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TWO-WEIGHTED INEQUALITY FOR p-ADMISSIBLE

Bk,n–SINGULAR OPERATORS IN WEIGHTED LEBESGUE

SPACES

VAGIF S. GULIYEV, FATAI A. ISAYEV, AND ZAMAN V. SAFAROV

Abstract. In this paper, we study the boundedness of p-admissible sin-
gular operators, associated with the Laplace-Bessel differential operator

Bk,n =
n∑
i=1

∂2

∂x2
i

+
k∑
j=1

γj
xj

∂
∂xj

(p-admissible Bk,n–singular operators) on a

weighted Lebesgue spaces Lp,ω,γ(Rnk,+) including their weak versions.
These conditions are satisfied by most of the operators in harmonic
analysis, such as the Bk,n–maximal operator, Bk,n–singular integral op-
erators and so on. Sufficient conditions on weighted functions ω and
ω1 are given so that p-admissible Bk,n–singular operators are bounded
from Lp,ω,γ(Rnk,+) to Lp,ω1,γ(Rnk,+) for 1 < p <∞ and weak p-admissible

Bk,n–singular operators are bounded from Lp,ω,γ(Rnk,+) to Lp,ω1,γ(Rnk,+)
for 1 ≤ p <∞.

1. Introduction

The singular integral operators considered by S. Mihlin [26] and A. Calderon
and A. Zygmund [7] are playing an important role in the theory of Harmonic
Analysis and in particular, in the theory of partial differential equations. M.
Klyuchantsev [25] and I. Kipriyanov and M. Klyuchantsev [24] have firstly intro-
duced and investigated the boundedness in Lp-spaces of multidimensional singu-
lar integrals, generated by the B1,n–Laplace-Bessel differential operator (B1,n–
singular integrals), where

B1,n = B1 +
n∑
j=2

∂2

∂x2j
, B1 =

∂2

∂x21
+

γ

x1

∂

∂x1
, γ > 0.

I.A. Aliev and A.D. Gadjiev [5], A.D. Gadjiev and E.V. Guliyev [11] and E.V.
Guliyev [13] have studied the boundedness of B1,n singular integrals in weighted
Lp-spaces with radial and general weights consequently. The maximal functions,
singular integrals, potentials and related topics associated with the Laplace-Bessel
differential operator Bk,n–which is known as an important differential operator in
analysis and its applications, have been the research areas of many mathematicans
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such as I. Kipriyanov and M. Klyuchantsev [24, 25], L. Lyakhov [29, 30], A.D.
Gadjiev and I.A. Aliev [4, 5], I.A. Aliev and S. Bayrakci [2, 3], V.S. Guliyev
[15, 16, 17] and others.

In the paper, we shall prove the boundedness of p-admissible singular operators,

associated with the Laplace-Bessel differential operator Bk,n =
n∑
i=1

∂2

∂x2i
+

k∑
j=1

γj
xj

∂
∂xj

(p-admissible Bk,n–singular operators) on a weighted Lp spaces. Sufficient con-
ditions on weighted functions ω and ω1 are given so that p-admissible Bk,n–
singular operators are bounded from Lp,ω,γ(Rnk,+) to Lp,ω1,γ(Rnk,+) for 1 < p <∞
and weak p-admissible Bk,n–singular operators are bounded from Lp,ω,γ(Rnk,+) to

Lp,ω1,γ(Rnk,+) for 1 ≤ p <∞. Note that, our results in the case k = 1 were proved

in [13], which is some generalization of the paper by I. A. Aliev, A. D. Gadjiev
[5].

We point out that the p-admissible Bk,n–singular operators (see Theorem 2.1).
These conditions are satisfied by many interesting operators in harmonic analysis,
such as the Bk,n–Riesz transforms (see [9, 10]), Bk,n–singular integral operators
(for example, for k = 1 see [5, 11, 13, 24, 25] ), Bk,n–Hardy–Littlewood maximal
operators ([18], for n = k = 1 see [32], for k = 1 see [17] and for k = n see [15])
and so on.

2. Notations and Background

Suppose that Rn is the n-dimensional Euclidean space, x = (x1, . . . , xn),

ξ = (ξ1, . . . , ξn) are vectors in Rn, (x, ξ) = x1ξ1 + . . . + xnξn, |x| =
√

(x, x),

x = (x′, x′′), x′ = (x1 . . . , xk), x
′′ = (xk+1, . . . , xn). Let Rk++ = {x ∈ Rk : x1 >

0 . . . , xk > 0}, Rnk,+ = {x = (x1, . . . , xn) : x1, x2, . . . , xk > 0}, 1 ≤ k ≤ n,

Sk,+ = {x ∈ Rnk,+ : |x| = 1}.
For x ∈ Rnk,+ and r > 0, we denote by E(x, r) = {y ∈ Rnk,+ : |x− y| < r} the

open ball centered at x of radius r, and by
{
E(x, r) = Rnk,+ \ E(x, r) denote its

complement, E
′
(x′, r) = {y′ ∈ Rk++ : |x′ − y′| < r}, {

E
′
(x′, r) = Rk++ \ E

′
(x′, r).

For measurable set E ⊂ Rnk,+ denote |E|γ =
∫
E(x′)γdx, then |E(0, r)|γ =

ω(n, γ)rn+|γ|, where γ = (γ1 . . . , γk), (x′)γ = xγ11 . . . xγkk and ω(n, γ) = |E(0, 1)|γ .
An almost everywhere positive and locally integrable function ω : Rnk,+ → R

will be called a weight. We shall denote by Lp,ω,γ(Rnk,+) the set of all measurable
functions f on Rnk,+ such that the norm

‖f‖Lp,ω,γ(Rnk,+) ≡ ‖f‖p,ω,γ;Rnk,+ =

(∫
Rnk,+
|f(x)|pω(x)(x′)γdx

)1/p

, 1 ≤ p <∞

is finite. For ω = 1 the space Lp,ω,γ(Rnk,+) is denoted by Lp,γ(Rnk,+), and the norm

‖f‖Lp,ω,γ(Rnk,+) by ‖f‖Lp,γ(Rnk,+).

The operator of generalized shift (Bk,n–shift operator) is defined by the fol-
lowing way (see [18], [30]):

T yf(x) = Cγ,k

∫ π

0
...

∫ π

0
f
(
(x′, y′)β, x

′′ − y′′
)
dν(β),
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where

Cγ,k = π−
k
2 Γ−1

(
|γ|
2

) k∏
i=1

Γ(νi+1
2 ), (x′, y′)β = ((x1, y1)β1 ...(xk, yk)βk), (xi, yi)βi =

(x2i − 2xiyi cosβi + y2i )
1/2, 1 ≤ i ≤ k, dν (β) =

k∏
i=1

sinγi−1 βi dβ1 . . . dβk.

Note that this shift operator is closely connected with Bk,n–Laplace-Bessel
singular differential operators (see [18], [30]).

The translation operator T y generated the corresponding Bk,n-convolution

(f ⊗ g)(x) =

∫
Rnk,+

f(y)[T yg(x)](y′)γdy,

for which the Young inequality

‖f ⊗ g‖Lr,γ ≤ ‖f‖Lp,γ ‖g‖Lq,γ , 1 ≤ p, q, r ≤ ∞, 1

p
+

1

q
=

1

r
+ 1

holds.

Lemma 2.1. [28] Let 1 ≤ p ≤ ∞. Then for all y ∈ Rnk,+, T yf belongs Lp,γ(Rnk,+)
and

‖T yf(·)‖Lp,γ ≤ ‖f‖Lp,γ . (2.1)

Definition 2.1. A function K defined on Rnk,+, is said to be Bk,n–singular kernel
in the space Rnk,+ if

i) K ∈ C∞(Rnk,+) ;

ii) K(rx) = r−n−|γ|K(x) for each r > 0, x ∈ Rnk,+;

iii)
∫
Sk,+

K(x)xγdσ(x) = 0 , where dσ is the element of area of the Sk,+.

The operator T is called sublinear, if for all λ, µ > 0 and for all f and g in the
domain of T

|T (λf + µg)(x)| ≤ λ|Tf(x)|+ µ|Tg(x)|.

Definition 2.2. (p-admissible Bk,n–singular operator). Let 1 < p < ∞. A
sublinear operator T will be called p-admissible Bk,n–singular operator, if:

1) T satisfies the size condition of the form

χ
E(x,r)

(z)
∣∣∣T(fχRn

k,+
\E(x,2r)

)
(z)
∣∣∣

≤ Cχ
E(x,r)

(z)

∫
Rnk,+\E(x,2r)

T y|x|−n−|γ| |f(y)| (y′)γdy (2.2)

for x ∈ Rnk,+ and r > 0;

2) T is bounded in Lp,γ(Rnk,+).

Definition 2.3. (weak p-admissible Bk,n–singular operator). Let 1 ≤ p <∞. A
sublinear operator T will be called the weak p-admissible Bk,n–singular operator,
if:

1) T satisfies the size condition (2.2).
2) T is bounded from Lp,γ(Rnk,+) to the weak WLp,γ(Rnk,+).
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Remark 2.1. Note that p-admissible singular operators were introduced and their
boundedness on vanishing generalized Morrey spaces was studied in [31]. Also
Φ-admissible singular operators and weak Φ-admissible singular operators were
introduced and their boundedness on generalized Orlicz-Morrey spaces was stud-
ied in [19, 21].

First, we establish the boundedness in weighted Lp,γ spaces for a large class of
p-admissible Bk,n–singular operator.

Theorem 2.1. Let p ∈ (1,∞) and T be a p-admissible Bk,n–singular operators.
Moreover, let ω(x), ω1(x) be weight functions on Rnk,+ and the following three

conditions are satisfied:
(a) there exist b > 0 such that

sup
|x|/8<|y|≤8|x|

ω1(y) ≤ b ω(x) for a.e. x ∈ Rnk,+,

(b) A ≡ sup
r>0

 ∫
{E(0,2r)

ω1(x)|x|−(n+|γ|)p(x′)γdx


 ∫
E(0,r)

ω1−p′(x)(x′)γdx


p−1

<∞,

(c) B ≡ sup
r>0

 ∫
E(0,r)

ω1(x)(x′)γdx


 ∫

{E(0,2r)

ω1−p′(x)|x|−(n+|γ|)p′(x′)γdx


p−1

<∞.

Then there exists a constant c, independent of f , such that for all f ∈ Lp,ω,γ(Rnk,+)∫
Rnk,+
|Tf(x)|pω1(x)(x′)γdx ≤ c

∫
Rnk,+
|f(x)|pω(x)(x′)γdx. (2.3)

Moreover, condition (a) can be replaced by the condition
(a′) there exist b > 0 such that

ω1(x)

(
sup

|x|/8<|y|≤8|x|

1

ω(y)

)
≤ b for a.e. x ∈ Rn.

Proof. For l ∈ Z we define El = {x ∈ Rnk,+ : 2l < |x| ≤ 2l+1}, El,1 = {x ∈
Rnk,+ : |x| ≤ 2l−1}, El,2 = {x ∈ Rnk,+ : 2l−1 < |x| ≤ 2l+2}, El,3 = {x ∈
Rnk,+ : |x| > 2l+2}. Then El,2 = El−1 ∪ El ∪ El+1 and the multiplicity of the

covering {El,2}l∈Z is equal to 3.
Given f ∈ Lp,ω,γ(Rnk,+), we write

|Tf(x)| =
∑
l∈Z
|Tf(x)|χEl(x) ≤

∑
l∈Z
|Tfl,1(x)|χEl(x)

+
∑
l∈Z
|Tfl,2(x)|χEl(x) +

∑
l∈Z
|Tfl,3(x)|χEl(x)

≡ T1f(x) + T2f(x) + T3f(x),

where χEl is the characteristic function of the set El, fl,i = fχEl,i , i = 1, 2, 3.
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First we shall estimate ‖T1f‖Lp,ω1,γ . Note that for x ∈ El, y ∈ Ek,1 we have

|y| ≤ 2l−1 ≤ |x|/2. Moreover, El ∩ suppfl,1 = ∅ and |x − y| ≥ |x|/2. Hence by
(2.2)

T1f(x) ≤ c0
∑
l∈Z

(∫
Rnk,+

T y|x|−n−|γ| |fl,1(y)|(y′)γdy

)
χEl

≤ c0
∫
E(0,|x|/2)

|x− y|−n−|γ||f(y)| (y′)γdy

≤ 2n+|γ|c0|x|−n−|γ|
∫
E(0,|x|/2)

|f(y)| (y′)γdy

for any x ∈ El. Hence we have∫
Rnk,+
|T1f(x)|pω1(x) (x′)γdx

≤
(

2n+|γ|c0

)p ∫
Rnk,+

(∫
E(0,|x|/2)

|f(y)| (y′)γdy

)p
|x|−(n+|γ|)pω1(x) (x′)γdx.

Since A <∞, the Hardy inequality∫
Rnk,+

ω1(x)|x|−(n+|γ|)p
(∫

E(0,|x|/2)
|f(y)| (y′)γdy

)p
(x′)γdx

≤ C
∫
Rnk,+
|f(x)|pω(x) (x′)γdx

holds and C ≤ c′A, where c′ depends only on n and p. In fact the condition
A <∞ is necessary and sufficient for the validity of this inequality (see [1], [8]).
Hence, we obtain∫

Rnk,+
|T1f(x)|pω1(x) (x′)γdx ≤ c1

∫
Rnk,+
|f(x)|pω(x) (x′)γdx. (2.4)

where c1 is independent of f .
Next we estimate ‖T3f‖Lp,ω1,γ . As is easy to verify, for x ∈ El, y ∈ El,3 we

have |y| > 2|x| and |x− y| ≥ |y|/2. Since El ∩ suppfl,3 = ∅, for x ∈ El by (2.2)
we obtain

T3f(x) ≤ c0
∫

{E(0,2|x|)
T y|x|−n−|γ||f(y)| (y′)γdy

≤ 2n+|γ|c0

∫
{E(0,2|x|)

|f(y)||x− y|−n−|γ| (y′)γdy

≤ 2n+|γ|c0

∫
{E(0,2|x|)

|f(y)||y|−n−|γ| (y′)γdy.
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Hence we have∫
Rnk,+
|T3f(x)|pω1(x) (x′)γdx

≤
(

2n+|γ|c0

)p ∫
Rnk,+

(∫
{E(0,2|x|)

|f(y)||y|−n−|γ| (y′)γdy

)p
ω1(x) (x′)γdx.

Since B <∞, the Hardy inequality∫
Rnk,+

ω1(x)

(∫
{E(0,2|x|)

|f(y)||y|−n−|γ| (y′)γdy

)p
(x′)γdx

≤ C
∫
Rnk,+
|f(x)|pω(x) (x′)γdx

holds and C ≤ c′B, where c′ depends only on n and p. In fact the condition
B <∞ is necessary and sufficient for the validity of this inequality (see [1], [8]).
Hence, we obtain∫

Rnk,+
|T3f(x)|pω1(x) (x′)γdx ≤ c2

∫
Rnk,+
|f(x)|pω(x) (x′)γdx, (2.5)

where c2 is independent of f .
Finally, we estimate ‖T2f‖Lp,ω1,γ . By the Lp,γ(Rnk,+) boundedness of T and

condition (a) we have

∫
Rnk,+
|T2f(x)|pω1(x) (x′)γdx =

∫
Rnk,+

(∑
l∈Z
|Tfl,2(x)|χEl(x)

)p
ω1(x) (x′)γdx

=

∫
Rnk,+

(∑
l∈Z
|Tfl,2(x)|p χEl(x)

)
ω1(x) (x′)γdx

=
∑
l∈Z

∫
El

|Tfl,2(x)|p ω1(x) (x′)γdx

≤
∑
l∈Z

sup
y∈El

ω1(y)

∫
Rnk,+
|Tfl,2(x)|p (x′)γdx

≤ ‖T‖p
∑
l∈Z

sup
y∈El

ω1(y)

∫
Rnk,+
|fl,2(x)|p (x′)γdx

= ‖T‖p
∑
l∈Z

sup
y∈El

ω1(y)

∫
El,2

|f(x)|p (x′)γdx,

where ‖T‖ ≡ ‖T‖Lp,γ(Rnk,+)→Lp,γ(Rnk,+). Since, for x ∈ El,2, 2l−1 < |x| ≤ 2l+2, we

have by condition (a)

sup
y∈El

ω1(y) = sup
2l−1<|y|≤2l+2

ω1(y) ≤ sup
|x|/8<|y|≤8|x|

ω1(y) ≤ b ω(x)
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for almost all x ∈ El,2. Therefore∫
Rnk,+
|T2f(x)|pω1(x)(x′)γdx ≤ ‖T‖pb

∑
l∈Z

∫
El,2

|f(x)|pω(x)(x′)γdx

≤ c3
∫
Rnk,+
|f(x)|pω(x)(x′)γdx, (2.6)

where c3 = 3‖T‖pb, since the multiplicity of covering {El,2}l∈Z is equal to 3.
Inequalities (2.4), (2.5), (2.6) imply (2.3) which completes the proof. �

Similarly we prove the following weak variant of Theorem 2.1.

Theorem 2.2. Let p ∈ [1,∞) and let T be a p-admissible Bk,n–singular opera-
tors. Moreover, let ω(x), ω1(x) be weight functions on Rnk,+ and conditions (a),

(b), (c) be satisfied.
Then there exists a constant c, independent of f , such that∫

{x∈Rnk,+ : |Tf(x)|>λ}
ω1(x)(x′)γdx ≤ c

λp

∫
Rnk,+
|f(x)|pω(x)(x′)γdx (2.7)

for all f ∈ Lp,ω,γ(Rnk,+).

Let k is a Bk,n–singular kernel and K be the Bk,n–singular integral operator

Kf(x) = p.v.

∫
Rnk,+

T yk(x)f(y)(y′)γdy.

Then K is a p-admissible Bk,n–singular operator for 1 < p < ∞ and weak
p-admissible Bk,n–singular operators for 1 ≤ p <∞. Thus, we have

Corollary 2.1. Let p ∈ (1,∞), K be a Bk,n–singular operator. Moreover, let
ω(x), ω1(x) be weight functions on Rnk,+ and conditions (a), (b), (c) be satisfied.

Then the operator K is bounded from Lp,ω,γ(Rnk,+) to Lp,ω1,γ(Rnk,+).

Corollary 2.2. Let p ∈ [1,∞), K be a Bk,n–singular operator. Moreover, let
ω(x), ω1(x) be weight functions on Rnk,+ and conditions (a), (b), (c) be satisfied.

Then the operator K is bounded from Lp,ω,γ(Rnk,+) to WLp,ω1,γ(Rnk,+).

Remark 2.2. Note that, the conditions p-admissible Bk,n–singular operators are
satisfied by many interesting operators in harmonic analysis, such as the Bk,n–
maximal operator, Bk,n–singular integral operators, Bk,n–Riesz transforms and
so on .

Theorem 2.3. Let p ∈ (1,∞) and T be a p-admissible Bk,n–singular operators.

Moreover, let ω(x′), ω1(x
′) be a weight functions on Rk++ and the following

three conditions be satisfied
(a1) there exists a constant b > 0 such that

sup
|x′|/8<|y′|<8|x′|

ω1(y
′) ≤ b ω(x′) for a.e. x′ ∈ Rk++,
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(b1) A1 ≡ sup
r>0

(∫
{E′ (0,2r)

ω1(x
′)|x′|−(k+|γ|)p(x′)γdx′

)

×

(∫
E′ (0,r)

ω1−p′(x′)(x′)γdx′

)p−1
<∞,

(c1) B1 ≡ sup
r>0

(∫
E′ (0,r) ω1(x

′)(x′)γdx′
)

×

(∫
{E′ (0,2r)

ω1−p′(x′)|x′|−(k+|γ|)p′(x′)γdx′
)p−1

<∞.

Then there exists a constant c, independent of f , such that for all f ∈ Lp,ω(Rnk,+)∫
Rnk,+
|Tf(x)|pω1(x

′)(x′)γdx ≤ c
∫
Rnk,+
|f(x)|pω(x′)(x′)γdx. (2.8)

Moreover, condition (a) can be replaced by the condition
(a1
′) there exists a constant b > 0 such that

ω1(x
′)

(
sup

|x′|/8<|y′|<8|x′|

1

ω(y′)

)
≤ b for a.e. x′ ∈ Rk++.

Proof. For l ∈ Z we define Ẽl = {x ∈ Rnk,+ : 2l < |x′| ≤ 2l+1}, Ẽl,1 = {x ∈
Rnk,+ : |x′| ≤ 2l−1}, Ẽl,2 = {x ∈ Rnk,+ : 2l−1 < |x′| ≤ 2l+2}, Ẽl,3 = {x ∈
Rnk,+ : |x′| > 2l+2}. Then Ẽl,2 = Ẽl−1 ∪ Ẽl ∪ Ẽl+1 and the multiplicity of the

covering
{
Ẽl,2

}
l∈Z

is equal to 3.

Given f ∈ Lp,ω,γ(Rnk,+), we write

|Tf(x)| =
∑
l∈Z
|Tf(x)|χ

Ẽl
(x) ≤

∑
l∈Z
|Tfl,1(x)|χ

Ẽl
(x)

+
∑
l∈Z
|Tfl,2(x)|χ

Ẽl
(x) +

∑
l∈Z
|Tfl,3(x)|χ

Ẽl
(x) (2.9)

≡ T1f(x) + T2f(x) + T3f(x),

where χ
Ẽl

is the characteristic function of the set Ẽl, fl,i = fχ
Ẽl,i

, i = 1, 2, 3. We

shall estimate ‖T1f‖Lp,ω1,γ . Note that for x ∈ Ẽl, y ∈ Ẽl,1 we have |y′| ≤ 2l−1 ≤
|x′|/2. Moreover, Ẽl ∩ suppfl,1 = ∅ and |x′ − y′| ≥ |x′|/2. Hence by (2.2)

T1f(x) ≤ c4
∑
l∈Z

(∫
Rnk,+
|fl,1(y)|T y|x|−n−|γ|dy

)
χ
Ẽl

≤ c4
∫
Rn−k

∫
E′ (0,|x′|/2)

T y|x|−n−|γ||f(y)|(y′)γdy

≤ c5
∫
Rn−k

∫
E′ (0,|x′|/2)

(
|x′|+ |x′′ − y′′|

)−n−|γ| |f(y)|(y′)γdy′dy′′
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for any x ∈ El. Using this last inequality we have∫
Rnk,+
|T1f(x)|pω1(x

′)(x′)γdx

≤ cp5
∫
Rnk,+

(∫
Rn−k

∫
E′ (0,|x′|/2)

(
|x′|+ |x′′ − y′′|

)−n−|γ| |f(y)|(y′)γdy′dy′′
)p

× ω1(x
′)(x′)γdx.

For x = (x′, x′′) ∈ Rn let

I(x′)

=

∫
Rn−k

(∫
Rn−k

∫
E′ (0,|x′|/2)

(
|x′|+ |x′′ − y′′|

)−n−|γ| |f(y′, y′′)|(y′)γdy′dy′′
)p

dx′′

=

∫
Rn−k

(∫
E′ (0,|x′|/2)

(∫
Rn−k

(
|x′|+ |x′′ − y′′|

)−n−|γ| |f(y′, y′′)|dy′
)

(y′)γdy′

)p
dx′′.

Using the Minkowski and Young inequalities we obtain

I(x′) ≤

[∫
E′ (0,|x′|/2)

(∫
Rn−k

|f(y′, y′′)|pdy′′
)1/p(∫

Rn−k

dx′′

(|x′|+ |x′′|)n+|γ|

)
(y′)γdy′

]p

=

(∫
E′ (0,|x′|/2)

‖f(·, y′)‖p,Rn−k(y′)γdy′

)p(∫
Rn−k

dx′′

(|x′|+ |x′′|)n+|γ|

)p
= |x′|−(k+|γ|)p

(∫
E′ (0,|x′|/2)

‖f(·, y′)‖p,Rn−k(y′)γdy′

)p(∫
Rn−k

dx′′

(|x′′|+ 1)n+|γ|

)p
= c6|x′|−(k+|γ|)p

(∫
E′ (0,|x′|/2)

‖f(·, y′)‖p,Rn−k(y′)γdy′

)p
.

Integrating in Rk++ we get∫
Rnk,+
|T1f(x)|pω1(x

′)(x′)γdx

≤ c7
∫
Rk++

ω1(x
′)|x′|−(k+|γ|)p

(∫
E′ (0,|x′|/2)

‖f(·, y′)‖p,Rn−k(y′)γdy′

)p
(x′)γdx′.

Since A1 <∞, the Hardy inequality∫
Rk++

ω1(x
′)|x′|−(k+γ)p

(∫
E′ (0,|x′|/2)

‖f(·, y′)‖p,Rn−k(y′)γdy′

)p
(x′)γdx′

≤ C
∫
Rk++

‖f(·, x′)‖p
p,Rn−kω(x′)(x′)γdx′

holds and C ≤ c′A1, where c′ depends only on n and p. In fact the condition
A1 <∞ is necessary and sufficient for the validity of this inequality (see [6], [22]).
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Hence, we obtain∫
Rnk,+
|T1f(x)|pω1(x

′)(x′)γdx ≤ c9
∫
Rnk,+
|f(x)|pω(x′)(x′)γdx. (2.10)

Let us estimate ‖T3f‖Lp,ω1,γ . As is easy to verify, for x ∈ Ẽl, y ∈ Ẽl,3 we have

|y′| > 2|x′| and |x′ − y′| ≥ |y′|/2. Since Ẽl ∩ suppfk,3 = ∅, for x ∈ Ẽl by (2.2) we
obtain

T3f(x) ≤ c5
∫
Rn−k

∫
{E′ (0,2|x′|)

|f(y)|
(
|y′|+ |x′′ − y′′|

)−n−|γ|
(y′)γdy′dy′′.

Using this last inequality we have∫
Rnk,+
|T3f(x)|pω1(x

′)(x′)γdx

≤ cp5
∫

Rnk,+

 ∫
Rn−k

∫
{E′ (0,2|x′|)

|f(y)|
(
|y′|+ |x′′ − y′′|

)−n−|γ|
(y′)γdy′dy′′


p

ω1(x
′)(x′)γdx.

For x = (x′, x′′) ∈ Rn let

I1(x
′) =

∫
Rn−k

 ∫
{E′ (0,2|x′|)

∫
Rn−k

|f(y)|
(
|y′|+ |x′′ − y′′|

)−n−|γ|
(y′)γdy′dy′′


p

(x′)γdx′′.

Using the Minkowski and Young inequalities we obtain

I1(x
′) ≤

[∫
{E′ (0,2|x′|)

(∫
Rn−k

|f(y)|pdy′′
)1/p(∫

Rn−k

dy′′

(|y′|+ |y′′|)n+|γ|

)
(y′)γdy′

]p

= c6

(∫
{E′ (0,2|x′|)

|y′|−k−|γ|‖f(·, y′)‖p,Rn−k(y′)γdy′

)p(∫
Rn−k

dy′′

(|y′′|+ 1)n+|γ|

)p
= c7

(∫
{E′ (0,2|x′|)

|y′|−k−|γ|‖f(·, y′)‖p,Rn−k(y′)γdy′

)p
.

Integrating over Rk++ we get∫
Rnk,+
|T3f(x)|pω1(x

′)(x′)γdx

≤ c8
∫
Rk++

(∫
{E′ (0,2|x′|)

|y′|−k−|γ|‖f(·, y′)‖p,Rn−k(y′)γdy′′

)p
ω1(x

′)(x′)γdx′′.
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Since B1 <∞, the Hardy inequality∫
Rk++

ω1(x
′)

(∫
{E′ (0,2|x′|)

|y′|−k−|γ|‖f(·, y′)‖p,Rn−1(y′)γdy′

)p
(x′)γdx′

≤ C
∫
Rk++

‖f(·, x′)‖p
p,Rn−k |x

′|−(k+|γ|)pω(x′)|x′|(k+|γ|)p(x′)γdx′

= C

∫
Rnk,+
|f(x)|pω(x′)(x′)γdx

holds and C ≤ c′B1, where c′ depends only on n, γ and p. In fact the condition
B1 <∞ is necessary and sufficient for the validity of this inequality (see [6], [22]).
Hence, we obtain∫

Rnk,+
|T3f(x)|pω1(x

′)(x′)γdx ≤ c10
∫
Rnk,+
|f(x)|pω(x′)(x′)γdx. (2.11)

Finally, we estimate ‖T2f‖Lp,ω1,γ . By the Lp,γ(Rnk,+) boundedness of T and con-

dition (a1) we have∫
Rnk,+
|T2f(x)|pω1(xn)(x′)γdx =

∫
Rnk,+

(∑
l∈Z
|Tfl,2(x)|χ

Ẽl
(x)

)p
ω1(x

′)(x′)γdx

=

∫
Rnk,+

(∑
l∈Z
|Tfl,2(x)|p χ

Ẽl
(x)

)
ω1(x

′)(x′)γdx =
∑
l∈Z

∫
Ẽl

|Tfl,2(x)|p ω1(x
′)(x′)γdx

≤
∑
l∈Z

sup
y∈Ẽl

ω1(y
′)

∫
Rn
|Tfl,2(x)|p (x′)γdx

≤ ‖T‖p
∑
l∈Z

sup
y∈Ẽl

ω1(y
′)

∫
Rn
|fl,2(x)|p (x′)γdx

= ‖T‖p
∑
l∈Z

sup
y∈Ẽl

ω1(y
′)

∫
Ẽl,2

|f(x)|p(x′)γdx,

where ‖T‖ ≡ ‖T‖Lp,γ(Rnk,+)→Lp,γ(Rnk,+). Since, for x ∈ Ẽl,2, 2l−1 < |x′| ≤ 2l+2, we

have by condition (a1)

sup
y∈Ẽl

ω1(y
′) = sup

2l−1<|y′|≤2l+2

ω1(y
′) ≤ sup

|x′|/8<|y′|<8|x′|
ω1(y

′) ≤ bω(x′)

for almost all x ∈ Ẽl,2. Therefore∫
Rnk,+
|T2f(x)|pω1(x

′)(x′)γdx

≤ ‖T‖pb
∑
l∈Z

∫
Ẽl,2

|f(x)|pω(x′)dx ≤ c11
∫
Rnk,+
|f(x)|pω(x′)(x′)γdx, (2.12)

where c11 = 3‖T‖pb, since the multiplicity of covering
{
Ẽl,2

}
l∈Z

is equal to 3.

Inequalities (2.9), (2.10), (2.11), (2.12) imply (2.8) which completes the proof.
�
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Similarly we prove the following weak variant of Theorem 2.3.

Theorem 2.4. Let p ∈ [1,∞) and let T be a weak p-admissible Bk,n–singular

operators. Moreover, let ω(x′), ω1(x
′) be weight functions on Rk++ and conditions

(a1), (b1), (c1) be satisfied.
Then there exists a constant c, independent of f , such that∫
{x∈Rnk,+ : |Tf(x)|>λ}

ω1(x
′)(x′)γdx ≤ c

λp

∫
Rnk,+
|f(x)|pω(x′)(x′)γdx (2.13)

for all f ∈ Lp,ω,γ(Rnk,+).

Corollary 2.3. Let p ∈ (1,∞), T be the p-admissible Bk,n–singular operators.

Moreover, let ω(x′), ω1(x
′) be weight functions on Rk++ and conditions (a1), (b1),

(c1) be satisfied. Then inequality (2.8) is valid.

Corollary 2.4. Let p ∈ [1,∞), T be the weak p-admissible Bk,n–singular opera-

tors. Moreover, let ω(x′), ω1(x
′) be weight functions on Rk++ and conditions (a1),

(b1), (c1) be satisfied. Then inequality (2.13) is valid.

Remark 2.3. Note that, if instead of ω(x), ω1(x) respectively put ω(x′), ω1(x
′),

then from conditions (a), (b), (c) will not follows conditions (a1), (b1), (c1) re-
spectively.

Theorem 2.5. Let p ∈ (1,∞) and T be a p-admissible Bk,n–singular operators.
Moreover, let ω(t) be a weight function on (0,∞), ω1(t) be a positive increasing
function on (0,∞) and the weighted pair (ω(|x|), ω1(|x|)) satisfies conditions (a),
(b). Then there exists a constant c > 0, such that for all f ∈ Lp,ω,γ(Rnk,+)∫

Rnk,+
|Tf(x)|pω1(|x|)(x′)γdx ≤ c

∫
Rnk,+
|f(x)|pω(|x|)(x′)γdx. (2.14)

Proof. Suppose that f ∈ Lp,ω,γ(Rnk,+) and ω1 are positive increasing functions on

(0,∞) and ω, ω1 satisfied the conditions (a), (b).
Without loss of generality we can suppose that ω1 may be represented by

ω1(t) = ω1(0+) +

∫ t

0
ψ(λ)dλ,

where ω1(0+) = limt→0 ω1(t) and ω1(t) ≥ 0 on (0,∞). In fact there exists a
seqence of increasing absolutely continuous fuctions $n, such that $n(t) ≤ ω1(t)
and lim

n→∞
$n(t) = ω1(t) for any t ∈ (0,∞) ( see [12], [14] for details ).

We have∫
Rnk,+
|Tf(x)|pω1(|x|)(x′)γdx = ω1(0+)

∫
Rnk,+
|Tf(x)|p(x′)γdx

+

∫
Rnk,+
|Tf(x)|p

(∫ |x|
0

ψ(λ)dλ

)
(x′)γdx = J1 + J2.

If ω1(0+) = 0, then J1 = 0. If ω1(0+) 6= 0 by the boundedness of T in
Lp,γ(Rnk,+) thanks to (a)

J1 ≤ ‖T‖pω1(0+)

∫
Rnk,+
|f(x)|p(x′)γdx
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≤ ‖T‖p
∫
Rnk,+
|f(x)|pω1(|x|)(x′)γdx ≤ b ‖T‖p

∫
Rnk,+
|f(x)|pω(|x|)(x′)γdx.

After changing the order of integration in J2 we have

J2 =

∫ ∞
0

ψ(λ)

(∫
{E(0,λ)

|Tf(x)|p(x′)γdx

)
dλ

≤ 2p−1
∫ ∞
0

ψ(λ)

(∫
{E(0,λ)

|T (fχ {E(0,λ/2)
)(x)|p(x′)γdx

+

∫
{E(0,λ)

|T (fχE(0,λ/2))(x)|p(x′)γdx

)
dλ = J21 + J22.

Using the boundeedness of T in Lp,γ(Rnk,+) and condition (a) we have

J21 ≤ ‖T‖p
∫ ∞
0

ψ(t)

(∫
{E(0,λ/2)

|f(y)|p(y′)γdy

)
dt

= ‖T‖p
∫
Rnk,+
|f(y)|p

(∫ 2|y|

0
ψ(λ)dλ

)
(y′)γdy

≤ ‖T‖p
∫
Rnk,+
|f(y)|pω1(2|y|)(y′)γdy

≤ b ‖T‖p
∫
Rnk,+
|f(y)|pω(|y|)(y′)γdy.

Let us estimate J22. For |x| > λ and |y| ≤ λ/2 we have

|x|/2 ≤ |x− y| ≤ 3|x|/2,

and so

J22 ≤ c4
∫ ∞
0

ψ(λ)

(∫
{E(0,λ)

(∫
E(0,2λ)

T y|x|−n−|γ||f(y)|(y′)γdy

)p
(x′)γdx

)
dλ

≤ c5
∫ ∞
0

ψ(λ)

(∫
{E(0,λ)

(∫
E(0,2λ)

|f(y)|(y′)γdy

)p
|x|−(n+|γ|)p(x′)γdx

)
dλ

= c6

∫ ∞
0

ψ(λ)λ−(n+|γ|)(p−1)

(∫
E(0,λ/2)

|f(y)|(y′)γdy

)p
dλ.

The Hardy inequality∫ ∞
0

ψ(λ)λ−(n+|γ|)(p−1)

(∫
E(0,λ/2)

|f(y)|(y′)γdy

)p
dλ

≤ C
∫
Rnk,+
|f(y)|pω(|y|)(y′)γdy
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ie valid, for p ∈ (1,∞) is valid by the condition C ≤ c′A′ (see [6], [22]), where

A′ ≡ sup
τ>0

(∫ ∞
2τ

ψ(t)t−(n+|γ|)(p−1)dτ

)(∫
E(0,τ)

ω1−p′(|y|)(y′)γdy

)p−1
<∞.

Note that ∫ ∞
2t

ψ(τ)τ−(n+|γ|)(p−1)dτ

= (n+ |γ|)(p− 1)

∫ ∞
2t

ψ(τ)dτ

∫ ∞
τ

λ−k−(n+|γ|)(p−1)dλ

= (n+ |γ|)(p− 1)

∫ ∞
2t

λ−k−(n+|γ|)(p−1)dλ

∫ λ

2t
ψ(τ)dτ

≤ (n+ |γ|)(p− 1)

∫ ∞
2t

λ−k−(n+|γ|)(p−1)ω1(λ)dλ

=
(p− 1)

ω(n, |γ|)

∫
{E(0,2t)

ω1(|y|)|y|−(n+|γ|)p(y′)γdy.

Condition (b) of the theorem guarantees that A′ ≤ (n+|γ|)(p−1)
ω(n,|γ|) A <∞. Hence,

applying the Hardy inequality, we obtain

J22 ≤ c7
∫
Rnk,+
|f(x)|pω(|x|)(x′)γdx.

Combining the estimates of J1 and J2, we get (2.14) for ω1(t) = ω1(0+) +∫ t
0 ψ(τ)dτ . By Fatou’s theorem on passing to the limit under the Lebesgue

integral sign, this implies (2.14). The theorem is proved. �

Corollary 2.5. Let p ∈ (1,∞), k be a Bk,n–singular kernel and K be the cor-
responding operator. Moreover, let ω(t) be a weight function on (0,∞), ω1(t) be
a positive increasing function on (0,∞) and the weighted pair (ω(|x|), ω1(|x|))
satisfies conditions (a), (b). Then for the operator K the inequality (2.14) is
valid.

Example 2.1. Let

ω(t) =

{
t(n+|γ|)(p−1) lnp 1

t , for t ∈
(
0, 12
)(

2β−p+1 lnp 2
)
tβ, for t ∈

[
1
2 ,∞

) ,

ω1(t) =

{
t(n+|γ|)(p−1), for t ∈

(
0, 12
)

2α−p+1tα, for t ∈
[
1
2 ,∞

) ,

where 0 < α ≤ β < (n + |γ|)(p − 1). Then the weighted pair (ω(|x|), ω1(|x|))
satisfies the condition of Theorem 2.5.

Theorem 2.6. Let p ∈ (1,∞) and T be a p-admissible Bk,n–singular operators.
Moreover, let ω(t) be a weight function on (0,∞), ω1(t) be a positive decreasing
function on (0,∞) and the weighted pair (ω(|x|), ω1(|x|)) satisfies conditions (a),
(c). Then inequality (2.14) is valid.

Proof. Without loss of generality we can suppose that ω1 may be represented by

ω1(t) = ω1(+∞) +

∫ ∞
t

ψ(τ)dτ,
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where ω1(+∞) = lim
t→∞

ω1(t) and ω1(t) ≥ 0 on (0,∞). In fact there exists a

sequence of decreasing absolutely continuous fuctions $n such that $n(t) ≤ ω1(t)
and limn→∞$n(t) = ω1(t) for any t ∈ (0,∞)( see [12], [14] for details ).

We have∫
Rnk,+
|Tf(x)|pω1(|x|)(x′)γdx = ω1(+∞)

∫
Rnk,+
|Tf(x)|p(x′)γdx

+

∫
Rnk,+
|Tf(x)|p

(∫ ∞
|x|

ψ(τ)dτ

)
(x′)γdx

= I1 + I2.

If ω1(+∞) = 0, then I1 = 0. If ω1(+∞) 6= 0, by the boundedness of T in
Lp,γ(Rnk,+) and condition (a) we have

J1 ≤ ‖T‖ω1(+∞)

∫
Rnk,+
|f(x)|p(x′)γdx

≤ ‖T‖
∫
Rnk,+
|f(x)|pω1(|x|)(x′)γdx

≤ b ‖T‖
∫
Rnk,+
|f(x)|pω(|x|)(x′)γdx.

After changing the order of integration in J2 we have

J2 =

∫ ∞
0

ψ(λ)

(∫
E(0,λ)

|Tf(x)|p(x′)γdx

)
dλ

≤ 2p−1
∫ ∞
0

ψ(λ)

(∫
E(0,λ)

|T (fχE(0,2λ))(x)|p(x′)γdx

+

∫
E(0,λ)

|T (fχE(0,2λ))(x)|p(x′)γdx

)
dλ

= J21 + J22.

Using the boundeedness of T in Lp(Rnk,+) and condition (a) we obtain

J21 ≤ ‖T‖
∫ ∞
0

ψ(t)

(∫
|y|<2λ

|f(y)|p(y′)γdy

)
dt

= ‖T‖
∫
Rnk,+
|f(y)|p

(∫ ∞
|y|/2

ψ(λ)dλ

)
(y′)γdy

≤ ‖T‖
∫
Rnk,+
|f(y)|pω1(|y|/2)(y′)γdy

≤ b ‖T‖
∫
Rnk,+
|f(y)|pω(|y|)(y′)γdy.
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Let us estimate J22. For |x| < λ and |y| ≥ 2λ we have |y|/2 ≤ |x− y| ≤ 3|y|/2,
and so

J22 ≤ c8
∫ ∞
0

ψ(λ)

(∫
E(0,λ)

(∫
{E(0,2λ)

T y|x|−n−|γ||f(y)|(y′)γdy

)p
(x′)γdx

)
dλ

≤ 2nc8

∫ ∞
0

ψ(λ)

(∫
E(0,λ)

(∫
{E(0,2λ)

|y|−n−|γ||f(y)|(y′)γdy

)p
(x′)γdx

)
dλ

= c9

∫ ∞
0

ψ(λ)λn+|γ|

(∫
{E(0,2λ)

|y|−n−|γ||f(y)|(y′)γdy

)p
dλ.

The Hardy inequality∫ ∞
0

ψ(λ)λn+|γ|

(∫
{E(0,2λ)

|y|−n−|γ||f(y)|(y′)γdy

)p
dλ

≤ C
∫
Rnk,+
|f(y)|p|y|−(n+|γ|)p|y|(n+|γ|)pω(|y|)(y′)γdy = C

∫
Rnk,+
|f(y)|pω(|y|)(y′)γdy

is valid, for p ∈ (1,∞) is valid by the condition C ≤ cB′ (see [6], [22]), where

B′ ≡ sup
τ>0

(∫ τ

0
ψ(t)tn+|γ|dτ

)(∫
{E(0,2τ)

ω1−p′(|y|)|y|−(n+|γ|)p
′
(y′)γdy

)p−1
<∞.

Note that ∫ τ

0
ψ(t)tn+|γ|dt = (n+ |γ|)

∫ τ

0
ψ(t)dt

∫ t

0
λn+|γ|−1dλ

= (n+ |γ|)
∫ τ

0
λn+|γ|−1dλ

∫ t

λ
ψ(τ)dτ

≤ (n+ |γ|)
∫ τ

0
λn+|γ|−1ω1(λ)dλ

=
n+ |γ|
ω(n, |γ|)

∫
E(0,r)

ω1(|x|)(x′)γdx.

Condition (c) of the theorem guarantees that B′ ≤ n+|γ|
ω(n,|γ|)B < ∞. Hence,

applying the Hardy inequality, we obtain

J22 ≤ c10
∫
Rnk,+
|f(x)|pω(|x|)(x′)γdx.

Combining the estimates of J1 and J2, we get (2.14) for ω1(t) = ω1(+∞) +∫∞
t ψ(τ)dτ . By Fatou’s theorem on passing to the limit under the Lebesgue

integral sign, this implies (2.14). The theorem is proved. �

Corollary 2.6. Let p ∈ (1,∞), k be a Bk,n–singular kernel and K be the cor-
responding operator. Moreover, let ω(t) be a weight function on (0,∞), ω1(t) be
a positive decreasing function on (0,∞) and the weighted pair (ω(|x|), ω1(|x|))
satisfies conditions (a), (c). Then for the operator K the inequality (2.14) is
valid.
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Example 2.2. Let

ω(t) =

{ 1
tn+|γ|

lnν 1
t , for t < d(

d−n−|γ|−α lnν 1
d

)
tα, for t ≥ d ,

ω1(t) =

{
1

tn+|γ|
lnβ 1

t , for t < d(
d−n−|γ|−λ lnβ 1

d

)
tλ, for t ≥ d

,

where β < ν ≤ 0, −n − |γ| < λ < α < 0, d = e
β

n+|γ| . Then the weighted pair
(ω(|x|), ω1(|x|)) satisfies the condition of Theorem 2.6.

Theorem 2.7. Let p ∈ (1,∞) and T be a p-admissible Bk,n–singular operators.
Moreover, let ω(t) be a weight function on (0,∞), ω1(t) be a positive increasing
function on (0,∞) and ω(|x′|), ω1(|x′|) be satisfied the conditions (a1), (b1).

Then there exists a constant c > 0, such that for all f ∈ Lp,ω,γ(Rnk,+)∫
Rnk,+
|Tf(x)|pω1(|x′|)(x′)γdx ≤ c

∫
Rnk,+
|f(x)|pω(|x′|)(x′)γdx. (2.15)

Proof. Suppose that f ∈ Lp,ω,γ(Rnk,+), ω1 are positive increasing functions on

(0,∞) and ω(t), ω1(t) satisfied the conditions (a1), (b1).
Without loss of generality we can suppose that ω1 may be represented by

ω1(t) = ω1(0+) +

∫ t

0
ψ(λ)dλ,

where ω1(0+) = limt→0 ω1(t) and ω1(t) ≥ 0 on (0,∞). In fact there exists a
seqence of increasing absolutely continuous fuctions $n such that $n(t) ≤ ω1(t)
and lim

n→∞
$n(t) = ω1(t) for any t ∈ (0,∞) ( see [12], [14] for details ).

We have∫
Rnk,+
|Tf(x)|pω1(|x′|)(x′)γdx = ω1(0+)

∫
Rnk,+
|Tf(x)|p(x′)γdx+

+

∫
Rnk,+
|Tf(x)|p

(∫ x′

0
ψ(λ)dλ

)
(x′)γdx = J1 + J2.

If ω1(0+) = 0, then J1 = 0. If ω1(0+) 6= 0 by the boundedness of T in
Lp,γ(Rnk,+) thanks to (a)

J1 ≤ ‖T‖pω1(0+)

∫
Rnk,+
|f(x)|p(x′)γdx

≤ ‖T‖p
∫
Rnk,+
|f(x)|pω1(|x′|)(x′)γdx

≤ ‖T‖p
∫
Rnk,+
|f(x)|pω(|x′|)(x′)γdx.
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After changing the order of integration in J2 we have

J2 =

∫ ∞
0

ψ(λ)

(∫
Rn−k+

∫
{E′ (0,λ)

|Tf(x)|p(x′)γdx

)
dλ

≤ 2p−1
∫ ∞
0

ψ(λ)

(∫
Rn−k

∫
{E′ (0,λ)

|T (fχ{|x′|>λ/2})(x)|p(x′)γdx

+

∫
Rn−k

∫
{E′ (0,λ)

|T (fχ{|x′|≤λ/2})(x)|p(x′)γdx

)
dλ = J21 + J22.

Using the boundeedness of T in Lp,γ(Rnk,+) we obtain

J21 ≤ ‖T‖p
∫ ∞
0

ψ(t)

(∫
Rn−k

∫
{E′ (0,λ/2)

|f(y)|p(y′)γdy

)
dt

= ‖T‖p
∫ ∞
0

ψ(t)

(∫
{E′ (0,λ/2)

‖f(·, y′)‖p
p,Rn−k(y′)γdy′

)
dt

= ‖T‖p
∫
Rnk,+
‖f(·, y′)‖p

p,Rn−k

(∫ 2|y′|

0
ψ(λ)dλ

)
(y′)γdy′

≤ ‖T‖p
∫
Rnk,+
‖f(·, y′)‖p

p,Rn−kω1(2|y′|)(y′)γdy′

≤ b ‖T‖p
∫
Rnk,+
|f(y)|pω(|y′|)(y′)γdy.

Let us estimate J22. For |x′| > λ and |y′| ≤ λ/2 we have |x′|/2 ≤ ||x′| − |y′|| ≤
3|x′|/2, and so

J22 ≤ c9

∞∫
0

ψ(λ)
( ∫
Rn−k

∫
{E′ (0,λ)

( ∫
Rn−k

∫
E′ (0,λ/2)

|f(y)|
|x− y|n+|γ|

dy
)p

(x′)γdx
)
dλ ≤

c10

∞∫
0

ψ(λ)
( ∫

{E′ (0,λ)

∫
Rn−k

( ∫
E′ (0,λ/2)

∫
Rn−k

|f(y)|
(|x′|+ |x′′ − y′′|)n+|γ|

(y′)γdy
)p

(x′)γdx
)
dλ.

For x = (x′, x′′) ∈ Rnk,+ let

J(x′, λ) =

∫
Rn−k

(∫
E′ (0,λ/2)

∫
Rn−k

|f(y)|
(|x′|+ |x′′ − y′′|)n+|γ|

(y′)γdy

)p
dx′′
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Using the Minkowski and Young inequalities we obtain

J(x′, λ) ≤

[∫
E′ (0,λ/2)

(∫
Rn−k

|f(y)|pdy′′
)1/p(∫

Rn−k

dy′′

(|y′′|+ |x′|)n+|γ|

)
(y′)γdy′

]p

≤

(∫
E′ (0,λ/2)

‖f(·, y′)‖p,Rn−k(y′)γdy′

)p(∫
Rn−k

dy′

(|y′′|+ |x′|)n+|γ|

)p
= c3|x′|−(k+|γ|)p

(∫
E′ (0,λ/2)

‖f(·, y′)‖p,Rn−k(y′)γdy′

)p
×
(∫

Rn−k

dy′

(1 + |y′|)n+|γ|

)p
= c4|x′|−(k+|γ|)p

(∫
E′ (0,λ/2)

‖f(·, y′)‖p,Rn−k(y′)γdy′

)p
.

Integrating in (0,∞)× (
{
E
′
(0, λ)) we get

J22 ≤ c5
∫ ∞
0

ψ(λ)

×

(∫
{E′ (0,λ)

(∫
E(0,λ/2)

‖f(·, y′)‖p,Rn−k(y′)γdy′

)p
|x′|−(k+|γ|)p(x′)γdx

)
dλ

=
2c5
p− 1

∫ ∞
0

ψ(λ)λ−(k+|γ|)p+|γ|+k

(∫
E(0,λ/2)

‖f(·, y′)‖p,Rn−k(y′)γdy′

)p
dλ.

The Hardy inequality∫ ∞
0

ψ(λ)λ−(k+|γ|)p+|γ|+k

(∫
E(0,λ/2)

‖f(·, y′)‖p,Rn−k(y′)γdy

)p
dλ

≤ C
∫
Rk++

‖f(·, y′)‖p
p,Rn−kω(|y′|)(y′)γdy′

= C

∫
Rnk,+
|f(y)|pω(|y′|)(y′)γdy.

is valid, for p ∈ (1,∞) is valid by the condition C ≤ c′A′′, where

A′′ ≡ sup
τ>0

(∫ ∞
2τ

ψ(t)t−(k+|γ|)p+|γ|+kdτ

)(∫ τ

0
ω1−p′(t)t|γ|dt

)p−1
<∞.

Note that∫ ∞
2t

ψ(τ)τ−(k+|γ|)p+|γ|+kdτ = (k + |γ|)(p− 1)

∫ ∞
2t

ψ(τ)dτ

∫ ∞
τ

λ−(k+|γ|)p+γdλ

= (k + |γ|)(p− 1)

∫ ∞
2t

λ−(k+|γ|)p+|γ|dλ

∫ λ

2t
ψ(τ)dτ

≤ (k + |γ|)(p− 1)

∫ ∞
2t

λ−(k+|γ|)p+|γ|ω1(λ)dλ.
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Condition (b1) of the theorem guarantees that A′′ ≤ (k + |γ‖)(p − 1)A1 < ∞.
Hence, applying the Hardy inequality, we obtain

J22 ≤ c11
∫
Rnk,+
|f(x)|pω(|x′|)(x′)γdx.

Combining the estimates of J1 and J2, we get (2.14) for ω1(t) = ω1(0+) +∫ t
0 ψ(τ)dτ. By Fatou’s theorem on passing to the limit under the Lebesgue in-

tegral sign, this iplies (2.15). The theorem is proved. �

Example 2.3. Let

ω(t) =

{
tp−1 lnp 1

t , for t ∈
(
0, 12
)(

2β−p+1 lnp 2
)
tβ, for t ∈

[
1
2 ,∞

) ,

ω1(t) =

{
tp−1, for t ∈

(
0, 12
)

2α−p+1tα, for t ∈
[
1
2 ,∞

) ,

where 0 < α ≤ β < p− 1. Then the pair (ω(|x′|), ω1(|x′|)) satisfies the condition
of Theorem 2.7.

Corollary 2.7. Let p ∈ (1,∞), k be a Bk,n–singular kernel and K be the cor-
responding operator. Moreover, let ω(t) be a weight function on (0,∞), ω1(t)
be a positive increasing function on (0,∞) and ω(|x′|), ω1(|x′|) be satisfied the
conditions (a1), (b1). Then for the operator K the inequality (2.15) is valid.

Theorem 2.8. Let p ∈ (1,∞) and T be a p-admissible Bk,n–singular operators.
Moreover, let ω(t) be a weight function on (0,∞), ω1(t) be a positive decreasing
function on (0,∞) and ω(|x′|), ω1(|x′|) be satisfied the conditions (a1), (c1). Then
inequality (2.15) is valid.

Proof. Without loss of generality we can suppose that ω1 may be represented by

ω1(t) = ω1(+∞) +

∫ ∞
t

ψ(τ)dτ,

where ω1(+∞) = lim
t→∞

ω1(t) and ω1(t) ≥ 0 on (0,∞). In fact there exists a

sequence of decreasing absolutely continuous fuctions $n such that $n(t) ≤ ω1(t)
and limn→∞$n(t) = ω1(t) for any t ∈ (0,∞) ( see [12], [14] for details ). We
have ∫

Rnk,+
|Tf(x)|pω1(|x′|)(x′)γdx = ω1(+∞)

∫
Rnk,+
|Tf(x)|p(x′)γdx

+

∫
Rnk,+
|Tf(x)|p

(∫ ∞
|x′|

ψ(τ)dτ

)
(x′)γdx

= I1 + I2.
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If ω1(+∞) = 0, then I1 = 0. If ω1(+∞) 6= 0 by the boundedness of T in
Lp,γ(Rnk,+)

J1 ≤ ‖T‖pω1(+∞)

∫
Rnk,+
|f(x)|p(x′)γdx

≤ ‖T‖p
∫
Rnk,+
|f(x)|pω1(|x′|)(x′)γdx

≤ b ‖T‖p
∫
Rnk,+
|f(x)|pω(|x′|)(x′)γdx.

After changing the order of integration in J2 we have

J2 =

∫ ∞
0

ψ(λ)

(∫
Rn−k

∫
E′ (0,λ)

|Tf(x)|p(x′)γdx

)
dλ

≤ 2p−1
∫ ∞
0

ψ(λ)

(∫
Rn−k

∫
E′ (0,λ)

|T (fχ{|x′|<2λ})(x)|p(x′)γdx

+

∫
Rn−k

∫
E′ (0,λ)

|T (fχ{|x′|≥2λ})(x)|p(x′)γdx

)
dλ

= J21 + J22.

Using the boundeedness of T in Lp,γ(Rnk,+) we obtain

J21 ≤ ‖T‖p
∫ ∞
0

ψ(t)

(∫
Rn−k

∫
E′ (0,2λ)

|f(y)|p(y′)γdy

)
dt

= ‖T‖p
∫
Rnk,+
|f(y)|p

(∫ ∞
|y′|/2

ψ(λ)dλ

)
(y′)γdy

≤ ‖T‖p
∫
Rnk,+
|f(y)|pω1(|y′/2|)(y′)γdy

≤ b ‖T‖p
∫
Rnk,+
|f(y)|pω(|y′|)(y′)γdy.
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Let us estimate J22. For |x′| < λ and |y′| ≥ 2λ we have |y′|/2 ≤ |x′−y′| ≤ 3|y′|/2,
and so

J22 ≤ c12

∞∫
0

ψ(λ)

×

 ∫
Rn−k

∫
{E′ (0,λ)

 ∫
Rn−k

∫
{E′ (0,2λ)

|f(y)|(y′)γdy
(|x′ − y′|+ |x′′ − y′′|)n+|γ|


p

(x′)γdx

 dλ

≤ 2nc12

∫ ∞
0

ψ(λ)

×

(∫
Rn−k

∫
E′ (0,λ)

(∫
Rn−k

∫
{E′ (0,2λ)

|f(y)|(y′)γdy
(|x′′ − y′′|+ |y′|)n+|γ|

)p
(x′)γdx

)
dλ.

For x = (x′, x′′) ∈ Rnk,+ let

J1(x
′, λ) =

∫
Rn−k

(∫
{E′ (0,2λ)

∫
Rn−k

|f(y)|(y′)γdy
(|x′′ − y′′|+ |y′|)n+|γ|

)p
dx′.

Using the Minkowski and Young inequalities we obtain

J1(x
′, λ) ≤

[∫
{E′ (0,2λ)

(∫
Rn−k

|f(y)|pdy′
)1/p(∫

Rn−k

dy′

(|y′′|+ |y′|)n+γ

)
(y′)γdyn

]p

≤

(∫
{E′ (0,2λ)

‖f(·, y′)‖p,Rn−k(y′)γdy′

)p(∫
Rn−k

dy′′

(|y′′|+ |y′|)n+|γ|

)p
= c3

(∫
{E′ (0,2λ)

‖f(·, y′)‖p,Rn−k |y′|
−k−|γ|

(y′)γdy′

)p(∫
Rn−k

dy′′

(1 + |y′′|)n+|γ|

)p
= c4

(∫
{E′ (0,2λ)

‖f(·, y′)‖p,Rn−k |y′|−k−|γ|(y′)γdy′
)p

.

Integrating in (0,∞)× (0, λ) we get

J22 ≤ c5
∫ ∞
0

ψ(λ)

×

(∫
E′ (0,λ)

(∫
{E′ (0,2λ)

‖f(·, y′)‖p,Rn−k |y′|−k−|γ|(y′)γdy′
)p

(x′)γdx′

)
dλ

= 2c5

∫ ∞
0

ψ(λ)λk+|γ|

(∫
{E′ (0,2λ)

‖f(·, y′)‖p,Rn−k |y′|−k−|γ|(y′)γdy′
)p

dλ.

The Hardy inequality∫ ∞
0

ψ(λ)λ1+|γ|

(∫
{E′ (0,2λ)

‖f(·, y′)‖p,Rn−1 |y′|−k−|γ|(y′)γdy

)p
dλ
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≤ C
∫
Rk++

‖f(·, x′)‖p
p,Rn−kω(|x′|)(x′)γdx′ = C

∫
Rnk,+
|f(y)|pω(|y′|)(y′)γdy,

is valid, for p ∈ (1,∞) is valid by the condition C ≤ c′B′′, where

B′′ ≡ sup
τ>0

(∫ τ

0
ψ(t)tk+|γ|dτ

)(∫ ∞
2τ

ω1−p′(t)t−(k+|γ|)p
′
t|γ|dt

)p−1
<∞.

Note that ∫ τ

0
ψ(t)tk+|γ|dt = (k + |γ|)

∫ τ

0
ψ(t)dt

∫ t

0
λ|γ|dλ

= (k + |γ|)
∫ τ

0
λ|γ|dλ

∫ t

λ
ψ(τ)dτ

≤ (k + |γ|)
∫ τ

0
ω(λ)λ|γ|dλ.

Condition (c1) of the theorem guarantees that B′′ ≤ B1 < ∞. Hence, applying
the Hardy inequality, we obtain

J22 ≤ c
∫
Rnk,+
|f(x)|pω(|x′|)(x′)γdx.

Combining the estimates of J1 and J2, we get (2.14) for ω1(t) = ω1(+∞) +∫∞
t ψ(τ)dτ . By Fatou’s theorem on passing to the limit under the Lebesgue

integral sign, this iplies (2.15). The theorem is proved. �

Corollary 2.8. Let p ∈ (1,∞), k be a Bk,n–singular kernel and K be the cor-
responding operator. Moreover, let ω(t) be a weight function on (0,∞), ω1(t)
be a positive decreasing function on (0,∞) and ω(|x′|), ω1(|x′|) be satisfied the
conditions (a1), (c1). Then for the operator K the inequality (2.15) is valid.

Example 2.4. Let

ω(t) =

{
1
t lnν 1

t , for t < d(
d−1−α lnν 1

d

)
tα, for t ≥ d ,

ω1(t) =

{
1
t lnβ 1

t , for t < d(
d−1−λ lnβ 1

d

)
tλ, for t ≥ d ,

where β < ν ≤ 0, −1 < λ < α < 0, d = eβ. Then the pair (ω(|x′|), ω1(|x′|))
satisfies the condition of Theorem 2.8.
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