p4 − c2∥,
and so on, alternating in the opposite order.

In Definition 2.1, the distances are measured alternately from two fixed points.
There are, however, various generalizations of this concept. For example, instead
of alternating distances from two fixed points, one may consider two fixed vectors
a1,a2 ∈ Rd and alternate the scalar products ai · x with these vectors. Paths
defined in terms of two fixed vectors in R2 were first studied by Braess and
Pinkus [8], who used them to analyze whether a set of points {xi}mi=1 ⊂ R2

possesses the non-interpolation property for so-called ridge functions. Detailed
discussions on ridge functions and their properties can be found in [13, 26]. Paths
involving two fixed vectors in Rd have been further studied in several other works
(see, e.g., [12, 14]).

In R2, when the two vectors are taken as the coordinate directions, the se-
quence of points (p1,p2, . . .) is called a “bolt of lightning” (see [1]). This con-
cept, originally referred to as “permissible lines,” was introduced by Diliberto
and Straus [10] and has since played a central role in the approximation of multi-
variate functions by sums of univariate functions and sums of two algebras (see,
for instance, [4, 5, 11, 20, 21]). The term “bolt of lightning” is attributed to
Arnold [1]. Ismailov [13] later generalized this concept by introducing paths de-
fined with respect to a finite set of functions, extending both the idea of bolts
of lightning and the notion of paths associated with two fixed vectors. These
generalized paths have proved to be highly effective in problems concerning rep-
resentation by linear superpositions (see, e.g., [13]).

In the following discussion, for simplicity, we will use the term “path” instead
of the longer phrase “path with respect to the centers c1 and c2”. A finite path
(p1,p2, ...,p2n) is considered closed if (p1,p2, ...,p2n,p1) also forms a path.

Let us also consider the following class of radial functions, denoted by D.

D = {r1(∥x− c1∥) + r2(∥x− c2∥) : ri ∈ C(R), i = 1, 2} .
In the following, we use the proximinality of D. Recall that D is said to be

proximinal in C(Q) if for every f ∈ C(Q) there exists v ∈ D such that

∥f − v∥ = inf
h∈D

∥f − h∥.

It is important to note that in the definition of our class S(g, c1, c2, σ), each
term wig

(
∥x−ci∥

σ − θi

)
can be interpreted as a function hσ(∥x− ci∥), where ci is

either c1 or c2. The function hσ is dependent on the parameters wi and θi. It is
clear that any element u ∈ S(g, c1, c2, σ) belongs to the class of radial functions
D. In other words, we have S(g, c1, c2, σ) ⊂ D.

For every closed path p = (p1,p2, ...,p2n) we define the following functional:

Gp(f) =
1

2n

2n∑
k=1

(−1)k+1f(pk).
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This functional, corresponding to the closed path p, possesses the following ob-
vious properties:

(a) If r ∈ D, then Gp(r) = 0.
(b) ∥Gp∥ ≤ 1 and if pi ̸= pj for all i ̸= j, 1 ≤ i, j ≤ 2n , then ∥Gp∥ = 1.
Now consider the concept of extremal paths.

Definition 2.2. A finite or infinite path (p1,p2, · · · ) is said extremal for a
function f ∈ C(Q) if it satisfies one of the following conditions:

(1) f(pi) = (−1)i∥f∥, i = 1, 2, · · · , or
(2) f(pi) = (−1)i+1∥f∥, i = 1, 2, · · · .

The images of the distance functions ∥x− c1∥ and ∥x− c2∥ on the compact
set Q are denoted by X1 and X2, respectively. For any function h ∈ C(Q), let us
define the following real-valued functions:

s1(a) = max
x∈Q

∥x−c1∥=a

h(x), s2(a) = min
x∈Q

∥x−c1∥=a

h(x), a ∈ X1, (2.1)

w1(b) = max
x∈Q

∥x−c2∥=b

h(x), w2(b) = min
x∈Q

∥x−c2∥=b

h(x), b ∈ X2. (2.2)

The following theorem, which implies the continuity of the above functions, is
taken from [3]:

Theorem 2.1 (see [3]). Let Q ⊂ Rd be a compact set. The functions s1 and s2
are continuous on X1 (and w1 and w2 are continuous on X2) for any h ∈ C(Q),
provided that the following condition holds:

for any two points x,y ∈ Q satisfying

∥x− c1∥ = ∥y − c1∥ (respectively ∥x− c2∥ = ∥y − c2∥),

and for any sequence {xn} ⊂ Q converging to x, there exists a sequence {yn} ⊂ Q
converging to y such that

∥xn − c1∥ = ∥yn − c1∥ (respectively ∥xn − c2∥ = ∥yn − c2∥)

for all n = 1, 2, . . ..

The following theorem establishes a formula for the approximation error for
the class S in terms of closed-path functionals.

Theorem 2.2. Let Q ⊂ Rd be a compact set such that D is proximinal in
C(Q). Let the activation function g ∈ C(R) be bounded, nonconstant, and have
a finite limit at +∞ or −∞. Assume further that the functions (2.1) and (2.2)
are continuous. Then, for any f ∈ C(Q), the approximation error with respect
to the RBFNN class S = S(g, c1, c2, σ) is given by the formula

E(f,S) = sup
p⊂Q

|Gp(f)|,

where the supremum is taken over all closed paths in Q.

Proof. We begin by establishing the inequality

sup
p⊂Q

|Gp(f)| ≤ inf
h∈S

∥f − h∥, (2.3)
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By the linearity of the functional Gp and its properties (a) and (b), for any
closed path p ⊂ Q and any function r ∈ D, we have

|Gp(f)| = |Gp(f − r)| ≤ ∥f − r∥.
Since p and r are arbitrary, it follows that

sup
p⊂Q

|Gp(f)| ≤ inf
r∈D

∥f − r∥.

Because S ⊂ D, we obtain

inf
r∈D

∥f − r∥ ≤ inf
h∈S

∥f − h∥,

and thus (2.3) holds.

Next, let v ∈ D be a best approximation to f in D. Put

v(x) = r1 (∥x− c1∥) + r2 (∥x− c2∥) = r1

(
σ
∥x− c1∥

σ

)
+ r2

(
σ
∥x− c2∥

σ

)
= v1

(
∥x− c1∥

σ

)
+ v2

(
∥x− c2∥

σ

)
,

where ri, vi ∈ C(R), i = 1, 2 and each vi depends on the corresponding ri.
Set f1 := f − v. Suppose first that there exists a closed path p0 = (p1, . . . ,pn)

in Q that is extremal for f1. Then, for the functional Gp0 , we can write that:

|Gp0(f)| = |Gp0(f − v)| = ∥f − v∥ . (2.4)

Since g ∈ C(R) is bounded, nonconstant, and has a finite limit at +∞ or −∞,
it follows from the classical results on the density of translates (see [25]) that the
set of finite linear combinations{

m∑
i=1

cig(t− θi) : m ∈ N, ci, θi ∈ R

}
is dense in C(R) with respect to uniform convergence on compact sets.

Therefore, for any ε > 0, there exist m1,m2 ∈ N and real numbers cij , θij such
that for all t ∈ [a, b], where [a, b] contains the sets{

∥x− c1∥
σ

: x ∈ Q

}
,

{
∥x− c2∥

σ
: x ∈ Q

}
,

we have ∣∣∣∣∣∣v1(t)−
m1∑
j=1

c1jg(t− θ1j)

∣∣∣∣∣∣ < ε

2
(2.5)

and ∣∣∣∣∣∣v2(t)−
m2∑
j=1

c2jg(t− θ2j)

∣∣∣∣∣∣ < ε

2
. (2.6)

Substituting t = ∥x−c1∥
σ in (2.5) and t = ∥x−c2∥

σ in (2.6) gives∣∣∣∣∣v1
(
∥x− c1∥

σ

)
+ v2

(
∥x− c2∥

σ

)
−

m∑
i=1

wig

(
∥x− ci∥

σ
− θi

)∣∣∣∣∣ < ε,

where m = m1 +m2 and each ci equals either c1 or c2.
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Hence,∥∥∥∥∥f −
m∑
i=1

wig

(
∥x− ci∥

σ
− θi

)∥∥∥∥∥ ≤ ∥f − v∥+

∥∥∥∥∥v −
m∑
i=1

wig

(
∥x− ci∥

σ
− θi

)∥∥∥∥∥
< ∥f − v∥+ ε.

Taking the infimum on the left-hand side and using (2.4), we obtain

E(f,S) < |Gp0(f)|+ ε,

and by letting ε → 0,
E(f,S) ≤ |Gp0(f)|.

Together with (2.3), this implies

E(f,S) = sup
p⊂Q

|Gp(f)|,

proving the theorem in the case where an extremal closed path exists.

Now consider the case where no closed extremal path for f1 exists. We will
show that for any n ∈ N, there exists an extremal path of length n for f1.

Suppose, for contradiction, that there is a positive integer N such that every
extremal path for f1 has length at most N .

Define sequences of functions fn for n ≥ 2 by

fn = fn−1 − u1,n−1 − u2,n−1,

where

u1,n−1(∥x− c1∥) =
1

2

 max
y∈Q

∥y−c1∥=∥x−c1∥

fn−1(y) + min
y∈Q

∥y−c1∥=∥x−c1∥

fn−1(y)

 ,

and

u2,n−1(∥x− c2∥) =
1

2

(
max
y∈Q

∥y−c2∥=∥x−c2∥

(
fn−1(y)− u1,n−1(∥y − c1∥)

)

+ min
y∈Q

∥y−c2∥=∥x−c2∥

(
fn−1(y)− u1,n−1(∥y − c1∥)

))
.

By the assumption of the theorem each fn is continuous, since the defining for-
mulas involve only the max and min functions. By continuity of fn and properties
of u1,n−1, u2,n−1, it can be shown that

∥fn∥ = E(f,S) for all n.

Moreover, one can show that if every extremal path for f1 has length at most
N , then every extremal path for f2 has length at most N − 1, and similarly for
f3, f4, . . . . After N +1 steps we reach a contradiction, since fN+1 would have no
extremal path, while ∥fN+1∥ = E(f) and the norm of a continuous function on
a compact set must be attained. Therefore, for every n, there exists an extremal
path of length n for f1.

Consider now the sequence of extremal paths pn = (pn
1 , ...,p

n
n), n = 1, 2, .... By

assumption, every function in C(Q) has a best approximation inD. Consequently,
the lengths of irreducible paths in Q (i.e., paths of minimal length joining their
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first and end points) are bounded by some positive integer N0 (see [17, p.58]).
Hence, any path in Q whose length exceeds N0 can be made closed by adding at
most N0 points. We say that a path (p1, ...,pn) ⊂ Q can be made closed if there
exist points qi ∈ Q, i = 1, ...,m, such that (p1, ...,pn,q1, ...,qm) is a closed path.

Therefore, any extremal path pn = (pn
1 , . . . ,p

n
n) with n > N0 can be extended

to a closed path

pmn
n = (pn

1 , . . . ,p
n
n,q

n
n+1, . . . ,q

n
n+mn

),

where mn ≤ N0.
For the functional Gpmn

n
, the following bounds hold:∣∣Gpmn

n
(f)
∣∣ = ∣∣Gpmn

n
(f − v)

∣∣ ≤ n ∥f − v∥+mn ∥f − v∥
n+mn

= ∥f − v∥ , (2.7)

and ∣∣Gpmn
n

(f)
∣∣ ≥ n ∥f − v∥ −mn ∥f − v∥

n+mn
=

n−mn

n+mn
∥f − v∥ . (2.8)

From (2.7) and (2.8), we have

sup
pmn
n

|Gpmn
n

(f)| = ∥f − v∥,

and consequently, by applying the method involving the function f−v = f−v1−v2
in the case where a closed extremal path exists, we obtain the inequality

E(f,S) ≤ sup
pmn
n

|Gpmn
n

(f)| ≤ sup
p⊂Q

|Gp(f)|. (2.9)

Combining (2.3) and (2.9) yields

E(f,S) = sup
p⊂Q

|Gp(f)|,

where the supremum is taken over all closed paths in Q.
This completes the proof. □

In approximation theory, best approximations u from some class of approxi-
mants are often characterized by an alternation principle describing the structure
of the difference f − u. In the present setting, this role is played by extremal
paths. The closed path functionals Gp annihilate the class D and therefore de-
pend only on the difference f −u. This makes it possible to formulate a criterion
for best approximations in the class S in terms of extremal paths.

Theorem 2.3. Assume the hypotheses of Theorem 2.2 hold. Let f ∈ C(Q)
and let u ∈ S = S(g, c1, c2, σ). Then u is a best approximation to f from S (that
is, ∥f − u∥ = E(f,S)) if and only if one of the following two conditions holds:

(1) There exists a closed path p ⊂ Q that is extremal for f − u.
(2) For every N ∈ N there exists a (not necessarily closed) path p ⊂ Q

consisting of N points that is extremal for f − u.

Proof. Let u ∈ S and set r := f − u.

“If” part. Assume that one of the conditions (1) or (2) holds.

Case (1): existence of a closed extremal path for r. Let p0 = (p1, . . . ,p2n) ⊂ Q
be a closed path that is extremal for r = f − u. Then, by Definition 2.2, either
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r(pk) = (−1)k∥r∥ for all k, or r(pk) = (−1)k+1∥r∥ for all k. In either case,
substituting into the definition of Gp0 gives

Gp0(r) =
1

2n

2n∑
k=1

(−1)k+1r(pk) = ±∥r∥,

and therefore
|Gp0(r)| = ∥r∥ = ∥f − u∥. (2.10)

Since u ∈ S ⊂ D and Gp0 annihilates D (property (a)), we have Gp0(u) = 0, and
thus

Gp0(f) = Gp0(f − u) = Gp0(r).

Combining this with (2.10) yields

|Gp0(f)| = ∥f − u∥. (2.11)

For any h ∈ S, Theorem 2.2 implies

sup
p⊂Q

|Gp(f)| = E(f,S) ≤ ∥f − h∥. (2.12)

Applying (2.12) with h = u and using (2.11), we obtain

E(f,S) ≤ ∥f − u∥ = |Gp0(f)| ≤ sup
p⊂Q

|Gp(f)| = E(f,S).

Hence ∥f − u∥ = E(f,S), i.e. u is a best approximation to f from S.
Case (2): arbitrarily long extremal paths for r. Assume that for every N ∈ N
there exists a (not necessarily closed) path pN = (pN

1 , . . . ,pN
N ) ⊂ Q that is

extremal for r = f − u.
As in the proof of Theorem 2.2, the assumption that every function in C(Q)

admits a best approximation in D implies that the lengths of irreducible paths
in Q are bounded by some integer N0 (see [17, p. 58]). Consequently, any path
in Q of length exceeding N0 can be extended to a closed path by adding at most
N0 points.

Fix N > N0 and extend the extremal path pN to a closed path

p̃N = (pN
1 , . . . ,pN

N ,qN
N+1, . . . ,q

N
N+mN

), mN ≤ N0,

with qN
N+1, . . . ,q

N
N+mN

∈ Q chosen so that p̃N is a closed path.

Since u ∈ S ⊂ D, we have Gp̃N (u) = 0 and therefore

Gp̃N (f) = Gp̃N (f − u) = Gp̃N (r). (2.13)

We estimate |Gp̃N (r)| using the same argument as in (2.7)–(2.8). Along the first
N points of p̃N , the values of r alternate between ±∥r∥, hence the contribution
of these N points to the alternating sum has absolute value exactly N∥r∥. For
the added points we only know |r| ≤ ∥r∥, so their contribution is bounded in
absolute value by mN∥r∥. Consequently,

N −mN

N +mN
∥r∥ ≤ |Gp̃N (r)| ≤ ∥r∥.

Combining this with (2.13) yields

N −mN

N +mN
∥f − u∥ ≤ |Gp̃N (f)| ≤ ∥f − u∥.
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Since mN ≤ N0 while N → ∞, the factor N−mN
N+mN

tends to 1. Hence, for every

ε > 0 there exists N such that

|Gp̃N (f)| > ∥f − u∥ − ε,

and therefore
sup
p⊂Q

|Gp(f)| ≥ ∥f − u∥.

On the other hand, applying (2.12) with h = u gives

sup
p⊂Q

|Gp(f)| ≤ ∥f − u∥.

Thus supp⊂Q |Gp(f)| = ∥f − u∥, and by Theorem 2.2 we conclude

E(f,S) = sup
p⊂Q

|Gp(f)| = ∥f − u∥.

Hence u is a best approximation to f from S in Case (2) as well.

“Only if” part. Assume that u ∈ S is a best approximation to f from S, that
is,

∥f − u∥ = E(f,S). (2.14)

By Theorem 2.2,
E(f,S) = sup

p⊂Q
|Gp(f)|.

Combining with (2.14) yields

sup
p⊂Q

|Gp(f)| = ∥f − u∥ = ∥r∥.

Since u ∈ S ⊂ D and Gp annihilates D, we have Gp(f) = Gp(f − u) = Gp(r) for
every closed path p ⊂ Q, and thus

sup
p⊂Q

|Gp(r)| = ∥r∥. (2.15)

We now show that u is also a best approximation to f from D. Since S ⊂ D,
we have E(f,D) ≤ E(f,S). On the other hand, by the argument used in the
proof of (2.3) (with D in place of S),

sup
p⊂Q

|Gp(f)| ≤ E(f,D).

Hence, by (2.14) and Theorem 2.2,

E(f,S) = sup
p⊂Q

|Gp(f)| ≤ E(f,D) ≤ E(f,S),

which implies ∥f − u∥ = E(f,D). Thus u is a best approximation to f from D
as well.

If there exists a closed path p0 ⊂ Q such that |Gp0(r)| = ∥r∥, then, as in

Case (1), equality in the alternating average implies that r(pk) = ±(−1)k∥r∥
along p0, i.e. p0 is extremal for r. Hence condition (1) holds.

If no such closed path exists, then the supremum in (2.15) is not attained. Since
u is also a best approximation to f from D, the same extremal-path alternative
used in the proof of Theorem 2.2 applies to the difference r = f − u. In this
situation, for every N ∈ N there exists an extremal path of length N for r. Thus
condition (2) holds. This completes the proof. □
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Remark 2.1. Theorem 2.3 provides a characterization of best approximations
from the class S, not an existence statement. In particular, it does not assert
that S is proximinal in C(Q). Even when E(f,S) admits the closed path formula
of Theorem 2.2, the infimum defining E(f,S) may fail to be attained by any
element of S. Equivalently, a best approximation from S may not exist for a
given f . Theorem 2.3 states that whenever a best approximant u ∈ S exists, it
is exactly characterized by the extremal-path alternative (1)–(2).

Remark 2.2. In [6], a similar but distinct class of RBFNNs was consid-
ered. That class incorporates varying smoothing factors, which make its con-
struction and implementation more complex than in the case studied here, where
all smoothing factors are fixed. More precisely, the following set of RBFNNs was
considered:

G = G(g, c1, c2) =

{
m∑
i=1

wig

(
∥x− ci∥

σi
− θi

)
: wi, σi, θi ∈ R; ci = c1 or ci = c2

}
.

Although some of the ideas in this paper are inspired by those in [6], the main
result of this work (Theorem 2.2) cannot be derived directly from the results
of [6], since allowing an arbitrary non-polynomial activation function there in-
evitably requires the presence of varying smoothing factors. In addition, if a
non-polynomial activation function turns out to be the activation function con-
sidered here, then the main result of [6] follows directly from Theorem 2.2 as
a corollary, since S(g, c1, c2, σ) ⊂ G(g, c1, c2) (hence E(f,G) ≤ E(f,S)) and
supp⊂Q |Gp(f)| ≤ E(f,G). The latter inequality can be proved in the same man-
ner as the proof of (2.3).

Remark 2.3. In [7], the approximation error of the following class of RBFNNs
was evaluated:

A = A(g, c1, c2) =

{
m∑
i=1

wi g(∥x− ci∥ − θi) : wi, θi ∈ R, ci = c1 or ci = c2

}
,

where g is a non-mean periodic function (for mean periodic functions, see [16]).
It is clear from the proof technique that Theorem 2.2 remains valid not only
for the practically useful functions considered here, but also for any non-mean
periodic activation function. Moreover, the approximating class S(g, c1, c2, σ) is
more general, as it allows an arbitrary fixed smoothing factor.

The present paper extends the results of [7] in two directions. First, it treats a
more general class of RBFNNs by allowing an arbitrary fixed smoothing factor.
Second, it provides a characterization of best approximations in terms of extremal
paths, which was not addressed in [7].
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