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INTEGRAL REPRESENTATIONS FOR A SOLUTIONS FOR
THE DIFFUSION DIFFERENTIAL EQUATION

RAUF KH. AMIROV AND S. GULYAZ

In memory of M. G. Gasymov on his 75th birthday

Abstract. We construct useful new integral representations for the fun-
damental solutions of the quadratic pencil of the Sturm-Liouville equa-
tion with piecewise-constant leading coefficient and discontinuous con-
ditions inside an interval. We also study some significant properties of
the kernels of these integral representations for the solutions.

1. Introduction

We consider the differential equation
—y" + [g(x) + 2xp(x)]y = Np(x)y, € [0,a) U (a,7], (1)
with the boundary conditions
Uly) :=y'(0) =0, V(y) :==y(m) =0
and with the jump conditions
y(a+0) = Byla—0), y'(a+0)=p""y(a—0),
where X is the spectral parameter, 5 # 1 is real numbers, y = y(z, ) is an

unknown function, ¢(z) € L2(0,7), p(x) € Wy (0,7) are real-valued functions,
and p(x) is the following piecewise-constant function with discontinuity at the

a
point a € (0,7) such that a > ar .
o'

+1
1, 0<z<a,
P(:c):{ag w<w<nr 0<a#Fl (2)

Sturm-Liouville equations with potentials depending on the spectral parameter
arise in various problems of mathematics and physics(see [11, 12, 28, 36, 51] for
details). It is well known that in the case p(z) = 1, § = 1 the equation (1)
appears for modelling of some problems connected with the scattering of waves
and particles in physics [26]. In this classical case Jaulent and Jean [23, 24] have
constructed the integral representations of Jost solutions and using them treated
the inverse scattering problem by Marchenko method (see [35] and [7]). Note
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that this method which is an effective device in the theory of inverse problems
[10, 13, 29, 30, 31, 37, 42], for relativistic scattering problems was first suggested
in [8] and [52]. Various inverse scattering problems for the case p(z) =1, f =1
on the half line and full line was investigated in [4, 25, 32, 39, 40, 44, 45, 50].
Direct and inverse spectral problems in a finite interval for the case p(z) = 1,
B =1 was first investigated in [15, 16, 17]. For further discussing of the inverse
spectral theory for equation (1) in a finite interval with p(z) =1, § = 1 we refer
to works [18, 21, 38, 43, 46].

Note that, in the case p(z) = 0 direct and inverse problems boundary-value
problems for equation of type (1) in various formulations have been studied in
[3, 5, 6, 20, 27, 48, 49] and other works. Inverse scattering problem for equation
(1) with p(z) = 0 on the half line [0, +00) was investigated and the complete
solution of this problem was given in [19] where the new integral representation,
similar to transformation operators [35] , was obtained for the Jost solution of the
discontinuous Sturm-Liouville equation. Direct and inverse scattering problems
on the half-line for the equation of type (1) with various boundary conditions
also has been investigated in [33, 34]. The direct and inverse spectral problem for
the equation (1) in the case p(x) = 0 with some separated boundary conditions
on the interval (0, ) recently has been investigated in [1, 2, 22, 41], where the
new integral representations for solutions have been also constructed.

The inverse spectral problem of recovering pencils of second-order differential
operators on the half-axis with turning points was studied in [47], where the
properties of spectral characteristics were established, formulation of the inverse
problem was given and a uniqueness theorem for solution of the inverse problem is
proven. But the spectral problems for equation (1) in a finite interval, especially,
inverse spectral problems and full-line inverse scattering problems requiring the
recovery of the potential functions by the Marchenko methods have not been
studied yet and there isn’t any serious work published in this direction.

In this work, as a first stage, we construct useful new integral representations
for the fundamental solutions of the equation (1) and study some significant
properties of the kernels of these integral representations for the solutions. The
constructed integral representations allow us to apply and modify the methods in
classical theory for the solution of the inverse spectral problems for the equation
(1). The authors plan to examine these problems in other studies.Integral rep-
resentations for solutions of the Sturm-Liouville equation with the discontinuous
coeflicient.

2. Derivation the integral representations for the solutions

We seek a couple of linearly-independent solutions y;(z,\) (j = 1;2) of Eq.
(1) satisfying the initial conditions

Y (0,A) = 1,575 (0,4) = (1)’ THiA. (3)

It is not difficult to show that when ¢(z) = p(z) = 0 the initial value problem
(1), (3) has solution

e; (2, A) = r(z)e i @) 4 p (g) e (@) (4)



ON SOLUTIONS OF STURM-LIOUVILLE EQUATION ...

where

pr(z) = zy/p(a +a(1¥\ﬁ)
r(z) = (/Biﬁﬁ>

and w; = (—1)7 114,
Consider the integral equation

xT

Yj ($, )‘) =€ (SU’ >‘) + /(b(x7t’ )‘) [Q(t) + 2)\p(t)] yj(tv )‘)dt (.] =1 2)
0

which is equivalent to the problem (1), (3). Here
er(z,A)ea(t,N) —eq (t,N) ea (x,N\)

O(x,t, A .
(= )= 2iA
By using (4) it is easily obtained that
in Aot (z,t in Ao~ (z,t
(I)(l',t, )‘) = er(x,t)Slno-)\(m’) _p(x7t)81no-)\(x’)7 0 <t< z,

where

TP 1 1 oo 1) = uE (1) — ut ().
p(z,t) 2<mi\/p<—t)>, (@,t) = p~ (x) — p™ (1)

It is easy to obtain that

2D (z, 1, \) e M (1) =

(—1)7+ pt (a, 1) [ewjx(mx)—w(t)) _ e—wjx(wx)—uﬂt))] ewiAE(t) _

(1Y p~(z,t) [e%/\(u*(m)—u*(t)) _ e—wj/\(u’(x)—ﬁ(t))} Wi E(t)

(=177 (e — (1) T (e
(—1) p*(z, t)ewj/\(%i(t)—u*(m)) + (1) pF(a, t)ewj/\(%i(t)—lf(96))7
ie. .
ND (¢, N)ei M (1) =

(=1 pE(x, t) [ew;ﬁ(w) _ ewjx(m(t)—wx))} n

(—1) p¥ (2, 1) [ewmm _ eij(mi(t)—u-(m))] .
The formula (8) is also written as
O (x,t, )\)ewj/\“i(t) =
) pwt(x) . pw ()
—pE(z,t) / e“iNds — gp:F(x, t) / e“irds.

2 (8) it () 20 (1) - (@)
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Consider the integral equation (5) and substitute
yi(@, ) = R (2)e 7@ 4 R (2)e ™ @) 4 252, 0), (9)

where ch () will be defined below and zj(x, A) is a new unknown function. We
have

R (2)e ™ @) 4 R (2) e @) 4z (2, \) = 17F () @) pm (a)eidn (@) 4
/@(x,t, A) [q (t) + 2Ap (t)] [Rf(t)e‘“”“*(t) + Rj—(t)ewjxm(t)} dt+

0
T

[ Bt la (0 + 20 0] 56, (10)
0
Taking into our account (8) and the second integral in the right hand side of
(10) we require
R;r(x)e‘”j/\“ﬂx) + R (z)eit (@) =

r+(x)ewj>\u+(:c)_'_7,—(x>ewj>\u*(x)+i(_1)j Wit (@) o

[pO Ry " @)t — i (-1 e / bt (e, t)dt+
0 0
(-1 N0 [ (o) By 0 (o )i (<17 € [ (o) Ry 0" (.t
0 0

to be satisfied. Obviously, the last equality will be satisfied if we choose

xT T

RE@) = (@) F ooy [ 00 R Op* @0t 7oy [ p(0) R} (097 (@ 0. (1)
0 0

From (11) we immediately have

tw; fsgn(t:ta)Lt)tdt
R;t(l‘) =rf(z)e 0 Ve (12)

Then (10) implies that

T

zi(x,A) = J9 (z,\) + / Oz, t, N\)q (t) | R} (1)e M O 4 R (1)e™™ O dr+

0
/<I>(x, t,A) g (t) +2Xp (t)] zi(t, Ndt, (13)
0
ut(z)
JD(z,\) = / Aj(z, t)eMdt, (14)

—pt(z)
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where

; t t
Aj(ac,t):%1@(%;>R}.|r <w; ), 0<z<aq,

and

+T;(§)Wj <t+u2‘ (:6)>Rj <75+M2_ (fE))
r (210'3ij <t—/2Aa (z) +a> R (t—ga (2) +a>
(o) ()

Aty = @y (tﬂﬁ (x)> R} <t+“+ (:):))’

—pt(z) <t < —p (2), z>a
We require that the integral equation (13) has the solution

pt(x)
zj(x,\) = / Kj(z,t)e*i N dt, (15)
—pt(z)

where Kj(z,t) is an unknown function. Substituting the expression (15) of the
solution z;(z, A) in the equation (13) we have

ut () put ()
[ Kj(z,t)ewirdt = [ Aj(x,t)e*iMdt
—u; (z) —pt(2)

+ [ @(x,t, N Og (8) RE (t)dt + [ ®(x,t, N)es g (t) Ry (t)dt  (16)
0 0

x ()
+ [la@®) +2xp )] [ K;(t,s)®(x,t; \)e®ir*dsdt.

0 0]

Now using the formulas (8), (8') we transform the right hand side of Eq.(15)
to the form of the Fourier integral.
First consider the case 0 < x < a for which the equation (16) is written as
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—x
T s+w7t

t
fq(t)R+ t)dt f e“’JAfdf—i—% q(t) | K;(t, S ewiNdedsdt (17)

z t t

T K@, nesMdt = [ 4 (””L )Rj (x; ) eiMdt
T
Ja(
0 —t s—z+t

1
_‘_,

T t
_Wj{ [eo.)j)\(:rft) — Wi (z— t)] ftK] wﬂ)‘sdsdt

Supposing K(x,t) to be zero as |t| > x and changing orders of integrations at
the right hand side of Eq.(17) we obtain

/Kj(:c,t)ewf’\tdt =

x+t
2
_ 1 Wi x4+t T+t
wiAt ) + J +
/eJ 2/q(s)R](s)ds+2p< 5 )Rj< 5 >+
0

x t+xr—s
1
5 [ a(s)ds K (s,§) dé—
2 (/ t—l—s

wj /p(s)Kj(s,t—x—f—S)ds— /p(s)Kj(s,t—l-x—s)ds dt. (18)

x—t x+t
2

2
According to the uniqueness properties of the Fourier transformation, Eq.(18)

implies that

N

z+t

2
) o + w] x_’_t + l“"t
Kj(z,t) = /q(s)Rj (s)ds—k?p <2> R; ( 5 +
0

x t+x—s
1
5 [ als)ds K (s,8) dé—
2 0/ t—x/—l-s

T

wj /p(s)Kj(s,t—x—i—s)ds—/p(s)Kj(s,t+x—s)ds St < x. (19)

x—t xz+t
2 2
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Now consider the case 2 > a. In this case, according to formulas (8) and (8')

the equation (16) yields

pt () . w(
[ Kj(z,t)ewir"tdt = f A-(:U,t)e“j)‘tdt
+
w ()
f ewj)\sds
20— 2t—p~ ()
pwt(z) 2u=(t)—p~ (2)
il e¥irds + R (t) J e“irds| dt

2t () —p ()

wt (@)

f e¥iMds + 1 (x)
ut(z t
(
w ()

it (2)—t+s p (@) —t+s

¢
t)dt [ K;(t,s)ds [r+(x) / e“iNdE + r~(z) i
—t t—pt(z)+s t—p~(z)+s

ewi /\Edé-]

. ewjz\(s—u+ (a:)—&-t)} ds

a t
—wyrt () [p () dt [ Kj(t,s) [ 07)
0 Z
a t
—wjir~(z) [p(t)dt [ K;(t,s) [e“’j’\(ﬁ“_(z)*t) — wirsn (:v)+t)} ds
0 Z
1 = ut(t) spt(z)—pt(t)
+o- [q@t)dt [ Kt s)ds [ ewiNedg
Y a —pt () st () —pt (@)
x ut(t) N N
—w; [p)dt [ K;(t,s) [ew]'A(SJru (@)=pt(®) _ gwir(s—nt (@) +u ())} ds
a —pt(t)
(20)

Now, similar to previous case we obtain from the equation (20) that the function
Kj(z,t) (z > a), continued as zero for |t| > p* (z), satisfies some integral equa-
tions of type (19) in the corresponding regions. Namely we have the following:

(1) if —p* (z) <t < —p~ (x), then
- - +
Kj(:v,t)—w]r (x) (t—i—,u (:t7)>RJ.r (t—i—,u (a:)>+
2 2 2
u*(;)+t t—stput
—rt(z) / q(s) R;r(s)ds—i- %T+($) / / K;(s,&) dé—
0 ut(z)—t t+s—pt(z
2
t(z)+t
1 2
§T+(l‘) / / K (s,&) dé+
0 ts+pt(z)
’féi) - t—s+pt
%r*(x) / / K; (s.) dét
0
1 a t—s+p (z)
sr@ [ e [ KGder
t+s—p~ (z)
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i
- t=pt (@) +u (5)

— / q(s)ds / K (s,&) dé+
a —pu—(s)
@ tHpt () —pt(s)

o [awds [ Ksod

[ P Kyt @) (9)ds (21)

ut @)+t ()4t
Kj(z,t) = ’"+2(“’“) / q(s) R;-L(s)ds—i—%r’(a:) / ¢ (s) R} (s)ds+
0 0
(@) u } )Hq(s) R (s + 278, (t e (”)> R (t e m) "
d o @), <t+u2 <a:>> e <t+u2 <x>) _
pt(@)—t
wirT(z) / p(s)Kj (5,6 + 5 — ut(x)) ds+
0
wrT (z) /a p(s)Kj(s,t —s+p"(x))ds—
o
wir () / p(s)Kj (st +5—p (x)) ds+
0
wjr” () ] p(s) K (s,t—s+p () ds+
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I

X —= t+pt (2)—s
§r+(x) / q(s)ds / K (s,&) dé+
0

—S

1 2 t—pt(z)+s
—rt(x) / q(s)ds / K (s,§) dé—
0 t+pt(x)—s
a t+ut(z)—s
@ [ a@ds K; (5,€) dé-+
pt(@)—t t—pt(z)+s
2
a t+ut(z)—s
1
@ [ ats)ds K (5.€) de-+
u*(;)th t—pt(z)+s
pt (@) +t
1 / i
@ [ a@ds [ Keoder
0 bt (2)+s
(@) A b ()~
T X
[ s K (5.€)det
0 —s
(=) b t+u (x)—s
T X
0 s K (5,€) de-+
0 b= (2)+s
(@) L=t b (2)—s
T X
[ awas [ KGode
0 t—p~ (z)+s
() a t+p~ (z)—s
r(x
[ s [ Kol
p— (x)—t t—ui(.l’)-f—s
2
() a t+p~ (x)—s
T (T
0 s K (s.€) de+
p=(z)+t t—p=(x)+s
2
p_(z)+t
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58
s o t4pt (2)—p ()
[P K (st @ —wt @) ds+ o [ads [ K
a a t— gt (&)= (@)
(22)
(8)if = (z) <t < u* (x), then
pt (@) +t

2 2 2 2
lﬁ(x) ,ﬁqu R wjr2 (z) <t + M; (:c)) RY (t + /g (x)> _

2 2 J 2a 2
aa—tte @)
[ @[
+ r -
/ 0(s) R} (s)ds + 1 / 4(s) B> (s)ds+
t—p (m)Jraa a
1 L)t bt (@)=
—rt(z) / q(s)ds K (s,€) dé+
0 —S
1 L)t bt (a)—s
@ [ awas K (5,€) dé—
0 t—pt (2)+s
1 a t+u” (x)—s
@ [ aG)ds K (5.€) dg
p= (@) +t t—p=(x)+s
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=
I~
8
|
o+

—aCP—w

=
+

=
-+
o+

N

xr
wi [ p(s)Kj(s,t+pt () — p” (s))ds.
t*u;(z)_i_a
Now we use the method of the successive approximation to show that for every

fixed x € [0,7] the integral equation (19),(21) — (23) has a unique solution
Kj(x,t) belonging to Ly (—u™* (x),u™ (z)). For this reason let us define

a4t
2
(0) _1 + wj T+ L+t
KO0 = [a@rieas Lo (5w (S5, e
0
(n) _
K7 (z,t)=
) z min(s,t+z—s) ) T t—x+s
s [a@as [ KT eod—5 [awas [ KT o
0 —S z—t —s

wj Lp(s)K](-n_l)(s,t—x—i—s)ds— fp(s)K](.n_l)(s,t—i-:l:—s)ds ,
=N

T+t
2

lt|<z<a,n=12,..

K (z,t) =
u*(;)th
wirt(z (x +(r
%TJF(!U) / q(s) RS (s)ds+—2 2( )p <t+M2 ( )>Rj+ (Hﬁ‘;())?
0
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. a t—p~ (x)+s
@ [ awas [ KM g der
u (@)=t s
z thut (z)—pt(s)
o fawas [ KET s
a —ut(s)
z t—pt(z)+pt(s)
— / q(s)ds / KV (s,6) de+

_pT @)+t —pt(s)
2

wirt(x) / p(s) K](.n_l)(s,t +ut (z) — 5)ds—
t+ut(x)
2
wir™ (x) / p(s) KJ(-n_l)(s, t—p (z)+ s)ds—
u‘(;)—t
[ pOE st @) ut (s))dst

p ()4t
2a

“i
«
a

T

% /p(s) K"V (st 4+ " (2) = u (9))ds, @ > a,

—pr (@) <t<—p (z),n=1,2, (25)
M+(;)+t u’(z)+t
K](O)(:r,t):%r“L(w) / 4(s) R¥(s) ds+ - / §)ds+
0 0
wirt(z) (t+pt () t+p" (z)
() (2 )+
(o), (t T <x>> ” (t i <x>> | .
. a min(s,t—l—u""(z) s)
K@) = 5@ [awas [ (") (5, 6) de —
0 -5

l—p

) / a(s / K‘”l € de-
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. a t—p~ (x)+s
@ [ @ [ KTV sga
n=(z)—t —S
2
a min(s,t+u~ (z)—s)

K" (s,€) de+

o bt (@)~ (s)
o fawds [ KET gt
a t—pt (@) +pt(s)

wjir(z) / p(s) Kj(n_l)(s, t+put (x) — s)ds

pt(@)+t
2

a

—wjrt(z) / p(s) KJ(-n_l)(s, t—put () + s)ds +

61
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pt@—t .
| +q(s)R]_(s)ds+232 < _g_() a)R*( ga(x)—i-a)
;;p<”+(;o)é_t+a> R; <M+(on)é_ —|—a>+
w]r2 (z) <t+;¢2 (1:)) R (t+u2 (m)) ’
K (o) = o) / (s) ds / K (5,) de -
0 Zs
;ﬁ(x)ﬁ (/) ¢(s)ds W:MKJ” D (s,€) de—

1 n—
57“ /q /K 2 €)dE +
0

min(s,t+u= (z)—s)

%r_(a:) /q (s)ds / K](-nfl) (s,&)dé+
0

. T min(ut (s),t+ut (@) —pt (s))
(n—1)

50 | 4 (s)ds / K; (s,€)d§ —

a —pt(s)
. t=pt(2)+pt(s)

(n

25 | 4(s)ds K 7 (s,8) dé—

a —pt(s)
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T
Wi

S @R st @) -t ()i

ot

We have
[0 0]as [l + penose<a

wh(x)
/ ’K(.O)(a:,t)’ dt <2 (r*(z) + |r~ (2)]) x

J
—pt(z)

T

[ 16 @ = ) las)l + o)) a <<,

0

that is
ut(x)
/ KO 1) dt < 0 (), (28)
—ut(2)
o (z) = 20 / (5" (@) — it (5)) la(s)] + ()] (29)

0
where Cyp = max(1, (r*(z) + |r~(z)]). Further we obtain that

T

/leJ(.”)(x,t)’ dt < 2/[(95 — 8)|a(s)] + |p(s)\]ds/s ]KJ(.”—”(S,@] ¢, 0<z <a,
Zz 0 s

pt(x)
/ ‘K](n)(x,t)‘ dt <
—pt(z)
T ut(s)
260 [ (0" @) =" &) ) + )] ds [ K" (s.0)|de a<a<m,
0 —pt(s)
that is
pt ()
/ K )| at <
—ut(z)
T ut(s)

200/[(#*(33)—#*(8)) la(s)| + |p(s)]] ds / ’KJ(”_”(s,g)‘dg, (30)

0 0
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for all z € [0, 7] . Therefore, we have

7 o)™
(n) o(x
K A 1
/ ’ J (x’w’dt— (n+1)! (31)
—pt(z)
for all x € [0, 7] and n = 0,1,2,.... Hence the series
S KM () (32)
n=0

absolutely and uniformly converges in the space Ly (—u™ (x),u™t (z)) for each
x € [0,7], the sum Kj(z,.) of this series is a unique solution of the integral
equation (19),(21) — (23) and the solution Kj(z,.) satisfies the inequality

pt ()
/ K ()] dt < 7@ — 1, (33)
—pt(x)
Therefore we have proved the following theorem:

Theorem 2.1. For every A the solution yj(x,\) of Equation (1) satisfying the
Jump conditions (2) and initial conditions (3) can be represented as
put(z)
yi(,A) = RF(@)e ™ @) 4 R (g)ews™ @ 4 / Ko, )e™dt,  (34)
—pt(z)

where

+w; [ sgn(t+a) B dt
0

+ _ .t V()
Ry (z) =r*(z)e ot

and the kernel Kj(x,t) satisfies (33).

3. Properties of the kernels

From the integral equation (19), (21) — (23) we easily compute the following
boundary relations for Kj(z,.):
i) if 0 <z < a, then from Eq.(19) we have

T

o
Kj(z,—z) = ?Jp(()) + wj /p(s)Kj(s, —s)ds
0
which implies
W w; fp(s)ds

Kj(z, —x) = 5/ p(0)e "o . (35)

Similarly, we find from Eq.(19) that
Kj(a,2) = Do R} )+ 5 [ pOR (s -y [ pls)K (s 5)ds,
0 0
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that is

xT

1
Kj(z,z) = iR;r(x) w;p(x) —I—/ [q (s) +p2(s)] ds | . (36)
0
ii) Let > a. Then from integral equations (21) — (23) we obtain the equation

K-t @) = 2 p0) 4 / p(s i+ (s))ds.
0

Now using (i) we easily find that

o wj [ 28 g
K (e, —mx))—“”" (@) o8 Vo™, (37)

Hence, combining the formulas (35) and (37) we obtain

N ) Jf #
Kj(z, —p™(x)) = T(x)e (38)

From the integral equations (21)—(23) it is clear that the function Kj(z,.) (z > a)
has a jump discontinuity at points +4~ (x). Computing the jumps K (x, £47 (z)—
0) — Kj(z,£p" (z) + 0) we have

= (@)p(0) 17

Ky, () — 0) — Ko, —p () +0) = 7 2P0, (39)
and
Kj(xnu'_(x) - 0) - Kj(iﬁaﬂ_(l‘) + O) =
a x 9 s
=R (@) 5 [ e+ e ds - 5 [q (s)+pa(2)} ds+
0 a
+ 5 25p(@) + 205 (1 (2))*p(a) | (40)
Finally, from (23) we find that
K, 1+ (1)) =
= R/ (z) ;/[() ds+/< )ds+
0
+ 5 25p(@) + 205 (17 ()" pla) } (41)
Hence, combining the formulas (36) and (41) we obtain

s 2(s
Kj(z,pt(z)) = 7R+() /( ;E()s + p\(/)i)> ds +

] i(r(x 2 a) .
(o) + 20, (@) ()} (12)

Now we investigate the additional properties of the function Kj(z,.). Consider
the successive approximation (24) — (26) . By the differentiation with respect to
the variable ¢ we find
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(0) L (it [T+t
o0 = () B (50 )
wj [, (r+t o fx+1t 4 [T+t
4<p< 5 >_ij< > R ( 5 , —r <t<uw,

" 1/ .
DtK]( )(SC,t)ZQ/q(s)K]( 1)(s,t+x—s)ds—
x4+t
2

27 2
Zo(N) K () e [ a6 DR 0| dst
2p 9 J 9 ' 9 j q e LU
%
Wj/Q(S) DgKJ(-n_l) (8,§)L+ ds, —x <t<uz,

DtKJ(.”)(x,t)—ir*(x ( ) ( +t>+
wirt(z) , (p t 4

1j p2<u >R <t+ +( )

o (5 (5]
1

t

o b_(@)+t

2a

wﬂ“;(ﬂf)p <t+ﬂ+ (z)) (=D <t+u+ (z) t+pt (:v)> N
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a

wr @ [ @ DK V| s
b ()=t
2
wa‘?“_(l“)p po(@) =t ey (p (@)t pT () —tY
2 2 J 2 ’ 2
Wi (n—1)
— D¢ K , ds +
a / pls) Dely (s, 8) ‘t—lﬁ(r)ﬂﬁ(S) ’
a_b_ @)+t
2a
Wiy (n—1)
— DK , ds,
« p(s) De J (s g)‘t+u+(x)fﬂ+(s) §
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wrt@ [ p(s) DK V(s,6)
w
wjr+(:1:) / p(S)D§KJ('n_1)(5af)‘

pt(@)—t
2

wr @ [ p(s) DK V(s,6)

t+pt(z)—s

t—pt(x)+s

ds —

ds—

+

t—p~ (x)+s

S

w;r~(x)

2c

2

4

n
[p/ (t + MQ_ (w)> — wip? (t + A;‘ (z)

2
-y (t—ﬂwua)

Jo

2a

> _(1:)4—@)4-
a> +%p2 (W+a):|RJ~_ <M+($)—t+a>+
‘(93)>’
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%r’(m) / q(s) KJ(."_l) (s,t+p~ (z) —s)ds+

W n—
% [p(s) Dk 5,9) ds +

b=t (2) 40t (s)

[ ek Vs

t+p~ (x)
2

r > a, p (v)<t<pt(z),n=12,..

tpt (2)—pt (s)
a+

Therefore, we have

ds,

[P o) de < 5 [ Tla)+ 196+ 5] ds
—x 0
<

0 < z<a,
pt(x) 0) z /) "
| DK (=, t)‘ dt < (rf(z) +|r~(z)]) [ [|q (s)] + Pl p ((S))
—pt(z) ’ 0 p(s) = P®
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Hence
) i P, P0)
/ ‘Dt )(x,t)‘dtSCo/ g (s)] + B220 L PR g (43)
(s)  p(s)
—pt(x) 0
Further, because of
/‘DtK(n) x, t dt</|p |‘Kn_ S, —5) ds—l—/|p |‘K( s)’ds+
/|q(s)|ds/‘K](-n_ st dt+2/|p |ds/Dt‘K ’dt0<x<a
0 —s
pt(z) z wt(s)
/ DK (@ 0)|dt < (¢ (@) + \r—(x)\)/|q(s)|ds / [ s, )] o+
—pt(z) 0 —ut(s)

(7 @)+ | @) [ 1o K st ()] st
0

(7 )+ | @) [ 1o () [ Ko, ()] s+

T M+(5)

2 (r* (a) + \r—(x)y)/|p(s)|ds / DR (s, 1) dt, = > a,
0 )

we can write for all x € [0, ]

pt () z ut(s)
/ D (1)t < Cg/|q(s)|ds / [0 (s, )] et

—pt(z) 0 —pt(s)

Co [ 1o (o) [ K" s =" (5) s+
0

T T ut(s)
Co/]p(s)\‘f(](-n_l)(s’ﬂ+ (s))‘ds—i—ZC’o/]p(s)\ds / D, ) .
0 0 —pt(s)
(44)
Note that
pt(z)
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T n

e (17
[l st 5] ds < acm | [Ipes)las |
0 0

where € = max (7 (o), 5 ) and 4 (0< A< 4 Fa @)+ 1 ()]s + 242

is a constant. We see that C' < Cpand from (44) we immediately have

() (n) N x w*(s) (n—1)
[ D" (x,t)‘ dt < 4CHATID 1 2C [ |p(s)lds [ |Dik (s,t)’ dt
—ut(x) 0 -1t (s)
for all z € [0,7] and n = 1,2, .... Consequently,
ut(z)
n+1 n+1
(n) - o' (x) o ()
/ D 0| dt < a0oA T 4 i (45)
—pt(2)
xe€l0,7], n=0,1,..,
where
Y / 2
o1 @) =200 [ |l + o) + L+ 2 g g
p(s) p(s)

0
This means that the series

i K (z,.)
n=0

can be differentiated term by term in the space L1 (—u™ (z), 4" (z)) and the sum
Kj(z,.) is also differentiable in this space with

ut ()
|DyKj(z, )] dt < 4CpAo (z)e”@ 4 e (®) 1. (47)
—ut (z)

Similarly, from the successive approximation (24) — (26) by differentiation with
respect to the variable x we have the series

S DK (x,.)
n=0

converges in the space L1 (—p™ (z), u™ () and D, Kj(x,.) € Li(—ut (z), ut (2)).
Further,by differentiation integral equations (19), (21) — (23) we have that

DtKj<1', t) — Dij<1', t) =

Ws x—t r—t x—t
=2 () ks (S - R+ as

r—t
2

—Wwj q(s) D¢K; (5a€)|t7x+s ds, —x <t<uz,0<z<a, (48)

8
M‘r‘*\a

aDKj(x,t) — Dy Kj(z,t) =
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= [ K (st @)t (s)) s -
- gt

xT

[ p(s) D9

ds—
e b=t ()t (5)
_%p <a_u(§)+t> K, <a_u(9;)+t7 /ﬁ(ﬂ;)—t>’ (49)
x> a,—pt (1)<t < —p” (z),
aDiKj(z,t) — D Kj(x,t) =
047“2(%‘)(1 <M (Z) +t> R (M (Z) +t>
+wjar2_(m) [p/ <t+,u2 (:B)) —wip < —i—,u2 (x))] R;r <t+,u2 (3:))
—ar™(x) /a q(s)Kj (s,t —p* (z)+s)ds
(@)=t
+ar™ (x) /a q(s)Kj (s, t+p (z) —s)ds
B (m)+t
—7Q(S) Kj (st —p' (2) +pu* (s)) ds
—2wjart(z) /a p(s) DeKj(s,6)l,_ ot ()4 05
wte) e
+2wjar™ (x) /a p(s) Dij(S’§)|t+p_(m)78 ds
B (z)+t
—2w; jp (s) D§K§n_1)(87§)L_#+($)+u+(s) ds
_Wjag(fv)p <M+ (f;)t> K, (u* (9;)?57 pr (f;)t>
_wja;‘(af)p (/F (9;) +t> K, <u‘ (5;) o (:;) +t> 7 (50)

x>a,—u_(x)§t<,u_(a:),
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aD,K;(x,t) — DK, t) = ar” (@) <“ (”;) + t) RF

—iq (w(;o)é_%ra) R; <“+(x)_t +a

+% [p’ (‘ﬁ(gg_t —|—a> + %pQ <”+(2$O)[_t —|—a>] R; (‘ﬁ(;i_t +a>
+°Jjw"2‘(x) {p, <t+ﬂ2 (:r)> i (tﬂ; ($)>] R <t+u2 (w)>

—ar™(x) / q(s) K (s,t —pt (z) +s)ds

+ar™ (x) / q(s)Kj (s, t+p~ (z) —s)ds

T

[ 4K (st = 1" @)+ " (5)) ds

a
a

_ijOéT+ (x) / p (S) DgKJ(S, f) |t*l$+ (2)+s ds

pt(z)—t
2

0 (@) [ () DRyl
p(z)+t

—wjart (@) ( t) < t’_xﬁ (f;’)—t>

r>a, p(z) <t<upt(z). (51)
These equations with (47) imply that

ut(x)
DK (2, t)| dt < 4y/p(2)CoAo () @ + /p(z) (em(z) - 1) + Cioy (2),
it (@)

(52)
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where C7 > 0 is a constant. Differentiating equations (48) — (51) once more we
have the following partial differential equation for the kernel Kj(x,t) :

Do Kj(z,t) — p(2) Dy Kj(x,t) = q(2)K;(x,t) + 2w;jp(z) D K (x, t). (53)
Hence we can formulate the following theorem:

Theorem 3.1. For all fized © € [0, 7] the kernel of the integral representation
(34) has the partial derivatives D Kj(x,.), DiKj(x,.) € Li(—p*t (z),pt (z)) and
satisfy the discontinuous partial differential equation (53) with the conditions

(
0
_wipl0) o, wi] s

Kj(z, —p*(x)) r(x)e 0V (54)

’ S 28
Ky, 1 (@) = 5 R} (@) /( a) p()@)d”

0

p(z)
and the discontinuity conditions

+—Lp() + du (7“_(96))219(“)] (55)

K.~ (@)~ 0) — Ky, (@) +0) = 220 ) (56)

and
j(, 1 () = 0) = K (5™ () +0) =

=R, (x fa S 2(s 3—71 [ S
=7y (@) 20/[q<>+p<>]d QWa/[cﬂH
2p ()

—_

p(s)
p(s)

} ds+ (57)

Y ) + 2, (r+<x>)2p<a>} |
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