Proceedings of the Institute of Mathematics and Mechanics, National Academy of Sciences of Azerbaijan Volume 40, Number 1, 2014, Pages 122–146

TWO-WEIGHTED INEQUALITY FOR p-ADMISSIBLE $B_{k,n}$ -SINGULAR OPERATORS IN WEIGHTED LEBESGUE SPACES

VAGIF S. GULIYEV, FATAI A. ISAYEV, AND ZAMAN V. SAFAROV

Abstract. In this paper, we study the boundedness of p-admissible singular operators, associated with the Laplace-Bessel differential operator $B_{k,n} = \sum_{i=1}^n \frac{\partial^2}{\partial x_i^2} + \sum_{j=1}^k \frac{\gamma_j}{\partial x_j} \frac{\partial}{\partial x_j}$ (p-admissible $B_{k,n}$ -singular operators) on a weighted Lebesgue spaces $L_{p,\omega,\gamma}(\mathbb{R}^n_{k,+})$ including their weak versions. These conditions are satisfied by most of the operators in harmonic analysis, such as the $B_{k,n}$ -maximal operator, $B_{k,n}$ -singular integral operators and so on. Sufficient conditions on weighted functions ω and ω_1 are given so that p-admissible $B_{k,n}$ -singular operators are bounded from $L_{p,\omega,\gamma}(\mathbb{R}^n_{k,+})$ to $L_{p,\omega_1,\gamma}(\mathbb{R}^n_{k,+})$ for 1 and weak <math>p-admissible $B_{k,n}$ -singular operators are bounded from $L_{p,\omega,\gamma}(\mathbb{R}^n_{k,+})$ to $L_{p,\omega_1,\gamma}(\mathbb{R}^n_{k,+})$ for $1 \le p < \infty$.

1. Introduction

The singular integral operators considered by S. Mihlin [26] and A. Calderon and A. Zygmund [7] are playing an important role in the theory of Harmonic Analysis and in particular, in the theory of partial differential equations. M. Klyuchantsev [25] and I. Kipriyanov and M. Klyuchantsev [24] have firstly introduced and investigated the boundedness in L_p -spaces of multidimensional singular integrals, generated by the $B_{1,n}$ -Laplace-Bessel differential operator ($B_{1,n}$ -singular integrals), where

$$B_{1,n} = B_1 + \sum_{j=2}^{n} \frac{\partial^2}{\partial x_j^2}, \ B_1 = \frac{\partial^2}{\partial x_1^2} + \frac{\gamma}{x_1} \frac{\partial}{\partial x_1}, \ \gamma > 0.$$

I.A. Aliev and A.D. Gadjiev [5], A.D. Gadjiev and E.V. Guliyev [11] and E.V. Guliyev [13] have studied the boundedness of $B_{1,n}$ singular integrals in weighted L_p -spaces with radial and general weights consequently. The maximal functions, singular integrals, potentials and related topics associated with the Laplace-Bessel differential operator $B_{k,n}$ —which is known as an important differential operator in analysis and its applications, have been the research areas of many mathematicans

 $^{2000\} Mathematics\ Subject\ Classification.\ 42B25.$

Key words and phrases. weighted Lebesgue space; $B_{k,n}$ -Laplace-Bessel differential operator; p-admissible $B_{k,n}$ -singular operators; two-weighted inequality.

such as I. Kipriyanov and M. Klyuchantsev [24, 25], L. Lyakhov [29, 30], A.D. Gadjiev and I.A. Aliev [4, 5], I.A. Aliev and S. Bayrakci [2, 3], V.S. Guliyev [15, 16, 17] and others.

In the paper, we shall prove the boundedness of p-admissible singular operators, associated with the Laplace-Bessel differential operator $B_{k,n} = \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2} + \sum_{i=1}^{k} \frac{\gamma_j}{x_j} \frac{\partial}{\partial x_j}$ (p-admissible $B_{k,n}$ -singular operators) on a weighted L_p spaces. Sufficient conditions on weighted functions ω and ω_1 are given so that p-admissible $B_{k,n}$ singular operators are bounded from $L_{p,\omega,\gamma}(\mathbb{R}^n_{k,+})$ to $L_{p,\omega,\gamma}(\mathbb{R}^n_{k,+})$ for 1and weak p-admissible $B_{k,n}$ -singular operators are bounded from $L_{p,\omega,\gamma}(\mathbb{R}^n_{k,+})$ to $L_{p,\omega_1,\gamma}(\mathbb{R}^n_{k,+})$ for $1 \leq p < \infty$. Note that, our results in the case k=1 were proved in [13], which is some generalization of the paper by I. A. Aliev, A. D. Gadjiev [5].

We point out that the *p*-admissible $B_{k,n}$ -singular operators (see Theorem 2.1). These conditions are satisfied by many interesting operators in harmonic analysis, such as the $B_{k,n}$ -Riesz transforms (see [9, 10]), $B_{k,n}$ -singular integral operators (for example, for k = 1 see [5, 11, 13, 24, 25]), $B_{k,n}$ -Hardy-Littlewood maximal operators ([18], for n = k = 1 see [32], for k = 1 see [17] and for k = n see [15]) and so on.

2. Notations and Background

Suppose that \mathbb{R}^n is the *n*-dimensional Euclidean space, $x = (x_1, \dots, x_n)$, $\xi = (\xi_1, \dots, \xi_n)$ are vectors in \mathbb{R}^n , $(x, \xi) = x_1 \xi_1 + \dots + x_n \xi_n$, $|x| = \sqrt{(x, x)}$, $x = (x', x''), x' = (x_1, \dots, x_k), x'' = (x_{k+1}, \dots, x_n).$ Let $\mathbb{R}_{++}^k = \{x \in \mathbb{R}^k : x_1 > 0, \dots, x_k > 0\}, \mathbb{R}_{k,+}^n = \{x = (x_1, \dots, x_n) : x_1, x_2, \dots, x_k > 0\}, 1 \le k \le n,$ $S_{k,+} = \{ x \in \mathbb{R}^n_{k,+} : |x| = 1 \}.$

For $x \in \mathbb{R}_{k+}^n$ and r > 0, we denote by $E(x,r) = \{y \in \mathbb{R}_{k+}^n : |x-y| < r\}$ the open ball centered at x of radius r, and by ${}^{\complement}E(x,r) = \mathbb{R}^n_{k+1} \setminus E(x,r)$ denote its complement, $E'(x',r) = \{y' \in \mathbb{R}^k_{++}: |x'-y'| < r\}, \ ^{\complement}E'(x',r) = \mathbb{R}^k_{++} \setminus E'(x',r).$ For measurable set $E \subset \mathbb{R}^n_{k,+}$ denote $|E|_{\gamma} = \int_E (x')^{\gamma} dx$, then $|E(0,r)|_{\gamma} = \int_E (x')^{\gamma} dx$

 $\omega(n,\gamma)r^{n+|\gamma|}$, where $\gamma=(\gamma_1\ldots,\gamma_k), (x')^{\gamma}=x_1^{\gamma_1}\ldots x_k^{\gamma_k}$ and $\omega(n,\gamma)=|E(0,1)|_{\gamma}$.

An almost everywhere positive and locally integrable function $\omega: \mathbb{R}^n_{k,+} \to \mathbb{R}$ will be called a weight. We shall denote by $L_{p,\omega,\gamma}(\mathbb{R}^n_{k,+})$ the set of all measurable functions f on $\mathbb{R}^n_{k,+}$ such that the norm

$$||f||_{L_{p,\omega,\gamma}(\mathbb{R}^n_{k,+})} \equiv ||f||_{p,\omega,\gamma;\mathbb{R}^n_{k,+}} = \left(\int_{\mathbb{R}^n_{k,+}} |f(x)|^p \omega(x)(x')^{\gamma} dx\right)^{1/p}, \qquad 1 \le p < \infty$$

is finite. For $\omega = 1$ the space $L_{p,\omega,\gamma}(\mathbb{R}^n_{k,+})$ is denoted by $L_{p,\gamma}(\mathbb{R}^n_{k,+})$, and the norm $||f||_{L_{p,\omega,\gamma}(\mathbb{R}^n_{k+1})}$ by $||f||_{L_{p,\gamma}(\mathbb{R}^n_{k+1})}$.

The operator of generalized shift $(B_{k,n}$ -shift operator) is defined by the following way (see [18], [30]):

$$T^{y}f(x) = C_{\gamma,k} \int_{0}^{\pi} ... \int_{0}^{\pi} f((x',y')_{\beta}, x'' - y'') d\nu(\beta),$$

where

$$C_{\gamma,k} = \pi^{-\frac{k}{2}} \Gamma^{-1} \left(\frac{|\gamma|}{2} \right) \prod_{i=1}^{k} \Gamma(\frac{\nu_i + 1}{2}), \ (x', y')_{\beta} = ((x_1, y_1)_{\beta_1} ... (x_k, y_k)_{\beta_k}), (x_i, y_i)_{\beta_i} = \sum_{k=1}^{k} \Gamma(\frac{|\gamma|}{2}) \prod_{i=1}^{k} \Gamma(\frac{\nu_i + 1}{2}), \ (x', y')_{\beta} = ((x_1, y_1)_{\beta_1} ... (x_k, y_k)_{\beta_k}), (x_i, y_i)_{\beta_i} = \sum_{k=1}^{k} \Gamma(\frac{|\gamma|}{2}) \prod_{i=1}^{k} \Gamma(\frac{\nu_i + 1}{2}), \ (x', y')_{\beta} = ((x_1, y_1)_{\beta_1} ... (x_k, y_k)_{\beta_k}), (x_i, y_i)_{\beta_i} = \sum_{k=1}^{k} \Gamma(\frac{|\gamma|}{2}) \prod_{i=1}^{k} \Gamma(\frac{\nu_i + 1}{2}), \ (x', y')_{\beta} = ((x_1, y_1)_{\beta_1} ... (x_k, y_k)_{\beta_k}), (x_i, y_i)_{\beta_i} = \sum_{k=1}^{k} \Gamma(\frac{|\gamma|}{2}) \prod_{i=1}^{k} \Gamma(\frac{\nu_i + 1}{2}), \ (x', y')_{\beta} = ((x_1, y_1)_{\beta_1} ... (x_k, y_k)_{\beta_k}), (x_i, y_i)_{\beta_i} = ((x_1, y_1)_{\beta_1} ... (x_k, y_k)_{\beta_i}), (x_i, y_i)_{\beta_i} = ((x_1, y_1)_{\beta_i} ... (x_k, y_k)_{\beta_i}), (x_i, y_i)_{\beta_i} = ((x_1, y_1)_{\beta_i} ... (x_k, y_k)_{\beta_i}), (x_i, y_i)_{\beta_i} = ((x_1, y_1)_{\beta_i} ... (x_k, y_k)_{\beta_i}), (x_i, y_i)_{\beta_i} = ((x_i, y_i)_{\beta_i} ... (x_k, y_k)_{\beta_i}), (x_i, y_i)_{\beta_i} = ((x_i, y_i)_{\beta_i} ... (x_i, y_i)_{\beta_i} ... (x_i, y_i)_{\beta_i} ... (x_i, y_i)_{\beta_i} ... (x_i, y_i)_{\beta_i} .$$

$$(x_i^2 - 2x_i y_i \cos \beta_i + y_i^2)^{1/2}, \ 1 \le i \le k, \ d\nu(\beta) = \prod_{i=1}^k \sin^{\gamma_i - 1} \beta_i \, d\beta_1 \dots d\beta_k.$$
Note that this shift as well as is also because of a sixty B . Leading the B is B .

Note that this shift operator is closely connected with $B_{k,n}$ -Laplace-Bessel singular differential operators (see [18], [30]).

The translation operator T^y generated the corresponding $B_{k,n}$ -convolution

$$(f \otimes g)(x) = \int_{\mathbb{R}^n_{k,+}} f(y)[T^y g(x)](y')^{\gamma} dy,$$

for which the Young inequality

$$||f \otimes g||_{L_{r,\gamma}} \le ||f||_{L_{p,\gamma}} ||g||_{L_{q,\gamma}}, \quad 1 \le p, q, r \le \infty, \quad \frac{1}{p} + \frac{1}{q} = \frac{1}{r} + 1$$

holds.

Lemma 2.1. [28] Let $1 \leq p \leq \infty$. Then for all $y \in \mathbb{R}^n_{k,+}$, $T^y f$ belongs $L_{p,\gamma}(\mathbb{R}^n_{k,+})$ and

$$||T^y f(\cdot)||_{L_{p,\gamma}} \le ||f||_{L_{p,\gamma}}.$$
 (2.1)

Definition 2.1. A function K defined on $\mathbb{R}^n_{k,+}$, is said to be $B_{k,n}$ -singular kernel in the space $\mathbb{R}^n_{k,+}$ if

- i) $K \in C^{\infty}(\mathbb{R}^n_{k,+})$;
- ii) $K(rx) = r^{-n-|\gamma|}K(x)$ for each $r > 0, x \in \mathbb{R}^n_{k,+}$;
- iii) $\int_{S_{k,+}} K(x) x^{\gamma} d\sigma(x) = 0$, where $d\sigma$ is the element of area of the $S_{k,+}$.

The operator T is called sublinear, if for all $\lambda, \mu > 0$ and for all f and g in the domain of T

$$|T(\lambda f + \mu g)(x)| \le \lambda |Tf(x)| + \mu |Tg(x)|.$$

Definition 2.2. (p-admissible $B_{k,n}$ -singular operator). Let 1 . A sublinear operator <math>T will be called p-admissible $B_{k,n}$ -singular operator, if:

1) T satisfies the size condition of the form

$$\chi_{E(x,r)}(z) \left| T \left(f \chi_{\mathbb{R}^{n}_{k,+} \setminus E(x,2r)} \right)(z) \right| \\ \leq C \chi_{E(x,r)}(z) \int_{\mathbb{R}^{n}_{k,+} \setminus E(x,2r)} T^{y} |x|^{-n-|\gamma|} |f(y)| (y')^{\gamma} dy \quad (2.2)$$

for $x \in \mathbb{R}^n_{k,+}$ and r > 0;

2) T is bounded in $L_{p,\gamma}(\mathbb{R}^n_{k,+})$.

Definition 2.3. (weak p-admissible $B_{k,n}$ -singular operator). Let $1 \leq p < \infty$. A sublinear operator T will be called the weak p-admissible $B_{k,n}$ -singular operator, if:

- 1) T satisfies the size condition (2.2).
- 2) T is bounded from $L_{p,\gamma}(\mathbb{R}^n_{k,+})$ to the weak $WL_{p,\gamma}(\mathbb{R}^n_{k,+})$.

Remark 2.1. Note that p-admissible singular operators were introduced and their boundedness on vanishing generalized Morrey spaces was studied in [31]. Also Φ -admissible singular operators and weak Φ -admissible singular operators were introduced and their boundedness on generalized Orlicz-Morrey spaces was studied in [19, 21].

First, we establish the boundedness in weighted $L_{p,\gamma}$ spaces for a large class of p-admissible $B_{k,n}$ -singular operator.

Theorem 2.1. Let $p \in (1, \infty)$ and T be a p-admissible $B_{k,n}$ -singular operators. Moreover, let $\omega(x)$, $\omega_1(x)$ be weight functions on $\mathbb{R}^n_{k,+}$ and the following three conditions are satisfied:

(a) there exist b > 0 such that

$$\sup_{|x|/8 < |y| \le 8|x|} \omega_1(y) \le b \,\omega(x) \quad \text{for a.e. } x \in \mathbb{R}^n_{k,+},$$

$$(b) \quad \mathcal{A} \equiv \sup_{r>0} \left(\int_{\mathfrak{c}_{E(0,2r)}} \omega_1(x)|x|^{-(n+|\gamma|)p} (x')^{\gamma} dx \right) \left(\int_{E(0,r)} \omega^{1-p'}(x) (x')^{\gamma} dx \right)^{p-1} < \infty,$$

$$(c) \quad \mathcal{B} \equiv \sup_{r>0} \left(\int_{E(0,r)} \omega_1(x)(x')^{\gamma} dx \right) \left(\int_{\mathfrak{C}_{E(0,2r)}} \omega^{1-p'}(x)|x|^{-(n+|\gamma|)p'}(x')^{\gamma} dx \right)^{p-1} < \infty.$$

Then there exists a constant c, independent of f, such that for all $f \in L_{p,\omega,\gamma}(\mathbb{R}^n_{k,+})$

$$\int_{\mathbb{R}^{n}_{k,+}} |Tf(x)|^{p} \omega_{1}(x) (x')^{\gamma} dx \le c \int_{\mathbb{R}^{n}_{k,+}} |f(x)|^{p} \omega(x) (x')^{\gamma} dx. \tag{2.3}$$

Moreover, condition (a) can be replaced by the condition

(a') there exist b > 0 such that

$$\omega_1(x)\left(\sup_{|x|/8<|y|\leq 8|x|}\frac{1}{\omega(y)}\right)\leq b \quad \text{for a.e. } x\in\mathbb{R}^n.$$

Proof. For $l \in Z$ we define $E_l = \{x \in \mathbb{R}^n_{k,+} : 2^l < |x| \le 2^{l+1}\}$, $E_{l,1} = \{x \in \mathbb{R}^n_{k,+} : |x| \le 2^{l-1}\}$, $E_{l,2} = \{x \in \mathbb{R}^n_{k,+} : 2^{l-1} < |x| \le 2^{l+2}\}$, $E_{l,3} = \{x \in \mathbb{R}^n_{k,+} : |x| > 2^{l+2}\}$. Then $E_{l,2} = E_{l-1} \cup E_l \cup E_{l+1}$ and the multiplicity of the covering $\{E_{l,2}\}_{l \in Z}$ is equal to 3.

Given $f \in L_{p,\omega,\gamma}(\mathbb{R}^n_{k,+})$, we write

$$|Tf(x)| = \sum_{l \in \mathbb{Z}} |Tf(x)| \chi_{E_l}(x) \le \sum_{l \in \mathbb{Z}} |Tf_{l,1}(x)| \chi_{E_l}(x)$$

$$+ \sum_{l \in \mathbb{Z}} |Tf_{l,2}(x)| \chi_{E_l}(x) + \sum_{l \in \mathbb{Z}} |Tf_{l,3}(x)| \chi_{E_l}(x)$$

$$\equiv T_1 f(x) + T_2 f(x) + T_3 f(x),$$

where χ_{E_l} is the characteristic function of the set E_l , $f_{l,i} = f\chi_{E_{l,i}}$, i = 1, 2, 3.

First we shall estimate $||T_1f||_{L_{p,\omega_1,\gamma}}$. Note that for $x \in E_l$, $y \in E_{k,1}$ we have $|y| \le 2^{l-1} \le |x|/2$. Moreover, $E_l \cap supp f_{l,1} = \emptyset$ and $|x-y| \ge |x|/2$. Hence by (2.2)

$$T_{1}f(x) \leq c_{0} \sum_{l \in \mathbb{Z}} \left(\int_{\mathbb{R}^{n}_{k,+}} T^{y} |x|^{-n-|\gamma|} |f_{l,1}(y)|(y')^{\gamma} dy \right) \chi_{E_{l}}$$

$$\leq c_{0} \int_{E(0,|x|/2)} |x-y|^{-n-|\gamma|} |f(y)| (y')^{\gamma} dy$$

$$\leq 2^{n+|\gamma|} c_{0} |x|^{-n-|\gamma|} \int_{E(0,|x|/2)} |f(y)| (y')^{\gamma} dy$$

for any $x \in E_l$. Hence we have

$$\int_{\mathbb{R}^{n}_{k,+}} |T_{1}f(x)|^{p} \omega_{1}(x) (x')^{\gamma} dx$$

$$\leq \left(2^{n+|\gamma|} c_{0}\right)^{p} \int_{\mathbb{R}^{n}_{k,+}} \left(\int_{E(0,|x|/2)} |f(y)| (y')^{\gamma} dy\right)^{p} |x|^{-(n+|\gamma|)p} \omega_{1}(x) (x')^{\gamma} dx.$$

Since $A < \infty$, the Hardy inequality

$$\int_{\mathbb{R}^{n}_{k,+}} \omega_{1}(x)|x|^{-(n+|\gamma|)p} \left(\int_{E(0,|x|/2)} |f(y)| \ (y')^{\gamma} dy \right)^{p} (x')^{\gamma} dx$$

$$\leq C \int_{\mathbb{R}^{n}_{k,+}} |f(x)|^{p} \omega(x) \ (x')^{\gamma} dx$$

holds and $C \leq c' \mathcal{A}$, where c' depends only on n and p. In fact the condition $\mathcal{A} < \infty$ is necessary and sufficient for the validity of this inequality (see [1], [8]). Hence, we obtain

$$\int_{\mathbb{R}^{n}_{k-1}} |T_{1}f(x)|^{p} \omega_{1}(x) (x')^{\gamma} dx \leq c_{1} \int_{\mathbb{R}^{n}_{k-1}} |f(x)|^{p} \omega(x) (x')^{\gamma} dx.$$
 (2.4)

where c_1 is independent of f.

Next we estimate $||T_3f||_{L_{p,\omega_1,\gamma}}$. As is easy to verify, for $x \in E_l$, $y \in E_{l,3}$ we have |y| > 2|x| and $|x - y| \ge |y|/2$. Since $E_l \cap supp f_{l,3} = \emptyset$, for $x \in E_l$ by (2.2) we obtain

$$\begin{split} T_3 f(x) &\leq c_0 \int_{\mathfrak{c}_{E(0,2|x|)}} T^y |x|^{-n-|\gamma|} |f(y)| \ (y')^{\gamma} dy \\ &\leq 2^{n+|\gamma|} c_0 \int_{\mathfrak{c}_{E(0,2|x|)}} |f(y)| |x-y|^{-n-|\gamma|} \ (y')^{\gamma} dy \\ &\leq 2^{n+|\gamma|} c_0 \int_{\mathfrak{c}_{E(0,2|x|)}} |f(y)| |y|^{-n-|\gamma|} \ (y')^{\gamma} dy. \end{split}$$

Hence we have

$$\int_{\mathbb{R}^{n}_{k,+}} |T_{3}f(x)|^{p} \omega_{1}(x) (x')^{\gamma} dx
\leq \left(2^{n+|\gamma|} c_{0}\right)^{p} \int_{\mathbb{R}^{n}_{k,+}} \left(\int_{\mathfrak{c}_{E(0,2|x|)}} |f(y)||y|^{-n-|\gamma|} (y')^{\gamma} dy\right)^{p} \omega_{1}(x) (x')^{\gamma} dx.$$

Since $\mathcal{B} < \infty$, the Hardy inequality

$$\int_{\mathbb{R}^{n}_{k,+}} \omega_{1}(x) \left(\int_{\mathbb{C}_{E(0,2|x|)}} |f(y)| |y|^{-n-|\gamma|} (y')^{\gamma} dy \right)^{p} (x')^{\gamma} dx
\leq C \int_{\mathbb{R}^{n}_{k,+}} |f(x)|^{p} \omega(x) (x')^{\gamma} dx$$

holds and $C \leq c'\mathcal{B}$, where c' depends only on n and p. In fact the condition $\mathcal{B} < \infty$ is necessary and sufficient for the validity of this inequality (see [1], [8]). Hence, we obtain

$$\int_{\mathbb{R}^n_{k,+}} |T_3 f(x)|^p \omega_1(x) \ (x')^{\gamma} dx \le c_2 \int_{\mathbb{R}^n_{k,+}} |f(x)|^p \omega(x) \ (x')^{\gamma} dx, \tag{2.5}$$

where c_2 is independent of f.

Finally, we estimate $||T_2f||_{L_{p,\omega_1,\gamma}}$. By the $L_{p,\gamma}(\mathbb{R}^n_{k,+})$ boundedness of T and condition (a) we have

$$\int_{\mathbb{R}_{k,+}^{n}} |T_{2}f(x)|^{p} \omega_{1}(x) (x')^{\gamma} dx = \int_{\mathbb{R}_{k,+}^{n}} \left(\sum_{l \in \mathbb{Z}} |T_{l,2}(x)| \chi_{E_{l}}(x) \right)^{p} \omega_{1}(x) (x')^{\gamma} dx
= \int_{\mathbb{R}_{k,+}^{n}} \left(\sum_{l \in \mathbb{Z}} |T_{l,2}(x)|^{p} \chi_{E_{l}}(x) \right) \omega_{1}(x) (x')^{\gamma} dx
= \sum_{l \in \mathbb{Z}} \int_{E_{l}} |T_{l,2}(x)|^{p} \omega_{1}(x) (x')^{\gamma} dx
\leq \sum_{l \in \mathbb{Z}} \sup_{y \in E_{l}} \omega_{1}(y) \int_{\mathbb{R}_{k,+}^{n}} |T_{l,2}(x)|^{p} (x')^{\gamma} dx
\leq ||T||^{p} \sum_{l \in \mathbb{Z}} \sup_{y \in E_{l}} \omega_{1}(y) \int_{\mathbb{R}_{k,+}^{n}} |f_{l,2}(x)|^{p} (x')^{\gamma} dx
= ||T||^{p} \sum_{l \in \mathbb{Z}} \sup_{y \in E_{l}} \omega_{1}(y) \int_{E_{l,2}} |f(x)|^{p} (x')^{\gamma} dx,$$

where $||T|| \equiv ||T||_{L_{p,\gamma}(\mathbb{R}^n_{k,+}) \to L_{p,\gamma}(\mathbb{R}^n_{k,+})}$. Since, for $x \in E_{l,2}$, $2^{l-1} < |x| \le 2^{l+2}$, we have by condition (a)

$$\sup_{y \in E_l} \omega_1(y) = \sup_{2^{l-1} < |y| \le 2^{l+2}} \omega_1(y) \le \sup_{|x|/8 < |y| \le 8|x|} \omega_1(y) \le b \,\omega(x)$$

for almost all $x \in E_{l,2}$. Therefore

$$\int_{\mathbb{R}^{n}_{k,+}} |T_{2}f(x)|^{p} \omega_{1}(x) (x')^{\gamma} dx \leq ||T||^{p} b \sum_{l \in \mathbb{Z}} \int_{E_{l,2}} |f(x)|^{p} \omega(x) (x')^{\gamma} dx
\leq c_{3} \int_{\mathbb{R}^{n}_{k,+}} |f(x)|^{p} \omega(x) (x')^{\gamma} dx,$$
(2.6)

where $c_3 = 3||T||^p b$, since the multiplicity of covering $\{E_{l,2}\}_{l \in \mathbb{Z}}$ is equal to 3. Inequalities (2.4), (2.5), (2.6) imply (2.3) which completes the proof.

Similarly we prove the following weak variant of Theorem 2.1.

Theorem 2.2. Let $p \in [1, \infty)$ and let T be a p-admissible $B_{k,n}$ -singular operators. Moreover, let $\omega(x)$, $\omega_1(x)$ be weight functions on $\mathbb{R}^n_{k,+}$ and conditions (a), (b), (c) be satisfied.

Then there exists a constant c, independent of f, such that

$$\int_{\left\{x \in \mathbb{R}^n_{k,+} : |Tf(x)| > \lambda\right\}} \omega_1(x) (x')^{\gamma} dx \le \frac{c}{\lambda^p} \int_{\mathbb{R}^n_{k,+}} |f(x)|^p \omega(x) (x')^{\gamma} dx \tag{2.7}$$

for all $f \in L_{p,\omega,\gamma}(\mathbb{R}^n_{k,+})$.

Let k is a $B_{k,n}$ -singular kernel and K be the $B_{k,n}$ -singular integral operator

$$Kf(x) = p.v. \int_{\mathbb{R}^n_{k,+}} T^y k(x) f(y) (y')^{\gamma} dy.$$

Then K is a p-admissible $B_{k,n}$ -singular operator for $1 and weak p-admissible <math>B_{k,n}$ -singular operators for $1 \le p < \infty$. Thus, we have

Corollary 2.1. Let $p \in (1, \infty)$, K be a $B_{k,n}$ -singular operator. Moreover, let $\omega(x)$, $\omega_1(x)$ be weight functions on $\mathbb{R}^n_{k,+}$ and conditions (a), (b), (c) be satisfied. Then the operator K is bounded from $L_{p,\omega,\gamma}(\mathbb{R}^n_{k,+})$ to $L_{p,\omega_1,\gamma}(\mathbb{R}^n_{k,+})$.

Corollary 2.2. Let $p \in [1, \infty)$, K be a $B_{k,n}$ -singular operator. Moreover, let $\omega(x)$, $\omega_1(x)$ be weight functions on $\mathbb{R}^n_{k,+}$ and conditions (a), (b), (c) be satisfied. Then the operator K is bounded from $L_{p,\omega,\gamma}(\mathbb{R}^n_{k,+})$ to $WL_{p,\omega_1,\gamma}(\mathbb{R}^n_{k,+})$.

Remark 2.2. Note that, the conditions p-admissible $B_{k,n}$ -singular operators are satisfied by many interesting operators in harmonic analysis, such as the $B_{k,n}$ -maximal operator, $B_{k,n}$ -singular integral operators, $B_{k,n}$ -Riesz transforms and so on .

Theorem 2.3. Let $p \in (1, \infty)$ and T be a p-admissible $B_{k,n}$ -singular operators. Moreover, let $\omega(x')$, $\omega_1(x')$ be a weight functions on \mathbb{R}^k_{++} and the following three conditions be satisfied

 (a_1) there exists a constant b > 0 such that

$$\sup_{|x'|/8 < |y'| < 8|x'|} \omega_1(y') \le b \,\omega(x') \quad \text{for a.e. } x' \in \mathbb{R}^k_{++},$$

$$(b_{1}) \quad \mathcal{A}_{1} \equiv \sup_{r>0} \left(\int_{\mathbb{E}'(0,2r)} \omega_{1}(x') |x'|^{-(k+|\gamma|)p}(x')^{\gamma} dx' \right) \\ \times \left(\int_{E'(0,r)} \omega^{1-p'}(x')(x')^{\gamma} dx' \right)^{p-1} < \infty,$$

$$(c_{1}) \quad \mathcal{B}_{1} \equiv \sup_{r>0} \left(\int_{E'(0,r)} \omega_{1}(x')(x')^{\gamma} dx' \right) \\ \times \left(\int_{\mathbb{C}_{E'(0,2r)}} \omega^{1-p'}(x') |x'|^{-(k+|\gamma|)p'}(x')^{\gamma} dx' \right)^{p-1} < \infty.$$

Then there exists a constant c, independent of f, such that for all $f \in L_{p,\omega}(\mathbb{R}^n_{k,+})$

$$\int_{\mathbb{R}^{n}_{k,+}} |Tf(x)|^{p} \omega_{1}(x')(x')^{\gamma} dx \le c \int_{\mathbb{R}^{n}_{k,+}} |f(x)|^{p} \omega(x')(x')^{\gamma} dx. \tag{2.8}$$

Moreover, condition (a) can be replaced by the condition (a_1') there exists a constant b > 0 such that

$$\omega_1(x') \left(\sup_{|x'|/8 < |y'| < 8|x'|} \frac{1}{\omega(y')} \right) \le b \quad \text{for a.e. } x' \in \mathbb{R}^k_{++}.$$

Proof. For $l \in Z$ we define $\widetilde{E}_l = \{x \in \mathbb{R}^n_{k,+} : 2^l < |x'| \le 2^{l+1}\}$, $\widetilde{E}_{l,1} = \{x \in \mathbb{R}^n_{k,+} : |x'| \le 2^{l-1}\}$, $\widetilde{E}_{l,2} = \{x \in \mathbb{R}^n_{k,+} : 2^{l-1} < |x'| \le 2^{l+2}\}$, $\widetilde{E}_{l,3} = \{x \in \mathbb{R}^n_{k,+} : |x'| > 2^{l+2}\}$. Then $\widetilde{E}_{l,2} = \widetilde{E}_{l-1} \cup \widetilde{E}_l \cup \widetilde{E}_{l+1}$ and the multiplicity of the covering $\{\widetilde{E}_{l,2}\}_{l \in \mathbb{Z}}$ is equal to 3.

Given $f \in L_{p,\omega,\gamma}^{l \in \mathbb{Z}}(\mathbb{R}^n_{k,+})$, we write

$$|Tf(x)| = \sum_{l \in \mathbb{Z}} |Tf(x)| \chi_{\widetilde{E}_{l}}(x) \leq \sum_{l \in \mathbb{Z}} |Tf_{l,1}(x)| \chi_{\widetilde{E}_{l}}(x)$$

$$+ \sum_{l \in \mathbb{Z}} |Tf_{l,2}(x)| \chi_{\widetilde{E}_{l}}(x) + \sum_{l \in \mathbb{Z}} |Tf_{l,3}(x)| \chi_{\widetilde{E}_{l}}(x)$$

$$\equiv T_{1}f(x) + T_{2}f(x) + T_{3}f(x),$$
(2.9)

where $\chi_{\widetilde{E}_l}$ is the characteristic function of the set \widetilde{E}_l , $f_{l,i} = f\chi_{\widetilde{E}_{l,i}}$, i = 1, 2, 3. We shall estimate $||T_1f||_{L_{p,\omega_1,\gamma}}$. Note that for $x \in \widetilde{E}_l$, $y \in \widetilde{E}_{l,1}$ we have $|y'| \leq 2^{l-1} \leq |x'|/2$. Moreover, $\widetilde{E}_l \cap supp f_{l,1} = \emptyset$ and $|x' - y'| \geq |x'|/2$. Hence by (2.2)

$$T_{1}f(x) \leq c_{4} \sum_{l \in \mathbb{Z}} \left(\int_{\mathbb{R}^{n}_{k,+}} |f_{l,1}(y)| T^{y} |x|^{-n-|\gamma|} dy \right) \chi_{\widetilde{E}_{l}}$$

$$\leq c_{4} \int_{\mathbb{R}^{n-k}} \int_{E'(0,|x'|/2)} T^{y} |x|^{-n-|\gamma|} |f(y)| (y')^{\gamma} dy$$

$$\leq c_{5} \int_{\mathbb{R}^{n-k}} \int_{E'(0,|x'|/2)} \left(|x'| + |x'' - y''| \right)^{-n-|\gamma|} |f(y)| (y')^{\gamma} dy' dy''$$

for any $x \in E_l$. Using this last inequality we have

$$\int_{\mathbb{R}^{n}_{k,+}} |T_{1}f(x)|^{p} \omega_{1}(x')(x')^{\gamma} dx$$

$$\leq c_{5}^{p} \int_{\mathbb{R}^{n}_{k,+}} \left(\int_{\mathbb{R}^{n-k}} \int_{E'(0,|x'|/2)} \left(|x'| + |x'' - y''| \right)^{-n-|\gamma|} |f(y)|(y')^{\gamma} dy' dy'' \right)^{p} \times \omega_{1}(x')(x')^{\gamma} dx.$$

For $x = (x', x'') \in \mathbb{R}^n$ let

$$I(x')$$

$$= \int_{\mathbb{R}^{n-k}} \left(\int_{\mathbb{R}^{n-k}} \int_{E'(0,|x'|/2)} \left(|x'| + |x'' - y''| \right)^{-n-|\gamma|} |f(y',y'')|(y')^{\gamma} dy' dy'' \right)^{p} dx''$$

$$= \int_{\mathbb{R}^{n-k}} \left(\int_{E'(0,|x'|/2)} \left(\int_{\mathbb{R}^{n-k}} \left(|x'| + |x'' - y''| \right)^{-n-|\gamma|} |f(y',y'')| dy' \right) (y')^{\gamma} dy' \right)^{p} dx''.$$

Using the Minkowski and Young inequalities we obtain

$$\begin{split} I(x') & \leq \left[\int_{E'(0,|x'|/2)} \left(\int_{\mathbb{R}^{n-k}} |f(y',y'')|^p dy'' \right)^{1/p} \left(\int_{\mathbb{R}^{n-k}} \frac{dx''}{(|x'|+|x''|)^{n+|\gamma|}} \right) (y')^{\gamma} dy' \right]^p \\ & = \left(\int_{E'(0,|x'|/2)} \|f(\cdot,y')\|_{p,\mathbb{R}^{n-k}} (y')^{\gamma} dy' \right)^p \left(\int_{\mathbb{R}^{n-k}} \frac{dx''}{(|x'|+|x''|)^{n+|\gamma|}} \right)^p \\ & = |x'|^{-(k+|\gamma|)p} \left(\int_{E'(0,|x'|/2)} \|f(\cdot,y')\|_{p,\mathbb{R}^{n-k}} (y')^{\gamma} dy' \right)^p \left(\int_{\mathbb{R}^{n-k}} \frac{dx''}{(|x''|+1)^{n+|\gamma|}} \right)^p \\ & = c_6 |x'|^{-(k+|\gamma|)p} \left(\int_{E'(0,|x'|/2)} \|f(\cdot,y')\|_{p,\mathbb{R}^{n-k}} (y')^{\gamma} dy' \right)^p. \end{split}$$

Integrating in \mathbb{R}^k_{++} we get

$$\int_{\mathbb{R}^{n}_{k,+}} |T_{1}f(x)|^{p} \omega_{1}(x')(x')^{\gamma} dx$$

$$\leq c_{7} \int_{\mathbb{R}^{k}_{++}} \omega_{1}(x')|x'|^{-(k+|\gamma|)p} \left(\int_{E'(0,|x'|/2)} \|f(\cdot,y')\|_{p,\mathbb{R}^{n-k}} (y')^{\gamma} dy' \right)^{p} (x')^{\gamma} dx'.$$

Since $A_1 < \infty$, the Hardy inequality

$$\int_{\mathbb{R}^{k}_{++}} \omega_{1}(x')|x'|^{-(k+\gamma)p} \left(\int_{E'(0,|x'|/2)} \|f(\cdot,y')\|_{p,\mathbb{R}^{n-k}} (y')^{\gamma} dy' \right)^{p} (x')^{\gamma} dx' \\
\leq C \int_{\mathbb{R}^{k}_{++}} \|f(\cdot,x')\|_{p,\mathbb{R}^{n-k}}^{p} \omega(x')(x')^{\gamma} dx'$$

holds and $C \leq c' \mathcal{A}_1$, where c' depends only on n and p. In fact the condition $\mathcal{A}_1 < \infty$ is necessary and sufficient for the validity of this inequality (see [6], [22]).

Hence, we obtain

$$\int_{\mathbb{R}^n_{k,+}} |T_1 f(x)|^p \omega_1(x') (x')^{\gamma} dx \le c_9 \int_{\mathbb{R}^n_{k,+}} |f(x)|^p \omega(x') (x')^{\gamma} dx. \tag{2.10}$$

Let us estimate $||T_3f||_{L_{p,\omega_1,\gamma}}$. As is easy to verify, for $x\in \widetilde{E}_l,\,y\in \widetilde{E}_{l,3}$ we have |y'|>2|x'| and $|x'-y'|\geq |y'|/2$. Since $\widetilde{E}_l\cap supp f_{k,3}=\varnothing$, for $x\in \widetilde{E}_l$ by (2.2) we obtain

$$T_3 f(x) \le c_5 \int_{\mathbb{R}^{n-k}} \int_{\mathfrak{c}_{E'(0,2|x'|)}} |f(y)| \left(|y'| + |x'' - y''| \right)^{-n-|\gamma|} (y')^{\gamma} dy' dy''.$$

Using this last inequality we have

$$\int_{\mathbb{R}^n_{k,\perp}} |T_3 f(x)|^p \omega_1(x') (x')^{\gamma} dx$$

$$\leq c_5^p\int\limits_{\mathbb{R}^n_{k,+}}\left(\int\limits_{\mathbb{R}^{n-k}}\int\limits_{\mathbb{C}_{E'(0,2|x'|)}}|f(y)|\left(|y'|+|x''-y''|\right)^{-n-|\gamma|}(y')^{\gamma}dy'dy''\right)^p\omega_1(x')(x')^{\gamma}dx.$$

For $x = (x', x'') \in \mathbb{R}^n$ let

$$I_{1}(x') = \int\limits_{\mathbb{R}^{n-k}} \left(\int\limits_{\mathbb{C}_{E'(0,2|x'|)}} \int\limits_{\mathbb{R}^{n-k}} |f(y)| \left(|y'| + |x'' - y''| \right)^{-n-|\gamma|} (y')^{\gamma} dy' dy'' \right)^{p} (x')^{\gamma} dx''.$$

Using the Minkowski and Young inequalities we obtain

$$\begin{split} I_{1}(x') &\leq \left[\int_{\mathbb{C}_{E'(0,2|x'|)}} \left(\int_{\mathbb{R}^{n-k}} |f(y)|^{p} dy'' \right)^{1/p} \left(\int_{\mathbb{R}^{n-k}} \frac{dy''}{(|y'| + |y''|)^{n+|\gamma|}} \right) (y')^{\gamma} dy' \right]^{p} \\ &= c_{6} \left(\int_{\mathbb{C}_{E'(0,2|x'|)}} |y'|^{-k-|\gamma|} \|f(\cdot,y')\|_{p,\mathbb{R}^{n-k}} (y')^{\gamma} dy' \right)^{p} \left(\int_{\mathbb{R}^{n-k}} \frac{dy''}{(|y''| + 1)^{n+|\gamma|}} \right)^{p} \\ &= c_{7} \left(\int_{\mathbb{C}_{E'(0,2|x'|)}} |y'|^{-k-|\gamma|} \|f(\cdot,y')\|_{p,\mathbb{R}^{n-k}} (y')^{\gamma} dy' \right)^{p}. \end{split}$$

Integrating over \mathbb{R}^k_{++} we get

$$\int_{\mathbb{R}^{n}_{k,+}} |T_{3}f(x)|^{p} \omega_{1}(x')(x')^{\gamma} dx$$

$$\leq c_{8} \int_{\mathbb{R}^{k}_{++}} \left(\int_{\mathfrak{c}_{E'(0,2|x'|)}} |y'|^{-k-|\gamma|} ||f(\cdot,y')||_{p,\mathbb{R}^{n-k}} (y')^{\gamma} dy'' \right)^{p} \omega_{1}(x')(x')^{\gamma} dx''.$$

Since $\mathcal{B}_1 < \infty$, the Hardy inequality

$$\int_{\mathbb{R}^{k}_{++}} \omega_{1}(x') \left(\int_{\mathfrak{c}_{E'(0,2|x'|)}} |y'|^{-k-|\gamma|} ||f(\cdot,y')||_{p,\mathbb{R}^{n-1}} (y')^{\gamma} dy' \right)^{p} (x')^{\gamma} dx' \\
\leq C \int_{\mathbb{R}^{k}_{++}} ||f(\cdot,x')||_{p,\mathbb{R}^{n-k}}^{p} |x'|^{-(k+|\gamma|)p} \omega(x') |x'|^{(k+|\gamma|)p} (x')^{\gamma} dx' \\
= C \int_{\mathbb{R}^{n}_{k+}} |f(x)|^{p} \omega(x') (x')^{\gamma} dx$$

holds and $C \leq c'\mathcal{B}_1$, where c' depends only on n, γ and p. In fact the condition $\mathcal{B}_1 < \infty$ is necessary and sufficient for the validity of this inequality (see [6], [22]). Hence, we obtain

$$\int_{\mathbb{R}^n_{k,+}} |T_3 f(x)|^p \omega_1(x') (x')^{\gamma} dx \le c_{10} \int_{\mathbb{R}^n_{k,+}} |f(x)|^p \omega(x') (x')^{\gamma} dx. \tag{2.11}$$

Finally, we estimate $||T_2f||_{L_{p,\omega_1,\gamma}}$. By the $L_{p,\gamma}(\mathbb{R}^n_{k,+})$ boundedness of T and condition (a_1) we have

$$\int_{\mathbb{R}^{n}_{k,+}} |T_{2}f(x)|^{p} \omega_{1}(x_{n})(x')^{\gamma} dx = \int_{\mathbb{R}^{n}_{k,+}} \left(\sum_{l \in \mathbb{Z}} |Tf_{l,2}(x)| \chi_{\widetilde{E}_{l}}(x) \right)^{p} \omega_{1}(x')(x')^{\gamma} dx
= \int_{\mathbb{R}^{n}_{k,+}} \left(\sum_{l \in \mathbb{Z}} |Tf_{l,2}(x)|^{p} \chi_{\widetilde{E}_{l}}(x) \right) \omega_{1}(x')(x')^{\gamma} dx = \sum_{l \in \mathbb{Z}} \int_{\widetilde{E}_{l}} |Tf_{l,2}(x)|^{p} \omega_{1}(x')(x')^{\gamma} dx
\leq \sum_{l \in \mathbb{Z}} \sup_{y \in \widetilde{E}_{l}} \omega_{1}(y') \int_{\mathbb{R}^{n}} |Tf_{l,2}(x)|^{p} (x')^{\gamma} dx
\leq ||T||^{p} \sum_{l \in \mathbb{Z}} \sup_{y \in \widetilde{E}_{l}} \omega_{1}(y') \int_{\mathbb{R}^{n}} |f_{l,2}(x)|^{p} (x')^{\gamma} dx
= ||T||^{p} \sum_{l \in \mathbb{Z}} \sup_{y \in \widetilde{E}_{l}} \omega_{1}(y') \int_{\widetilde{E}_{l,2}} |f(x)|^{p} (x')^{\gamma} dx,$$

where $||T|| \equiv ||T||_{L_{p,\gamma}(\mathbb{R}^n_{k,+})\to L_{p,\gamma}(\mathbb{R}^n_{k,+})}$. Since, for $x\in \widetilde{E}_{l,2}$, $2^{l-1}<|x'|\leq 2^{l+2}$, we have by condition (a_1)

$$\sup_{y \in \widetilde{E}_l} \omega_1(y') = \sup_{2^{l-1} < |y'| \le 2^{l+2}} \omega_1(y') \le \sup_{|x'|/8 < |y'| < 8|x'|} \omega_1(y') \le b\omega(x')$$

for almost all $x \in \widetilde{E}_{l,2}$. Therefore

$$\int_{\mathbb{R}^{n}_{k,+}} |T_{2}f(x)|^{p} \omega_{1}(x')(x')^{\gamma} dx$$

$$\leq ||T||^{p} b \sum_{l \in \mathbb{Z}} \int_{\widetilde{E}_{l,2}} |f(x)|^{p} \omega(x') dx \leq c_{11} \int_{\mathbb{R}^{n}_{k,+}} |f(x)|^{p} \omega(x')(x')^{\gamma} dx, \qquad (2.12)^{p} dx$$

where $c_{11} = 3||T||^p b$, since the multiplicity of covering $\{\widetilde{E}_{l,2}\}_{l \in \mathbb{Z}}$ is equal to 3. Inequalities (2.9), (2.10), (2.11), (2.12) imply (2.8) which completes the proof.

Similarly we prove the following weak variant of Theorem 2.3.

Theorem 2.4. Let $p \in [1, \infty)$ and let T be a weak p-admissible $B_{k,n}$ -singular operators. Moreover, let $\omega(x')$, $\omega_1(x')$ be weight functions on \mathbb{R}^k_{++} and conditions (a_1) , (b_1) , (c_1) be satisfied.

Then there exists a constant c, independent of f, such that

$$\int_{\{x \in \mathbb{R}^n_{k,+} : |Tf(x)| > \lambda\}} \omega_1(x')(x')^{\gamma} dx \le \frac{c}{\lambda^p} \int_{\mathbb{R}^n_{k,+}} |f(x)|^p \omega(x')(x')^{\gamma} dx \tag{2.13}$$

for all $f \in L_{p,\omega,\gamma}(\mathbb{R}^n_{k,+})$

Corollary 2.3. Let $p \in (1, \infty)$, T be the p-admissible $B_{k,n}$ -singular operators. Moreover, let $\omega(x')$, $\omega_1(x')$ be weight functions on \mathbb{R}^k_{++} and conditions (a_1) , (b_1) , (c_1) be satisfied. Then inequality (2.8) is valid.

Corollary 2.4. Let $p \in [1, \infty)$, T be the weak p-admissible $B_{k,n}$ -singular operators. Moreover, let $\omega(x')$, $\omega_1(x')$ be weight functions on \mathbb{R}^k_{++} and conditions (a_1) , (b_1) , (c_1) be satisfied. Then inequality (2.13) is valid.

Remark 2.3. Note that, if instead of $\omega(x)$, $\omega_1(x)$ respectively put $\omega(x')$, $\omega_1(x')$, then from conditions (a), (b), (c) will not follows conditions (a_1) , (b_1) , (c_1) respectively.

Theorem 2.5. Let $p \in (1, \infty)$ and T be a p-admissible $B_{k,n}$ -singular operators. Moreover, let $\omega(t)$ be a weight function on $(0, \infty)$, $\omega_1(t)$ be a positive increasing function on $(0, \infty)$ and the weighted pair $(\omega(|x|), \omega_1(|x|))$ satisfies conditions (a), (b). Then there exists a constant c > 0, such that for all $f \in L_{p,\omega,\gamma}(\mathbb{R}^n_{k,+})$

$$\int_{\mathbb{R}^{n}_{k-1}} |Tf(x)|^{p} \omega_{1}(|x|)(x')^{\gamma} dx \le c \int_{\mathbb{R}^{n}_{k-1}} |f(x)|^{p} \omega(|x|)(x')^{\gamma} dx. \tag{2.14}$$

Proof. Suppose that $f \in L_{p,\omega,\gamma}(\mathbb{R}^n_{k,+})$ and ω_1 are positive increasing functions on $(0,\infty)$ and ω , ω_1 satisfied the conditions (a), (b).

Without loss of generality we can suppose that ω_1 may be represented by

$$\omega_1(t) = \omega_1(0+) + \int_0^t \psi(\lambda) d\lambda,$$

where $\omega_1(0+) = \lim_{t\to 0} \omega_1(t)$ and $\omega_1(t) \geq 0$ on $(0,\infty)$. In fact there exists a sequence of increasing absolutely continuous fuctions ϖ_n , such that $\varpi_n(t) \leq \omega_1(t)$ and $\lim_{t\to 0} \varpi_n(t) = \omega_1(t)$ for any $t \in (0,\infty)$ (see [12], [14] for details).

We have

$$\int_{\mathbb{R}^n_{k,+}} |Tf(x)|^p \omega_1(|x|) (x')^{\gamma} dx = \omega_1(0+) \int_{\mathbb{R}^n_{k,+}} |Tf(x)|^p (x')^{\gamma} dx$$

$$+ \int_{\mathbb{R}^n_{k,+}} |Tf(x)|^p \left(\int_0^{|x|} \psi(\lambda) d\lambda \right) (x')^{\gamma} dx = J_1 + J_2.$$

If $\omega_1(0+)=0$, then $J_1=0$. If $\omega_1(0+)\neq 0$ by the boundedness of T in $L_{p,\gamma}(\mathbb{R}^n_{k+})$ thanks to (a)

$$J_1 \le ||T||^p \omega_1(0+) \int_{\mathbb{R}^n_{k,+}} |f(x)|^p (x')^{\gamma} dx$$

$$\leq \|T\|^p \int_{\mathbb{R}^n_{k,+}} |f(x)|^p \omega_1(|x|) (x')^{\gamma} dx \leq b \|T\|^p \int_{\mathbb{R}^n_{k,+}} |f(x)|^p \omega(|x|) (x')^{\gamma} dx.$$

After changing the order of integration in J_2 we have

$$J_{2} = \int_{0}^{\infty} \psi(\lambda) \left(\int_{\mathfrak{c}_{E(0,\lambda)}} |Tf(x)|^{p} (x')^{\gamma} dx \right) d\lambda$$

$$\leq 2^{p-1} \int_{0}^{\infty} \psi(\lambda) \left(\int_{\mathfrak{c}_{E(0,\lambda)}} |T(f\chi \mathfrak{c}_{E(0,\lambda/2)})(x)|^{p} (x')^{\gamma} dx \right)$$

$$+ \int_{\mathfrak{c}_{E(0,\lambda)}} |T(f\chi_{E(0,\lambda/2)})(x)|^{p} (x')^{\gamma} dx \right) d\lambda = J_{21} + J_{22}.$$

Using the boundeedness of T in $L_{p,\gamma}(\mathbb{R}^n_{k,+})$ and condition (a) we have

$$J_{21} \leq ||T||^p \int_0^\infty \psi(t) \left(\int_{\mathbb{C}_{E(0,\lambda/2)}} |f(y)|^p (y')^\gamma dy \right) dt$$

$$= ||T||^p \int_{\mathbb{R}^n_{k,+}} |f(y)|^p \left(\int_0^{2|y|} \psi(\lambda) d\lambda \right) (y')^\gamma dy$$

$$\leq ||T||^p \int_{\mathbb{R}^n_{k,+}} |f(y)|^p \omega_1(2|y|) (y')^\gamma dy$$

$$\leq b ||T||^p \int_{\mathbb{R}^n_{k,+}} |f(y)|^p \omega(|y|) (y')^\gamma dy.$$

Let us estimate J_{22} . For $|x| > \lambda$ and $|y| \le \lambda/2$ we have

$$|x|/2 \le |x-y| \le 3|x|/2$$
,

and so

$$J_{22} \leq c_4 \int_0^\infty \psi(\lambda) \left(\int_{\mathbb{C}_{E(0,\lambda)}} \left(\int_{E(0,2\lambda)} T^y |x|^{-n-|\gamma|} |f(y)| (y')^{\gamma} dy \right)^p (x')^{\gamma} dx \right) d\lambda$$

$$\leq c_5 \int_0^\infty \psi(\lambda) \left(\int_{\mathbb{C}_{E(0,\lambda)}} \left(\int_{E(0,2\lambda)} |f(y)| (y')^{\gamma} dy \right)^p |x|^{-(n+|\gamma|)p} (x')^{\gamma} dx \right) d\lambda$$

$$= c_6 \int_0^\infty \psi(\lambda) \lambda^{-(n+|\gamma|)(p-1)} \left(\int_{E(0,\lambda/2)} |f(y)| (y')^{\gamma} dy \right)^p d\lambda.$$

The Hardy inequality

$$\int_0^\infty \psi(\lambda) \lambda^{-(n+|\gamma|)(p-1)} \left(\int_{E(0,\lambda/2)} |f(y)| (y')^{\gamma} dy \right)^p d\lambda$$

$$\leq C \int_{\mathbb{R}^n_{k,+}} |f(y)|^p \omega(|y|) (y')^{\gamma} dy$$

ie valid, for $p \in (1, \infty)$ is valid by the condition $C \leq c' \mathcal{A}'$ (see [6], [22]), where

$$\mathcal{A}' \equiv \sup_{\tau > 0} \left(\int_{2\tau}^{\infty} \psi(t) t^{-(n+|\gamma|)(p-1)} d\tau \right) \left(\int_{E(0,\tau)} \omega^{1-p'}(|y|) (y')^{\gamma} dy \right)^{p-1} < \infty.$$

Note that

$$\begin{split} &\int_{2t}^{\infty} \psi(\tau)\tau^{-(n+|\gamma|)(p-1)}d\tau \\ &= (n+|\gamma|)(p-1)\int_{2t}^{\infty} \psi(\tau)d\tau \int_{\tau}^{\infty} \lambda^{-k-(n+|\gamma|)(p-1)}d\lambda \\ &= (n+|\gamma|)(p-1)\int_{2t}^{\infty} \lambda^{-k-(n+|\gamma|)(p-1)}d\lambda \int_{2t}^{\lambda} \psi(\tau)d\tau \\ &\leq (n+|\gamma|)(p-1)\int_{2t}^{\infty} \lambda^{-k-(n+|\gamma|)(p-1)}\omega_1(\lambda)d\lambda \\ &= \frac{(p-1)}{\omega(n,|\gamma|)}\int_{\mathbb{C}_{E(0,2t)}} \omega_1(|y|)|y|^{-(n+|\gamma|)p}(y')^{\gamma}dy. \end{split}$$

Condition (b) of the theorem guarantees that $\mathcal{A}' \leq \frac{(n+|\gamma|)(p-1)}{\omega(n,|\gamma|)}\mathcal{A} < \infty$. Hence, applying the Hardy inequality, we obtain

$$J_{22} \le c_7 \int_{\mathbb{R}^n_{k+1}} |f(x)|^p \omega(|x|) (x')^{\gamma} dx.$$

Combining the estimates of J_1 and J_2 , we get (2.14) for $\omega_1(t) = \omega_1(0+) + \int_0^t \psi(\tau)d\tau$. By Fatou's theorem on passing to the limit under the Lebesgue integral sign, this implies (2.14). The theorem is proved.

Corollary 2.5. Let $p \in (1, \infty)$, k be a $B_{k,n}$ -singular kernel and K be the corresponding operator. Moreover, let $\omega(t)$ be a weight function on $(0, \infty)$, $\omega_1(t)$ be a positive increasing function on $(0, \infty)$ and the weighted pair $(\omega(|x|), \omega_1(|x|))$ satisfies conditions (a), (b). Then for the operator K the inequality (2.14) is valid.

Example 2.1. Let

$$\omega(t) = \begin{cases} t^{(n+|\gamma|)(p-1)} \ln^p \frac{1}{t}, & for \quad t \in \left(0, \frac{1}{2}\right) \\ \left(2^{\beta-p+1} \ln^p 2\right) t^{\beta}, & for \quad t \in \left[\frac{1}{2}, \infty\right) \end{cases},$$

$$\omega_1(t) = \begin{cases} t^{(n+|\gamma|)(p-1)}, & for \quad t \in \left(0, \frac{1}{2}\right) \\ 2^{\alpha-p+1} t^{\alpha}, & for \quad t \in \left[\frac{1}{2}, \infty\right) \end{cases},$$

where $0 < \alpha \le \beta < (n + |\gamma|)(p - 1)$. Then the weighted pair $(\omega(|x|), \omega_1(|x|))$ satisfies the condition of Theorem 2.5.

Theorem 2.6. Let $p \in (1, \infty)$ and T be a p-admissible $B_{k,n}$ -singular operators. Moreover, let $\omega(t)$ be a weight function on $(0, \infty)$, $\omega_1(t)$ be a positive decreasing function on $(0, \infty)$ and the weighted pair $(\omega(|x|), \omega_1(|x|))$ satisfies conditions (a), (c). Then inequality (2.14) is valid.

Proof. Without loss of generality we can suppose that ω_1 may be represented by

$$\omega_1(t) = \omega_1(+\infty) + \int_1^\infty \psi(\tau)d\tau,$$

where $\omega_1(+\infty) = \lim_{t\to\infty} \omega_1(t)$ and $\omega_1(t) \geq 0$ on $(0,\infty)$. In fact there exists a sequence of decreasing absolutely continuous fuctions ϖ_n such that $\varpi_n(t) \leq \omega_1(t)$ and $\lim_{n\to\infty} \varpi_n(t) = \omega_1(t)$ for any $t \in (0,\infty)$ (see [12], [14] for details).

We have

$$\int_{\mathbb{R}^n_{k,+}} |Tf(x)|^p \omega_1(|x|) (x')^{\gamma} dx = \omega_1(+\infty) \int_{\mathbb{R}^n_{k,+}} |Tf(x)|^p (x')^{\gamma} dx$$

$$+ \int_{\mathbb{R}^n_{k,+}} |Tf(x)|^p \left(\int_{|x|}^{\infty} \psi(\tau) d\tau \right) (x')^{\gamma} dx$$

$$= I_1 + I_2.$$

If $\omega_1(+\infty) = 0$, then $I_1 = 0$. If $\omega_1(+\infty) \neq 0$, by the boundedness of T in $L_{p,\gamma}(\mathbb{R}^n_{k,+})$ and condition (a) we have

$$J_{1} \leq \|T\|\omega_{1}(+\infty) \int_{\mathbb{R}^{n}_{k,+}} |f(x)|^{p} (x')^{\gamma} dx$$

$$\leq \|T\| \int_{\mathbb{R}^{n}_{k,+}} |f(x)|^{p} \omega_{1}(|x|) (x')^{\gamma} dx$$

$$\leq b \|T\| \int_{\mathbb{R}^{n}_{k,+}} |f(x)|^{p} \omega(|x|) (x')^{\gamma} dx.$$

After changing the order of integration in J_2 we have

$$J_{2} = \int_{0}^{\infty} \psi(\lambda) \left(\int_{E(0,\lambda)} |Tf(x)|^{p} (x')^{\gamma} dx \right) d\lambda$$

$$\leq 2^{p-1} \int_{0}^{\infty} \psi(\lambda) \left(\int_{E(0,\lambda)} |T(f\chi_{E(0,2\lambda)})(x)|^{p} (x')^{\gamma} dx \right)$$

$$+ \int_{E(0,\lambda)} |T(f\chi_{E(0,2\lambda)})(x)|^{p} (x')^{\gamma} dx d\lambda$$

$$= J_{21} + J_{22}.$$

Using the boundeedness of T in $L_p(\mathbb{R}^n_{k,+})$ and condition (a) we obtain

$$J_{21} \leq ||T|| \int_{0}^{\infty} \psi(t) \left(\int_{|y| < 2\lambda} |f(y)|^{p} (y')^{\gamma} dy \right) dt$$

$$= ||T|| \int_{\mathbb{R}^{n}_{k,+}} |f(y)|^{p} \left(\int_{|y|/2}^{\infty} \psi(\lambda) d\lambda \right) (y')^{\gamma} dy$$

$$\leq ||T|| \int_{\mathbb{R}^{n}_{k,+}} |f(y)|^{p} \omega_{1} (|y|/2) (y')^{\gamma} dy$$

$$\leq b ||T|| \int_{\mathbb{R}^{n}_{k,+}} |f(y)|^{p} \omega(|y|) (y')^{\gamma} dy.$$

Let us estimate J_{22} . For $|x| < \lambda$ and $|y| \ge 2\lambda$ we have $|y|/2 \le |x-y| \le 3|y|/2$, and so

$$J_{22} \leq c_8 \int_0^\infty \psi(\lambda) \left(\int_{E(0,\lambda)} \left(\int_{\mathfrak{c}_{E(0,2\lambda)}} T^y |x|^{-n-|\gamma|} |f(y)|(y')^{\gamma} dy \right)^p (x')^{\gamma} dx \right) d\lambda$$

$$\leq 2^n c_8 \int_0^\infty \psi(\lambda) \left(\int_{E(0,\lambda)} \left(\int_{\mathfrak{c}_{E(0,2\lambda)}} |y|^{-n-|\gamma|} |f(y)|(y')^{\gamma} dy \right)^p (x')^{\gamma} dx \right) d\lambda$$

$$= c_9 \int_0^\infty \psi(\lambda) \lambda^{n+|\gamma|} \left(\int_{\mathfrak{c}_{E(0,2\lambda)}} |y|^{-n-|\gamma|} |f(y)|(y')^{\gamma} dy \right)^p d\lambda.$$

The Hardy inequality

$$\int_0^\infty \psi(\lambda) \lambda^{n+|\gamma|} \left(\int_{\mathfrak{c}_{E(0,2\lambda)}} |y|^{-n-|\gamma|} |f(y)| (y')^{\gamma} dy \right)^p d\lambda$$

$$\leq C \int_{\mathbb{R}^n_{k,+}} |f(y)|^p |y|^{-(n+|\gamma|)p} |y|^{(n+|\gamma|)p} \omega(|y|) (y')^{\gamma} dy = C \int_{\mathbb{R}^n_{k,+}} |f(y)|^p \omega(|y|) (y')^{\gamma} dy$$

is valid, for $p \in (1, \infty)$ is valid by the condition $C \leq c\mathcal{B}'$ (see [6], [22]), where

$$\mathcal{B}' \equiv \sup_{\tau>0} \left(\int_0^\tau \psi(t) t^{n+|\gamma|} d\tau \right) \left(\int_{\mathbb{C}_{E(0,2\tau)}} \omega^{1-p'}(|y|) |y|^{-(n+|\gamma|)p'} (y')^{\gamma} dy \right)^{p-1} < \infty.$$

Note that

$$\begin{split} \int_0^\tau \psi(t) t^{n+|\gamma|} dt &= (n+|\gamma|) \int_0^\tau \psi(t) dt \int_0^t \lambda^{n+|\gamma|-1} d\lambda \\ &= (n+|\gamma|) \int_0^\tau \lambda^{n+|\gamma|-1} d\lambda \int_\lambda^t \psi(\tau) d\tau \\ &\leq (n+|\gamma|) \int_0^\tau \lambda^{n+|\gamma|-1} \omega_1(\lambda) d\lambda \\ &= \frac{n+|\gamma|}{\omega(n,|\gamma|)} \int_{E(0,r)} \omega_1(|x|) (x')^\gamma dx. \end{split}$$

Condition (c) of the theorem guarantees that $\mathcal{B}' \leq \frac{n+|\gamma|}{\omega(n,|\gamma|)}\mathcal{B} < \infty$. Hence, applying the Hardy inequality, we obtain

$$J_{22} \le c_{10} \int_{\mathbb{R}^n_{k,+}} |f(x)|^p \omega(|x|) (x')^{\gamma} dx.$$

Combining the estimates of J_1 and J_2 , we get (2.14) for $\omega_1(t) = \omega_1(+\infty) + \int_t^\infty \psi(\tau)d\tau$. By Fatou's theorem on passing to the limit under the Lebesgue integral sign, this implies (2.14). The theorem is proved.

Corollary 2.6. Let $p \in (1, \infty)$, k be a $B_{k,n}$ -singular kernel and K be the corresponding operator. Moreover, let $\omega(t)$ be a weight function on $(0, \infty)$, $\omega_1(t)$ be a positive decreasing function on $(0, \infty)$ and the weighted pair $(\omega(|x|), \omega_1(|x|))$ satisfies conditions (a), (c). Then for the operator K the inequality (2.14) is valid.

Example 2.2. Let

$$\omega(t) = \left\{ \begin{array}{ll} \frac{1}{t^{n+|\gamma|}} \ln^{\nu} \frac{1}{t}, & for \quad t < d \\ \left(d^{-n-|\gamma|-\alpha} \ln^{\nu} \frac{1}{d} \right) t^{\alpha}, & for \quad t \geq d \end{array} \right.,$$

$$\omega_1(t) = \begin{cases} \frac{1}{t^{n+|\gamma|}} \ln^{\beta} \frac{1}{t}, & for \quad t < d \\ \left(d^{-n-|\gamma|-\lambda} \ln^{\beta} \frac{1}{d} \right) t^{\lambda}, & for \quad t \ge d \end{cases},$$

where $\beta < \nu \leq 0, \ -n - |\gamma| < \lambda < \alpha < 0, \ d = e^{\frac{\beta}{n + |\gamma|}}$. Then the weighted pair $(\omega(|x|), \omega_1(|x|))$ satisfies the condition of Theorem 2.6.

Theorem 2.7. Let $p \in (1, \infty)$ and T be a p-admissible $B_{k,n}$ -singular operators. Moreover, let $\omega(t)$ be a weight function on $(0,\infty)$, $\omega_1(t)$ be a positive increasing function on $(0, \infty)$ and $\omega(|x'|)$, $\omega_1(|x'|)$ be satisfied the conditions (a_1) , (b_1) . Then there exists a constant c>0, such that for all $f\in L_{p,\omega,\gamma}(\mathbb{R}^n_{k,\perp})$

$$\int_{\mathbb{R}^{n}_{k-1}} |Tf(x)|^{p} \omega_{1}(|x'|)(x')^{\gamma} dx \le c \int_{\mathbb{R}^{n}_{k-1}} |f(x)|^{p} \omega(|x'|)(x')^{\gamma} dx. \tag{2.15}$$

Proof. Suppose that $f \in L_{p,\omega,\gamma}(\mathbb{R}^n_{k,+})$, ω_1 are positive increasing functions on $(0, \infty)$ and $\omega(t)$, $\omega_1(t)$ satisfied the conditions (a_1) , (b_1) .

Without loss of generality we can suppose that ω_1 may be represented by

$$\omega_1(t) = \omega_1(0+) + \int_0^t \psi(\lambda)d\lambda,$$

where $\omega_1(0+) = \lim_{t\to 0} \omega_1(t)$ and $\omega_1(t) \geq 0$ on $(0,\infty)$. In fact there exists a sequence of increasing absolutely continuous functions ϖ_n such that $\varpi_n(t) \leq \omega_1(t)$ and $\lim_{n\to\infty} \varpi_n(t) = \omega_1(t)$ for any $t\in(0,\infty)$ (see [12], [14] for details). We have

$$\int_{\mathbb{R}^{n}_{k,+}} |Tf(x)|^{p} \omega_{1}(|x'|)(x')^{\gamma} dx = \omega_{1}(0+) \int_{\mathbb{R}^{n}_{k,+}} |Tf(x)|^{p} (x')^{\gamma} dx +$$

$$+ \int_{\mathbb{R}^n_{k,+}} |Tf(x)|^p \left(\int_0^{x'} \psi(\lambda) d\lambda \right) (x')^{\gamma} dx = J_1 + J_2.$$

If $\omega_1(0+)=0$, then $J_1=0$. If $\omega_1(0+)\neq 0$ by the boundedness of T in $L_{p,\gamma}(\mathbb{R}^n_{k,+})$ thanks to (a)

$$J_{1} \leq ||T||^{p} \omega_{1}(0+) \int_{\mathbb{R}^{n}_{k,+}} |f(x)|^{p} (x')^{\gamma} dx$$

$$\leq ||T||^{p} \int_{\mathbb{R}^{n}_{k,+}} |f(x)|^{p} \omega_{1}(|x'|)(x')^{\gamma} dx$$

$$\leq ||T||^{p} \int_{\mathbb{R}^{n}_{k,+}} |f(x)|^{p} \omega(|x'|)(x')^{\gamma} dx.$$

After changing the order of integration in J_2 we have

$$\begin{split} J_2 &= \int_0^\infty \psi(\lambda) \left(\int_{\mathbb{R}^{n-k}_+} \int_{\mathbb{C}_{E'(0,\lambda)}} |Tf(x)|^p (x')^\gamma dx \right) d\lambda \\ &\leq 2^{p-1} \int_0^\infty \psi(\lambda) \left(\int_{\mathbb{R}^{n-k}_+} \int_{\mathbb{C}_{E'(0,\lambda)}} |T(f\chi_{\{|x'|>\lambda/2\}})(x)|^p (x')^\gamma dx \right) \\ &+ \int_{\mathbb{R}^{n-k}_+} \int_{\mathbb{C}_{E'(0,\lambda)}} |T(f\chi_{\{|x'|\leq \lambda/2\}})(x)|^p (x')^\gamma dx \right) d\lambda = J_{21} + J_{22}. \end{split}$$

Using the boundeedness of T in $L_{p,\gamma}(\mathbb{R}^n_{k,+})$ we obtain

$$J_{21} \leq \|T\|^{p} \int_{0}^{\infty} \psi(t) \left(\int_{\mathbb{R}^{n-k}} \int_{\mathfrak{C}_{E'(0,\lambda/2)}} |f(y)|^{p} (y')^{\gamma} dy \right) dt$$

$$= \|T\|^{p} \int_{0}^{\infty} \psi(t) \left(\int_{\mathfrak{C}_{E'(0,\lambda/2)}} \|f(\cdot,y')\|_{p,\mathbb{R}^{n-k}}^{p} (y')^{\gamma} dy' \right) dt$$

$$= \|T\|^{p} \int_{\mathbb{R}^{n}_{k,+}} \|f(\cdot,y')\|_{p,\mathbb{R}^{n-k}}^{p} \left(\int_{0}^{2|y'|} \psi(\lambda) d\lambda \right) (y')^{\gamma} dy'$$

$$\leq \|T\|^{p} \int_{\mathbb{R}^{n}_{k,+}} \|f(\cdot,y')\|_{p,\mathbb{R}^{n-k}}^{p} \omega_{1}(2|y'|)(y')^{\gamma} dy'$$

$$\leq b \|T\|^{p} \int_{\mathbb{R}^{n}_{k,+}} |f(y)|^{p} \omega(|y'|)(y')^{\gamma} dy.$$

Let us estimate J_{22} . For $|x'| > \lambda$ and $|y'| \le \lambda/2$ we have $|x'|/2 \le ||x'| - |y'|| \le 3|x'|/2$, and so

$$J_{22} \leq c_9 \int_0^\infty \psi(\lambda) \Big(\int_{\mathbb{R}^{n-k}} \int_{\mathbb{C}_{E'(0,\lambda)}} \Big(\int_{\mathbb{R}^{n-k}} \int_{E'(0,\lambda/2)} \frac{|f(y)|}{|x-y|^{n+|\gamma|}} dy \Big)^p (x')^{\gamma} dx \Big) d\lambda \leq$$

$$c_{10} \int_{0}^{\infty} \psi(\lambda) \Big(\int_{\mathfrak{c}_{E'(0,\lambda)}} \int_{\mathbb{R}^{n-k}} \Big(\int_{E'(0,\lambda/2)} \int_{\mathbb{R}^{n-k}} \frac{|f(y)|}{(|x'|+|x''-y''|)^{n+|\gamma|}} (y')^{\gamma} dy \Big)^{p} (x')^{\gamma} dx \Big) d\lambda.$$

For $x = (x', x'') \in \mathbb{R}^n_{k,+}$ let

$$J(x',\lambda) = \int_{\mathbb{R}^{n-k}} \left(\int_{E'(0,\lambda/2)} \int_{\mathbb{R}^{n-k}} \frac{|f(y)|}{(|x'| + |x'' - y''|)^{n+|\gamma|}} (y')^{\gamma} dy \right)^{p} dx''$$

Using the Minkowski and Young inequalities we obtain

$$J(x',\lambda) \leq \left[\int_{E'(0,\lambda/2)} \left(\int_{\mathbb{R}^{n-k}} |f(y)|^p dy'' \right)^{1/p} \left(\int_{\mathbb{R}^{n-k}} \frac{dy''}{(|y''| + |x'|)^{n+|\gamma|}} \right) (y')^{\gamma} dy' \right]^p$$

$$\leq \left(\int_{E'(0,\lambda/2)} \|f(\cdot,y')\|_{p,\mathbb{R}^{n-k}} (y')^{\gamma} dy' \right)^p \left(\int_{\mathbb{R}^{n-k}} \frac{dy'}{(|y''| + |x'|)^{n+|\gamma|}} \right)^p$$

$$= c_3 |x'|^{-(k+|\gamma|)p} \left(\int_{E'(0,\lambda/2)} \|f(\cdot,y')\|_{p,\mathbb{R}^{n-k}} (y')^{\gamma} dy' \right)^p$$

$$\times \left(\int_{\mathbb{R}^{n-k}} \frac{dy'}{(1+|y'|)^{n+|\gamma|}} \right)^p$$

$$= c_4 |x'|^{-(k+|\gamma|)p} \left(\int_{E'(0,\lambda/2)} \|f(\cdot,y')\|_{p,\mathbb{R}^{n-k}} (y')^{\gamma} dy' \right)^p.$$

Integrating in $(0,\infty) \times ({}^{\complement}E'(0,\lambda))$ we get

$$J_{22} \leq c_{5} \int_{0}^{\infty} \psi(\lambda)$$

$$\times \left(\int_{\mathbb{C}_{E'(0,\lambda)}} \left(\int_{E(0,\lambda/2)} \|f(\cdot,y')\|_{p,\mathbb{R}^{n-k}} (y')^{\gamma} dy' \right)^{p} |x'|^{-(k+|\gamma|)p} (x')^{\gamma} dx \right) d\lambda$$

$$= \frac{2c_{5}}{p-1} \int_{0}^{\infty} \psi(\lambda) \lambda^{-(k+|\gamma|)p+|\gamma|+k} \left(\int_{E(0,\lambda/2)} \|f(\cdot,y')\|_{p,\mathbb{R}^{n-k}} (y')^{\gamma} dy' \right)^{p} d\lambda.$$

The Hardy inequality

$$\int_{0}^{\infty} \psi(\lambda) \lambda^{-(k+|\gamma|)p+|\gamma|+k} \left(\int_{E(0,\lambda/2)} \|f(\cdot,y')\|_{p,\mathbb{R}^{n-k}} (y')^{\gamma} dy \right)^{p} d\lambda
\leq C \int_{\mathbb{R}^{k}_{++}} \|f(\cdot,y')\|_{p,\mathbb{R}^{n-k}}^{p} \omega(|y'|)(y')^{\gamma} dy'
= C \int_{\mathbb{R}^{n}_{k,+}} |f(y)|^{p} \omega(|y'|)(y')^{\gamma} dy.$$

is valid, for $p \in (1, \infty)$ is valid by the condition $C \leq c' \mathcal{A}''$, where

$$\mathcal{A}'' \equiv \sup_{\tau>0} \left(\int_{2\tau}^{\infty} \psi(t) t^{-(k+|\gamma|)p+|\gamma|+k} d\tau \right) \left(\int_{0}^{\tau} \omega^{1-p'}(t) t^{|\gamma|} dt \right)^{p-1} < \infty.$$

Note that

$$\begin{split} \int_{2t}^{\infty} \psi(\tau) \tau^{-(k+|\gamma|)p+|\gamma|+k} d\tau &= (k+|\gamma|)(p-1) \int_{2t}^{\infty} \psi(\tau) d\tau \int_{\tau}^{\infty} \lambda^{-(k+|\gamma|)p+\gamma} d\lambda \\ &= (k+|\gamma|)(p-1) \int_{2t}^{\infty} \lambda^{-(k+|\gamma|)p+|\gamma|} d\lambda \int_{2t}^{\lambda} \psi(\tau) d\tau \\ &\leq (k+|\gamma|)(p-1) \int_{2t}^{\infty} \lambda^{-(k+|\gamma|)p+|\gamma|} \omega_{1}(\lambda) d\lambda. \end{split}$$

Condition (b_1) of the theorem guarantees that $\mathcal{A}'' \leq (k + |\gamma|)(p-1)\mathcal{A}_1 < \infty$. Hence, applying the Hardy inequality, we obtain

$$J_{22} \le c_{11} \int_{\mathbb{R}^n_{k,+}} |f(x)|^p \omega(|x'|) (x')^{\gamma} dx.$$

Combining the estimates of J_1 and J_2 , we get (2.14) for $\omega_1(t) = \omega_1(0+) + \int_0^t \psi(\tau)d\tau$. By Fatou's theorem on passing to the limit under the Lebesgue integral sign, this iplies (2.15). The theorem is proved.

Example 2.3. Let

$$\omega(t) = \begin{cases} t^{p-1} \ln^p \frac{1}{t}, & for \quad t \in \left(0, \frac{1}{2}\right) \\ \left(2^{\beta - p + 1} \ln^p 2\right) t^{\beta}, & for \quad t \in \left[\frac{1}{2}, \infty\right) \end{cases},$$

$$\omega_1(t) = \left\{ \begin{array}{ll} t^{p-1}, & for \quad t \in \left(0, \frac{1}{2}\right) \\ 2^{\alpha-p+1}t^{\alpha}, & for \quad t \in \left[\frac{1}{2}, \infty\right) \end{array} \right.,$$

where $0 < \alpha \le \beta < p-1$. Then the pair $(\omega(|x'|), \omega_1(|x'|))$ satisfies the condition of Theorem 2.7.

Corollary 2.7. Let $p \in (1, \infty)$, k be a $B_{k,n}$ -singular kernel and K be the corresponding operator. Moreover, let $\omega(t)$ be a weight function on $(0, \infty)$, $\omega_1(t)$ be a positive increasing function on $(0, \infty)$ and $\omega(|x'|)$, $\omega_1(|x'|)$ be satisfied the conditions (a_1) , (b_1) . Then for the operator K the inequality (2.15) is valid.

Theorem 2.8. Let $p \in (1, \infty)$ and T be a p-admissible $B_{k,n}$ -singular operators. Moreover, let $\omega(t)$ be a weight function on $(0, \infty)$, $\omega_1(t)$ be a positive decreasing function on $(0, \infty)$ and $\omega(|x'|)$, $\omega_1(|x'|)$ be satisfied the conditions (a_1) , (c_1) . Then inequality (2.15) is valid.

Proof. Without loss of generality we can suppose that ω_1 may be represented by

$$\omega_1(t) = \omega_1(+\infty) + \int_t^\infty \psi(\tau)d\tau,$$

where $\omega_1(+\infty) = \lim_{t\to\infty} \omega_1(t)$ and $\omega_1(t) \geq 0$ on $(0,\infty)$. In fact there exists a sequence of decreasing absolutely continuous fuctions ϖ_n such that $\varpi_n(t) \leq \omega_1(t)$ and $\lim_{n\to\infty} \varpi_n(t) = \omega_1(t)$ for any $t \in (0,\infty)$ (see [12], [14] for details). We have

$$\int_{\mathbb{R}^{n}_{k,+}} |Tf(x)|^{p} \omega_{1}(|x'|)(x')^{\gamma} dx = \omega_{1}(+\infty) \int_{\mathbb{R}^{n}_{k,+}} |Tf(x)|^{p} (x')^{\gamma} dx + \int_{\mathbb{R}^{n}_{k,+}} |Tf(x)|^{p} \left(\int_{|x'|}^{\infty} \psi(\tau) d\tau \right) (x')^{\gamma} dx = I_{1} + I_{2}.$$

If $\omega_1(+\infty) = 0$, then $I_1 = 0$. If $\omega_1(+\infty) \neq 0$ by the boundedness of T in $L_{p,\gamma}(\mathbb{R}^n_{k,+})$

$$J_{1} \leq \|T\|^{p} \omega_{1}(+\infty) \int_{\mathbb{R}^{n}_{k,+}} |f(x)|^{p} (x')^{\gamma} dx$$

$$\leq \|T\|^{p} \int_{\mathbb{R}^{n}_{k,+}} |f(x)|^{p} \omega_{1}(|x'|) (x')^{\gamma} dx$$

$$\leq b \|T\|^{p} \int_{\mathbb{R}^{n}_{k,+}} |f(x)|^{p} \omega(|x'|) (x')^{\gamma} dx.$$

After changing the order of integration in J_2 we have

$$J_{2} = \int_{0}^{\infty} \psi(\lambda) \left(\int_{\mathbb{R}^{n-k}} \int_{E'(0,\lambda)} |Tf(x)|^{p} (x')^{\gamma} dx \right) d\lambda$$

$$\leq 2^{p-1} \int_{0}^{\infty} \psi(\lambda) \left(\int_{\mathbb{R}^{n-k}} \int_{E'(0,\lambda)} |T(f\chi_{\{|x'|<2\lambda\}})(x)|^{p} (x')^{\gamma} dx \right)$$

$$+ \int_{\mathbb{R}^{n-k}} \int_{E'(0,\lambda)} |T(f\chi_{\{|x'|\geq2\lambda\}})(x)|^{p} (x')^{\gamma} dx \right) d\lambda$$

$$= J_{21} + J_{22}.$$

Using the boundeedness of T in $L_{p,\gamma}(\mathbb{R}^n_{k,+})$ we obtain

$$J_{21} \leq ||T||^p \int_0^\infty \psi(t) \left(\int_{\mathbb{R}^{n-k}} \int_{E'(0,2\lambda)} |f(y)|^p (y')^\gamma dy \right) dt$$

$$= ||T||^p \int_{\mathbb{R}^n_{k,+}} |f(y)|^p \left(\int_{|y'|/2}^\infty \psi(\lambda) d\lambda \right) (y')^\gamma dy$$

$$\leq ||T||^p \int_{\mathbb{R}^n_{k,+}} |f(y)|^p \omega_1(|y'/2|) (y')^\gamma dy$$

$$\leq b ||T||^p \int_{\mathbb{R}^n_{k,+}} |f(y)|^p \omega(|y'|) (y')^\gamma dy.$$

Let us estimate J_{22} . For $|x'| < \lambda$ and $|y'| \ge 2\lambda$ we have $|y'|/2 \le |x'-y'| \le 3|y'|/2$, and so

$$J_{22} \leq c_{12} \int_{0}^{\infty} \psi(\lambda)$$

$$\times \left(\int_{\mathbb{R}^{n-k}} \int_{\mathbb{C}_{E'(0,\lambda)}} \left(\int_{\mathbb{R}^{n-k}} \int_{\mathbb{C}_{E'(0,2\lambda)}} \frac{|f(y)|(y')^{\gamma} dy}{(|x'-y'|+|x''-y''|)^{n+|\gamma|}} \right)^{p} (x')^{\gamma} dx \right) d\lambda$$

$$\leq 2^{n} c_{12} \int_{0}^{\infty} \psi(\lambda)$$

$$\times \left(\int_{\mathbb{R}^{n-k}} \int_{E'(0,\lambda)} \left(\int_{\mathbb{R}^{n-k}} \int_{\mathbb{C}_{E'(0,2\lambda)}} \frac{|f(y)|(y')^{\gamma} dy}{(|x''-y''|+|y'|)^{n+|\gamma|}} \right)^{p} (x')^{\gamma} dx \right) d\lambda.$$

For $x = (x', x'') \in \mathbb{R}^n_{k,+}$ let

$$J_1(x',\lambda) = \int_{\mathbb{R}^{n-k}} \left(\int_{\mathfrak{C}_{E'(0,2\lambda)}} \int_{\mathbb{R}^{n-k}} \frac{|f(y)|(y')^{\gamma} dy}{(|x'' - y''| + |y'|)^{n+|\gamma|}} \right)^p dx'.$$

Using the Minkowski and Young inequalities we obtain

$$\begin{split} J_{1}(x',\lambda) &\leq \left[\int_{\mathbb{C}_{E'(0,2\lambda)}} \left(\int_{\mathbb{R}^{n-k}} |f(y)|^{p} dy' \right)^{1/p} \left(\int_{\mathbb{R}^{n-k}} \frac{dy'}{(|y''| + |y'|)^{n+\gamma}} \right) (y')^{\gamma} dy_{n} \right]^{p} \\ &\leq \left(\int_{\mathbb{C}_{E'(0,2\lambda)}} \|f(\cdot,y')\|_{p,\mathbb{R}^{n-k}} (y')^{\gamma} dy' \right)^{p} \left(\int_{\mathbb{R}^{n-k}} \frac{dy''}{(|y''| + |y'|)^{n+|\gamma|}} \right)^{p} \\ &= c_{3} \left(\int_{\mathbb{C}_{E'(0,2\lambda)}} \|f(\cdot,y')\|_{p,\mathbb{R}^{n-k}} |y'|^{-k-|\gamma|} (y')^{\gamma} dy' \right)^{p} \left(\int_{\mathbb{R}^{n-k}} \frac{dy''}{(1+|y''|)^{n+|\gamma|}} \right)^{p} \\ &= c_{4} \left(\int_{\mathbb{C}_{E'(0,2\lambda)}} \|f(\cdot,y')\|_{p,\mathbb{R}^{n-k}} |y'|^{-k-|\gamma|} (y')^{\gamma} dy' \right)^{p} . \end{split}$$

Integrating in $(0, \infty) \times (0, \lambda)$ we get

$$J_{22} \leq c_5 \int_0^\infty \psi(\lambda)$$

$$\times \left(\int_{E'(0,\lambda)} \left(\int_{\mathfrak{C}_{E'(0,2\lambda)}} \|f(\cdot,y')\|_{p,\mathbb{R}^{n-k}} |y'|^{-k-|\gamma|} (y')^{\gamma} dy' \right)^p (x')^{\gamma} dx' \right) d\lambda$$

$$= 2c_5 \int_0^\infty \psi(\lambda) \lambda^{k+|\gamma|} \left(\int_{\mathfrak{C}_{E'(0,2\lambda)}} \|f(\cdot,y')\|_{p,\mathbb{R}^{n-k}} |y'|^{-k-|\gamma|} (y')^{\gamma} dy' \right)^p d\lambda.$$

The Hardy inequality

$$\int_0^\infty \psi(\lambda) \lambda^{1+|\gamma|} \left(\int_{\mathfrak{L}_{E'(0,2\lambda)}} \|f(\cdot,y')\|_{p,\mathbb{R}^{n-1}} |y'|^{-k-|\gamma|} (y')^{\gamma} dy \right)^p d\lambda$$

$$\leq C \int_{\mathbb{R}^{k}_{++}} \|f(\cdot, x')\|_{p, \mathbb{R}^{n-k}}^{p} \omega(|x'|) (x')^{\gamma} dx' = C \int_{\mathbb{R}^{n}_{k+}} |f(y)|^{p} \omega(|y'|) (y')^{\gamma} dy,$$

is valid, for $p \in (1, \infty)$ is valid by the condition $C \leq c'\mathcal{B}''$, where

$$\mathcal{B}'' \equiv \sup_{\tau > 0} \left(\int_0^\tau \psi(t) t^{k+|\gamma|} d\tau \right) \left(\int_{2\tau}^\infty \omega^{1-p'}(t) t^{-(k+|\gamma|)p'} t^{|\gamma|} dt \right)^{p-1} < \infty.$$

Note that

$$\begin{split} \int_0^\tau \psi(t) t^{k+|\gamma|} dt &= (k+|\gamma|) \int_0^\tau \psi(t) dt \int_0^t \lambda^{|\gamma|} d\lambda \\ &= (k+|\gamma|) \int_0^\tau \lambda^{|\gamma|} d\lambda \int_\lambda^t \psi(\tau) d\tau \\ &\leq (k+|\gamma|) \int_0^\tau \omega(\lambda) \lambda^{|\gamma|} d\lambda. \end{split}$$

Condition (c_1) of the theorem guarantees that $\mathcal{B}'' \leq \mathcal{B}_1 < \infty$. Hence, applying the Hardy inequality, we obtain

$$J_{22} \le c \int_{\mathbb{R}^n_{k_\perp}} |f(x)|^p \omega(|x'|) (x')^{\gamma} dx.$$

Combining the estimates of J_1 and J_2 , we get (2.14) for $\omega_1(t) = \omega_1(+\infty) + \int_t^\infty \psi(\tau)d\tau$. By Fatou's theorem on passing to the limit under the Lebesgue integral sign, this iplies (2.15). The theorem is proved.

Corollary 2.8. Let $p \in (1, \infty)$, k be a $B_{k,n}$ -singular kernel and K be the corresponding operator. Moreover, let $\omega(t)$ be a weight function on $(0, \infty)$, $\omega_1(t)$ be a positive decreasing function on $(0, \infty)$ and $\omega(|x'|)$, $\omega_1(|x'|)$ be satisfied the conditions (a_1) , (c_1) . Then for the operator K the inequality (2.15) is valid.

Example 2.4. Let

$$\omega(t) = \begin{cases} \frac{1}{t} \ln^{\nu} \frac{1}{t}, & for \quad t < d \\ \left(d^{-1-\alpha} \ln^{\nu} \frac{1}{d} \right) t^{\alpha}, & for \quad t \ge d \end{cases},$$
$$\omega_1(t) = \begin{cases} \frac{1}{t} \ln^{\beta} \frac{1}{t}, & for \quad t < d \\ \left(d^{-1-\lambda} \ln^{\beta} \frac{1}{d} \right) t^{\lambda}, & for \quad t \ge d \end{cases},$$

where $\beta < \nu \leq 0$, $-1 < \lambda < \alpha < 0$, $d = e^{\beta}$. Then the pair $(\omega(|x'|), \omega_1(|x'|))$ satisfies the condition of Theorem 2.8.

References

- [1] E. Adams, On weighted norm inequalities for the Riesz transforms of functions with vanishing moments, *Studia Math.*, **78** (1984), 107–153.
- [2] I.A. Aliev, S. Bayrakci. On inversion of *B*-elliptic potentials by the method of Balakrishnan-Rubin, *Fract. Calc. Appl. Anal.*, 1, no.4 (1998), 365–384.
- [3] I.A. Aliev, S. Bayrakci, On inversion of Bessel potentials associated with the Laplace-Bessel differential operator, *Acta Math. Hungar*, **95**, no.1-2 (2002), 125–145.
- [4] I.A. Aliev, A. D. Gadjiev, On classes of operators of potential types, generated by a generalized shift, *Reports of enlarged Session of the Seminars of I.N. Vekua Inst. of Appl. Math. Tbilisi*, **3**, no. 2 (1998), 21–24.

- [5] I.A. Aliev, A. D. Gadjiev, Weighted estimates of multidimensional singilar integrals generated by the generalized shift operator, *Mat. Sb.* **183**, no.9 (1992), 45–66. English, translated into Russian, *Acad. Sci. Sb. Math.* **77**, no.1 (1994), 37–55.
- [6] J.S. Bradley, The Hardy's inequalities with mixed norms, *Canad. Math. Bull.*, **21** (1978), 405–408.
- [7] A.P. Calderon and A. Zygmund, On singular integrals, Amer. J. Math. 78 (1956), 289–309.
- [8] D. Edmunds, P. Gurka, L. Pick, Compactness of Hardy-type integral operators in weighted Banach function spaces, *Studia Math.*, **109**, (1994), 73–90.
- [9] I. Ekincioglu, A. Serbetci, On weighted estimates of high-order Riesz-Bessel transformations generated by the generalized shift operator, *Acta Math. Sin.* (Engl. Ser.) 21 (2005), no. 1, 53–64.
- [10] I. Ekincioglu, C. Keskin, S. Er, Hlder weight estimates of Riesz-Bessel singular integrals generated by a generalized shift operator, *An. tiint,. Univ. "Ovidius" Constanta Ser. Mat.* 19 (2011), no. 1, 75–92.
- [11] A.D. Gadjiev and E. V. Guliyev, Two-weighted inequality for singular integrals in Lebesgue spaces, associated with the Laplace-Bessel differential operator, *Proceedings of A. Razmadze Math. Inst.*, **138** (2005), 1–15.
- [12] I. Genebashvili, A. Gogatishvili, V. Kokilashvili, M. Krbec, Weight theory for integral transforms on spaces of homogeneous type, Pitman monographs and surveys in pure and appl. math. 1998.
- [13] E.V. Guliyev, Two-weighted inequality for some sublinear operators in Lebesgue spaces, associated with the Laplace-Bessel differential operators, *Proc. A. Razmadze Math. Inst.*, **139** (2005), 5–31.
- [14] V.S. Guliev, Two-weighted inequalities for integral operators in L_p -spaces, and applications, $Trudy\ Math.\ Inst.\ Stek.\ 204\ (1993),\ 113–136.$ English trans. in $Proc.\ Steklov\ Inst.\ Math.\ 204\ (1994),\ 97–116.$
- [15] V. S. Guliev, Sobolev theorems for B-Riesz potentials, Dokl. RAN, 358, no.4 (1998), 450-451.
- [16] V.S. Guliev, Some properties of the anisotropic Riesz-Bessel potential, *Anal. Math.*, **26**, no.2 (2000), 99–118.
- [17] V.S. Guliyev, On maximal function and fractional integral, associated with the Bessel differential operator, *Math. Ineq. Appl.*, **6**, no.2 (2003), 317–330.
- [18] V.S. Guliyev, N. N. Garakhanova, Y. Zeren, Pointwise and integral estimates for *B*-Riesz potentials in terms of *B*-maximal and *B*-fractional maximal functions, *Siberian Math. J.*, **49**, no.6 (2008), 1008–1022.
- F. J.J. [19] V.S. Guliyev, Deringoz, Hasanov, Φ -admissible singular operators and their commutators on vanishing generalized OrliczandApplications, Morrey spaces, JournalofInequalities 2014,2014:143. http://www.journalofinequalitiesandapplications.com/content/2014/1/143
- [20] E.G. Guseinov, Singular integrals in the spaces of functions summable with monotone weight, *Mat. Sb.*, **132**, no.174, 4 (1977), 28–44.(Russian)
- [21] J.J. Hasanov, Φ-admissible sublinear singular operators and generalized Orlicz-Morrey spaces, J. Funct. Spaces Volume 2014 (2014), Article ID 505237, 7 pages http://dx.doi.org/10.1155/2014/505237
- [22] V.M. Kokilashvilii, On Hardy's inequalities in weighted spaces, *Bull. Acad. Sci. Georgian SSR*, **96** (1979), 37–40. (Russian)
- [23] V. M. Kokilashvili, A. Meskhi, Two-weight inequalities for singular integrals defined on homogeneous groups. *Proc. Razmadze Math.Inst.*, **112** (1997), 57–90.

- [24] I.A. Kipriyanov and M.I. Klyuchantsev, On singular integrals generated by the generalized shift operator II, Sibirsk. Mat. Zh. 11 (1970), 1060–1083; (Russian) translation in Siberian Math. J., 11 (1970), 787–804.
- [25] M.I. Klyuchantsev, On singular integrals generated by the generalized shift operator. I, Sibirsk. Math. Zh., 11 (1970), 810–821; (Russian) translation in Siberian Math. J. 11 (1970), 612–620.
- [26] S.G. Mihlin, Multidimensional singular integrals and integral equations, Fizmatgiz, Moscow, 1962; english transl. Pergamon Press, NY, 1965.
- [27] B.M. Levitan, Bessel function expansions in series and Fourier integrals, *Uspekhi Mat. Nauk*, **6**, no. 42, 2 (1951), 102–143. (Russian)
- [28] J. Löfstrom, J. Peetre, Approximation theorems connected with generalized translations, *Math. Ann.*, **181** (1969), 255-268.
- [29] L.N. Lyakhov, On a class of spherical functions and singular pseudodifferential operators, *Dokl. Akad. Nauk.* **272**, no.4 (1983), 781–784; (Russian) translation in Soviet *Math. Dokl.*, **28**, no.2 (1983), 431–434.
- [30] L.N. Ljakhov, Multipliers of the Mixed Fourier-Bessel Transformation, *Proc. V.A.Steklov Inst. Math.*, **214** (1997), 234–249.
- [31] N. Samko, Maximal, Potential and Singular Operators in Vanishing Generalized Morrey Spaces, J. Global Optim. 57, Issue 4, (2013), 1385-1399.
- [32] K. Stempak, Almost everywhere summability of Laguerre series, *Studia Math.*, **100**, no. 2 (1991), 129–147.

Vagif S. Guliyev

Department of Mathematics, Ahi Evran University, Kirsehir, Turkey and Institute of Mathematics and Mechanics of NAS of Azerbaijan,

9. F. Agayev str., AZ1141, Baku, Azerbaijan

E-mail address: vagif@guliyev.com

Fatai A. Isayev

Institute of Mathematics and Mechanics of NAS of Azerbaijan,

9. F. Agayev str., AZ1141, Baku, Azerbaijan

E-mail address: isayevfatai@yahoo.com

Zaman V. Safarov

Institute of Mathematics and Mechanics of NAS of Azerbaijan,

9. F. Agayev str., AZ1141, Baku, Azerbaijan

E-mail address: szaman@rambler.ru

Received: April 4, 2014; Revised: June 8, 2014; Accepted: June 9, 2014