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FORMULA FOR SECOND REGULARIZED TRACE OF THE

STURM-LIOUVILLE EQUATION WITH SPECTRAL

PARAMETER IN THE BOUNDARY CONDITIONS

HAJAR F. MOVSUMOVA

Abstract. In the paper we calculate formula for the second regularized
trace of the problem generated by Sturm-Liouville operator equation
and with spectral parameter dependent boundary condition.

1. Introduction

The study of regularized traces of ordinary differential operators has a long
history and there are a large number of papers and books studying this issue.
The regularized trace of the differential operators can be regarded as a general-
ization of the traces of matrices and operators .The trace formula for the scalar
differential operators have been first found by Gelfand and Levitan [15] .The
formula obtained there gave rise to a large and very important theory, which
started from the investigation of specific operators and further embraced the
analysis of regularized traces of discrete operators in general form. In a short
time, a number of authors turned their attention to trace theory and obtained
interesting results. For example, Dikii provided a proof of the Gelfand-Levitan
formula in [11] on the basis of direct methods of perturbation theory, and in [12],
he derived trace formulas of all orders for the Sturm-Liouville operator by con-
structing the fractional powers of the operator in closed form and by computing
an analytic extension for its zeta function. Later, Levitan [17] suggested one more
method for computing the traces of the Sturm-Liouville operator: by matching
the expressions for the characteristic determinant via the solution of an appro-
priate Cauchy problem and via the corresponding infinite product, he found and
compared the coefficients of the asymptotic expansions of these expressions thus
obtaining trace formulas. Gasymov’s paper [14] was the first paper in which a
singular differential operator with discrete spectrum was considered. Afterwards
these investigations were continued in many directions, such as Dirac operators,
differential operators with abstract operator-valued coefficients, and the case of
matrix-valued Sturm-Liouville operators (see, [21]). In [18] , the trace of the
Sturm–Liouville operator with unbounded operator coefficient has been first cal-
culated by F.G. Maksudov,M. Bayramoglu and A.A. Adigezalov. Higher order
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regularized traces investigated for example, in [1, 7, 10 , 13] . In [7] , M. Bayra-
moglu and N.M.Aslanova found a formula for the second regularized trace of the
problem generated by a Sturm-Liouville operator equation and a spectral param-
eter dependent boundary condition.The trace formulas for differential operators
with operator coefficient are investigated in the works [1-5,7-10, 18,19].

In the present paper we consider an operator different from operator in [7] by
boundary condition.The main goal of the paper is to establish a formula for the
second regularized trace of that operator. A formula for the first regularized trace
is obtained in [19].

2. Problem statement

Let H be a separable Hilbert space. Denote by ( · , · ) and ‖ · ‖ the scalar
product and the norm in H, respectively. In the Hilbert space L2 (H, (0, 1)) we
consider the following boundary value problem

l [y] ≡ −y′′(t) +Ay(t) + q(t)y(t) = λy(t) (2.1)

y′(0) = 0 (2.2)

ay(1) + y′(1) = −λy′(1) (2.3)

where A is a self-adjoint positive-definite operator in H (A > E , E is an identity
operator in H) with a compact inverse, q (t) is a selfadjoint operator-valued func-
tion in H for each t. Suppose that q (t) is weakly measurable and the following
conditions are satisfied:

1) There exist fourth order weak derivatives on [0, 1] denoted by q(k) (t) which

is from σ1 (H) and
∥∥q(k) (t)

∥∥
σ1(H)

≤ const for each t ∈ [0, 1] , (k = 0, 4),

A(q)(k) (t) ∈ σ1 (H) ,
∥∥Aq(k) (t)

∥∥
σ1(H)

≤ const for k = 0, 1, 2. Note that, σ1 (H)

is a trace class (see [16], p.88), a class of compact operators in separable Hilbert
space H , whose singular values form a convergent series. In [16] this class is
denoted by σ1 (H) .

2) q′ (0) = q′ (1) = q (1) = 0;

3)
∫ 1

0 (q (t) f, f) dt = 0 for each f ∈ H.
In direct sum L2 = L2 (H, (0, 1))

⊕
H associate with problem (2.1)-(2.3) for

q (t) ≡ 0 the operator L0 defined as

D(L0) = {Y : Y = {y(t), y1}/− y′′(t) +Ay(t) ∈ L2(H, (0, 1)),

y′(0) = 0, y1 = −y′(1)}, (2.4)

L0Y = {−y′′(t) +Ay(t), ay(1) + y′(1)}. (2.5)

The operator corresponding to the case q(t) 6≡ 0 denote by L = L0 +Q, where
Q{y (t) , −y′ (1)} = {q (t) y (t) , 0}. The scalar product in L2 defined as

(Y, Z)L2 =

∫ 1

0
(y(t), z(t))dt+

1

a
(y1, z1) (2.6)
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where Y = {y(t), y1}, Z = {z(t), z1}, y(t), z(t) ∈ L2 (H, (0, 1)) , y1, z1 ∈ H,
a > 0.

It is known that [6] operators L0 and L have a discrete spectrum. Denote their
eigenvalues by µ1 ≤ µ2 ≤ . . . and λ1 ≤ λ2 ≤ . . . , respectively.

3. Auxiliary facts

Denote the eigenvalues and eigen-vectors of operator A by γ1 ≤ γ2 ≤ . . . and
ϕ1, ϕ2, . . . , respectively.

Let R0
λ be resolvent of operator L2

0. In view of asymptotics for µk, it follows
that R0

λ is from σ1 (H). In [20] the following theorem was proved.
Theorem 3.1. Let D (A0) ⊂ D (B), where A0 is a self-adjoint positive discrete

operator in separable Hilbert space H, such that A−1
0 ∈ σ1 (H) and let B be a

perturbation operator. Assume that there exist a number δ ∈ [0; 1) such that

BA−δ0 is continuable to bounded operator and some number ω ∈ [0; 1) , ω+δ < 1,

such that A
−(1−δ−ω)
0 is a trace class operator. Then there exist subsequence of

natural numbers {nm}∞m=1 and sequence of closed contours Γm ∈ C such that for

N ≥ δ
ω

lim
m→∞

 nm∑
j=1

(µj − λj) +
1

2πi

∫
Γm

N∑
k=1

(−1)k−1

k
tr (BR0 (λ))k dλ

 = 0

where {µn} and {λn} are eigenvalues of A0 + B and A0, respectively, arranged
in ascending order of their real parts, R0 (λ) is a resolvent of A0.

The conditions of this theorem are satisfied for L2
0 and L2. Really, if we

take A0 = L2
0, B = L0Q + QL0 + Q2,

(
L2 = A0 +B

)
and δ = 1

2 , provided

L0QL
−1
0 is bounded, BA−1

0 is also bounded and for ω ∈ [0; 1) , ω < 1
2 −

2+α
4α ,

A
−(1−δ−ω)
0 = L

−2(1−δ−ω)
0 is an operator of the trace class. Thus by statement of

Theorem 3.1 for N > 1
2ω

lim
m→∞

(
nm∑
n=1

(
λ2
n − µ2

n

)
+

1

2πi

∫
Γm

N∑
k=1

(−1)k−1

k
×

×tr
[(
L0Q+QL0 +Q2

)
R0 (λ)

]k
dλ
)

= 0. (3.1)

4. Second regularized trace of the operator L

Let’s call

lim
m→∞

(
nm∑
n=1

(
λ2
n − µ2

n −
∫ 1

0
trq2 (t) dt

)
+

+
1

2πi

∫
Γm

N∑
k=2

(−1)k−1

k
tr
[(
L0Q+QL0 +Q2

)
R0 (λ)

]k
dλ

)
(4.1)

a second regularized trace of L and denote it by
∑∞

n=1

(
λ

(2)
n − µ(2)

n

)
. Further, we

will show that it has finite value which doesn’t depend on choice of {nm}.
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By virtue of [20, lemma 3] for great m the number of eigenvalues of L2
0 and L2

inside the contour Γm is the same and equals to nm.
In view of (3.1)

lim
m→∞

(
nm∑
n=1

(
λ2
n − µ2

n −
∫ 1

0
trq2 (t) dt

)
+

+
1

2πi

∫
Γm

N∑
k=2

(−1)k−1

k
tr
[(
L0Q+QL0 +Q2

)
R0 (λ)

]k
dλ

)
=

= lim
m→∞

(
− 1

2πi

∫
Γm

tr
[(
L0Q+QL0 +Q2

)
R0 (λ)

]
dλ−

nm∑
n=1

∫ 1

0
trq2 (t) dt

)
.

(4.2)
Denote the eigenvectors of L0 by ψ1, ψ2, . . . . By our assumption operator

L0QL
−1
0 is bounded, so

(
L0Q+QL0 +Q2

)
R0
λ is trace class operator and thus

eigenvectors of L0 form a basis in L2. From (4.2) we get

− 1

2πi

∫
Γm

tr
[(
L0Q+QL0 +Q2

)
R0 (λ)

]
dλ =

=

nm∑
n=1

([
L0Q+QL0 +Q2

]
ψn, ψn

)
L2
. (4.3)

Note that in [19] the orthonormal eigenvectors of the operator L is obtained
and are of the form:

ψn =

√
4axk,n

2axk,n + a sin 2xk,n + 4x3
k,nsin

2 xk,n
{cos (xk,nt)ϕk, xk,nsinxk,n ϕk} ,

(
n = 0, ∞, k = N, ∞
n = 1, ∞, k = 1, N − 1

)
(4.4)

where xk, n are the roots (see [19]) of the equation

a cos z − z sin z −
(
z2 + γk

)
z sin z = 0, z =

√
λ− γk. (4.5)

The following lemma is true.
Lemma 4.1. If properties 1,2 hold, and γk ∼ gkα, 0 < g <∞, 2 < α <∞,

then the following series is absolutely convergent

∞∑
k=1

∞∑
n=1

∣∣∣∣∣(x2
k,n + γk

) 2axk,n
∫ 1

0 cos (2xk,nt) fk (t) dt

2axk,n + a sin 2xk,n + 4x3
k,nsin

2 xk,n

∣∣∣∣∣+
+

∞∑
k=N

∣∣∣∣∣(x2
k,0 + γk

) 2axk,0
∫ 1

0 cos (2xk,0t) fk (t) dt

2axk,0 + a sin 2xk,0 + 4x3
k,0sin

2 xk,0

∣∣∣∣∣+
+

∞∑
k=1

∞∑
n=1

∣∣∣∣∣ 4axk,n
∫ 1

0 cos
2 (xk,nt) gk (t) dt

2axk,n + asin 2xk,n + 4x3
k,nsin

2 xk,n
−
∫ 1

0
gk (t) dt

∣∣∣∣∣+
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+

∞∑
k=N

∣∣∣∣∣ 4axk,0
∫ 1

0 cos2 (xk,0t) gk (t) dt

2axk,0 + a sin 2xk,0 + 4x3
k,0 sin2 xk,0

−
∫ 1

0
gk (t) dt

∣∣∣∣∣ <∞. (4.6)

where fk (t) = (q (t)ϕk, ϕk) , gk (t) =
(
q2 (t)ϕk, ϕk

)
.

Proof. Let’s denote the sums on the left of (4.6) by d1, d2, d3, d4 according to
their order. By virtue of property 2, integrating by parts at first twice, then four
times, we have∫ 1

0
cos 2xk,ntfk (t) dt = − 1

(2xk,n)2

∫ 1

0
cos 2xk,ntf

′′
k (t) dt. (4.7)∫ 1

0
cos 2xk,ntqk (t) dt = − 1

(2xk,n)3 f
′′
k (1) sin 2xk,n−

− 1

(2xk,n)4 cos 2xk,ntf
′′′
k (t) |10 +

1

(2xk,n)4

∫ 1

0
cos 2xk,ntf

(IV )
k (t) dt. (4.8)

In virtue of estimate

2axk,0

2axk,0 + a sin 2xk,0 + 4x3
k,0 sin2 xk,0

= 1 +O

(
1

xk,0

)
. (4.9)

Taking into property 1 and (4.7) we have

∞∑
k=N

∣∣∣∣∣ 2axk,0γk
∫ 1

0 cos 2xk,0tfk (t) dt

2axk,0 + a sin 2xk,0 + 4x3
k,0 sin2 xk,0

∣∣∣∣∣ ≤
≤
∞∑
k=N

γk

(
1 +O

(
1

xk,0

))∫ 1

0
|fk (t)| dt <∞,

∞∑
k=N

∣∣∣∣∣ 2ax3
k,0

∫ 1
0 cos 2xk,0tfk (t) dt

2axk,0 + a sin 2xk,0 + 4x3
k,0 sin2 xk,0

∣∣∣∣∣ ≤
≤
∞∑
k=N

(
1

2
+O

(
1

xk,0

))∫ 1

0

∣∣f ′′k (t)
∣∣ dt.

So, we get that series denoted by d2 is absolutely convergent.
Then by using relation (4.8) and asymptotics xk,n ∼ πn (see [6]), property
‖Aq′′ (t)‖σ1(H) ≤ const and (4.7) the following estimate holds

∞∑
k=1

∞∑
n=1

∣∣∣∣∣ 2axk,nγk
∫ 1

0 cos 2xk,ntfk (t) dt

2axk,n + a sin 2xk,n + 4x3
k,n sin2 xk,n

∣∣∣∣∣ =

=

∞∑
k=1

∞∑
n=1

γk

(
1 +O

(
1

n

))
O

(
1

n2

)∫ 1

0

∣∣f ′′k (t)
∣∣ dt =

=

∞∑
k=1

∞∑
n=1

O

(
1

n2

)∫ 1

0

∣∣(Aq′′ (t)ϕk, ϕk)∣∣ dt < const (4.10)
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Since
∥∥q(k) (t)

∥∥
σ1(H)

≤ const (k = 2, 3, 4) , in virtue of asymptotics xk,n and (4.8),

we get

∞∑
k=1

∞∑
n=1

∣∣∣∣∣ 2ax3
k,n

∫ 1
0 cos 2xk,ntfk (t) dt

2axk,n + a sin 2xk,n + 4x3
k,n sin2 xk,n

∣∣∣∣∣ =

=

∞∑
k=1

∞∑
n=1

(
1 +O

(
1

n

))[
1

(2xk,n)2

(∣∣f ′′′k (1)
∣∣ +

+
∣∣f ′′′k (0)

∣∣)+
1

(2xk,n)2

∫ 1

0

∣∣∣f (IV )
k (t)

∣∣∣ dt] <∞ (4.11)

Obviously that sin 2xk,n = 0. From (4.10) and (4.11) it follows that series
denoted by d1 is also convergent.
Then

∞∑
k=1

∞∑
n=1

∣∣∣∣∣ 4axk,n
∫ 1

0 cos2 (xk,nt) gk (t) dt

2axk,n + a sin 2xk,n + 4x3
k,n sin2 xk,n

−
∫ 1

0
gk (t) dt

∣∣∣∣∣ =

=
∞∑
k=1

∞∑
n=1

∣∣∣∣∣ 2axk,n
∫ 1

0 (1 + cos 2xk,nt) gk (t) dt

2axk,n + a sin 2xk,n + 4x3
k,n sin2 xk,n

−
∫ 1

0
gk (t) dt

∣∣∣∣∣ =

=

∞∑
k=1

∞∑
n=1

∣∣∣∣(1 +O

(
1

n

))∫ 1

0
(1 + cos 2xk,nt) gk (t) dt−

∫ 1

0
gk (t) dt

∣∣∣∣ ≤
≤
∞∑
k=1

∞∑
n=1

(
1 +O

(
1

n

))∫ 1

0
|cos 2xk,ntgk (t)| dt+

∞∑
k=1

∞∑
n=1

O

(
1

n

)∫ 1

0
|gk (t)| dt.

The last equality in virtue of (4.7) and properties gk (t) ∈ σ1 (H) , g′′k (t) ∈
σ1 (H) gives that series denoted by d3 converges. d4 is also converges:

∞∑
k=N

∣∣∣∣∣ 4axk,0
∫ 1

0 cos2 (xk,0t) gk (t) dt

2axk,0 + a sin 2xk,0 + 4x3
k,0 sin2 xk,0

−
∫ 1

0
gk (t) dt

∣∣∣∣∣ =

=
∞∑
k=N

∣∣∣∣∣ 2axk,0
∫ 1

0 (1 + cos 2xk,0t) gk (t) dt

2axk,0 + a sin 2xk,0 + 4x3
k,0 sin2 xk,0

−
∫ 1

0
gk (t) dt

∣∣∣∣∣ ≤
≤
∞∑
k=N

(
1 +O

(
1

xk,0

))∫ 1

0
|cos 2xk,0tgk (t)| dt+

∞∑
k=N

O

(
1

xk,0

)∫ 1

0
|gk (t)| dt

this completes the proof of the lemma. �

Now let’s calculate the value of series called the second regularized trace. For
that we prove the following theorem.

Theorem 4.1 Let q(t) be an operator-function with properties 1-3, L−1
0 QL0

be bounded operator in L2 and γk ∼ gkα g > 0, α > 2, then
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∞∑
n=1

(
λ(2)
n − µ(2)

n

)
=
trq2 (0)

4
+
trAq (0) + tr Aq (1)

2
−

− trq
′′ (0) + trq′′ (1)

8
−
∫ 1

0
trq2 (t) dt. (4.12)

Proof. It follows from Lemma 4.1 and relations (4.2) and (4.3) that

lim
m→∞

(
nm∑
n=1

(
λ2
n − µ2

n −
∫ 1

0
trq2 (t) dt

)
+

+
1

2πi

∫
Γm

N∑
k=2

(−1)k−1

k
tr
[(
L0Q+QL0 +Q2

)
R0 (λ)

]k
dλ

)
=

=
N−1∑
k=1

∞∑
n=1

(
x2
k,n + γk

) 4axk,n
∫ 1

0 cos 2xk,ntfk (t) dt

2axk,n + a sin 2xk,n + 4x3
k,n sin2 xk,n

+

+

∞∑
k=N

∞∑
n=0

(
x2
k,n + γk

) 4axk,n
∫ 1

0 cos 2xk,ntfk (t) dt

2axk,n + a sin 2xk,n + 4x3
k,n sin2 xk,n

+

+
N−1∑
k=1

∞∑
n=1

[
2axk,n

∫ 1
0 (1 + cos 2xk,nt) gk (t) dt

2axk,n + a sin 2xk,n + 4x3
k,n sin2 xk,n

−
∫ 1

0
gk (t) dt

]
+

+
∞∑
k=N

∞∑
n=0

[
2axk,n

∫ 1
0 (1 + cos 2xk,nt) gk (t) dt

2axk,n + a sin 2xk,n + 4x3
k,n sin2 xk,n

−
∫ 1

0
gk (t) dt

]
. (4.13)

We first derive a formula for the fourth term on the right of (4.13). Compute
the value of series

∞∑
n=0

[
2axk,n

2axk,n + a sin 2xk,n + 4x3
k,n sin2 xk,n

− 1

]
=

= lim
N→∞

N−1∑
n=0

[
2axk,n

2axk,n + a sin 2xk,n + 4x3
k,n sin2 xk,n

− 1

]
. (4.14)

For this atN →∞ we will investigate the asymptotics behavior of the following
function

SN (t) =

N−1∑
n=0

[
2axk,n

2axk,n + a sin 2xk,n + 4x3
k,n sin2 xk,n

− 1

]
.

Express the k−th term of sum SN (t) as a residue at the pole xk,n of some
function of complex variable z:

G (z) = − az(a ctg z
z − 1− (z2 + γk)

)
z2 sin2 z

. (4.15)

This function has simple poles at the points xk,n, πn and z = 0.
Find the residue at xk,n:
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res
z=xk,n

G (z) = −
axk,n

x2
k,n sin2 xk,n

(a ctg z
z − 1− (z2 + γk)

)′
z=xk,n

=

=
2axk,n

2axk,n + a sin 2xk,n + 4x3
k,n sin2 xk,n

.

We have

res
z=πn

G (z) = − res
z=πn

az(
a cos z
z − sin z − z2 sin z − γk sin z

)
z2 sin z

=

= − aπn

a cos πn
πn (πn)2 cos πn

= −1.

Take as a contour of integration the rectangle with vertices at ±iB, AN ± iB,
which has cut at ixk,0 and will pas it by on the left, and the points −ixk,0
and 0 on the right. Take also B > xk,0. Then B will go to infinity and take
AN = πN + π

2 . For such choice of AN we have xk,N−1 < AN < xk,N and the

number of points inside of the contour of integration equals N
(
k = 0, N − 1

)
.

One can easily show that inside this contour the function a ctg z
z −1−

(
z2 + γk

)
has exactly N roots, so xk,N−1 < AN < xk,N .

Since G (z) is an odd function of z, then the integrals along the part of contours
on imaginary axis, and the integral along semicircles centered at ±ixk,0 vanish.

If z = u + iv, then for large v and for u ≥ 0, G (z) is of order O
(
e2|v|t

|v|3

)
that

is why for the given value of AN the integrals along upper and lower sides of the
contour also go to zero when B →∞.
So, we arrive at the following equality

SN (t) =
1

2πi
lim
B→∞

∫ AN+iB

AN−iB
G (z) dz +

1

2πi
lim
r→0

∫
|z| = r

−π
2 < ϕ < π

2

G (z) dz. (4.16)

As N →∞

1

2πi
lim
B→∞

∫ AN+iB

AN−iB
G (z) dz ∼ 1

2πi

∫ AN+i∞

AN−i∞

dz

z3 sin2 z
=

=
1

π

∫ +∞

−∞

dv

(AN + iv)3 (1− cos (2AN + 2iv))
=

1

π

∫ +∞

−∞

dv

(AN + iv)3 (1 + cos 2iv)

=
1

π

∫ +∞

−∞

dv

(AN + iv)3 (1 + ch 2v)
≡ K. (4.17)

Then,

|K| =
∣∣∣∣ 1π
∫ +∞

−∞

dv

(AN + iv)3 (1 + ch 2v)

∣∣∣∣ < ∫ +∞

−∞

dv√(
A2
N + v2

)3 =

= 2

∫ +∞

0

dv√(
A2
N + v2

)3 < 2

AN

∫ +∞

0

dv√
A2
N + v2

=
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=
2

AN
ln

∣∣∣∣∣ vAN +

√
v2

A2
N

+ 1

∣∣∣∣∣
AN

0

=
const

AN
. (4.18)

Therefore,

∫ 1

0
SN (t) gk (t) dt =

1

2πi

∫ 1

0
gk (t) dt

AN+i∞∫
AN−i∞

G (z) dz+

+
1

2πi
lim
r→0

∫ 1

0
gk (t) dt

∫
|z| = r

−π
2 < ϕ < π

2

G (z) dz (4.19)

We get

1

2πi

∫
|z| = r

−π
2 < ϕ < π

2

G (z) dz =

= − 1

2πi

∫
|z| = r

−π
2 < ϕ < π

2

adz
a
2 sin 2z − (1 + z2 + γk) z sin2 z

∼

∼ − 1

2πi

∫ π
2

−π
2

aireiϕdϕ

areiϕ −
(

1 + (reiϕ)2 + γk

)
(reiϕ)3

−→
r→0
− 1

2π

∫ π
2

−π
2

dϕ = −1

2
(4.20)

So, using (4.16), (4.17), (4.18) and (4.20) in (4.19) we have

lim
N→∞

∫ 1

0
SN (t) gk (t) dt = −1

2

∫ 1

0
gk (t) dt. (4.21)

Now let us derive calculations for

TN (t) =
N−1∑
n=0

2axk,n cos 2xk,nt

2axk,n + a sin 2xk,n + 4x3
k,n sin2 xk,n

.

Consider the function of complex variable

F (z) =
−az cos 2zt(a ctg z

z − 1− (z2 + γk)
)
z2 sin2 z

.

This function has simple poles at the points xk,n, πn and z = 0:

res
z=xk,n

F (z) =
2axk,n cos (2xk,nt)

2axk,n + a sin 2xk,n + 4x3
k,n sin2 xk,n

and

res
z=πn

F (z) = − cos 2πnt.

Again take as a contour of integration the above considered contour. One can
show that as N →∞
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1

2πi

∫ AN+i∞

AN−i∞

az cos 2zt dz(a ctg z
z − 1− (z2 + γk)

)
z2 sin2 z

∼ const

AN
(4.22)

From here we get

lim
N→∞

∫ 1

0
gk (t)

∫ AN+i∞

AN−i∞
F (z) dzdt = 0. (4.23)

By virtue of (4.23)

lim
N→∞

∫ 1

0
TN (t) gk (t) dt = lim

N→∞

∫ 1

0
MN (t) gk (t) dt+

+
1

2πi
lim
r→0

∫ 1

0
gk (t) dt

∫
|z| = r

−π
2 < ϕ < π

2

F (z) dz (4.24)

Here

MN (t) =
N∑
n=1

cos 2πnt.

The first term in (4.24) is equal to

lim
N→∞

∫ 1

0
MN (t) gk (t) dt =

gk (0) + gk (1)

4

and the second term in (4.24) as r → 0 goes to −1
2

∫ 1
0 gk (t) dt.

Other words

lim
N→∞

∫ 1

0
TN (t) gk (t) dt =

gk (0) + gk (1)

4
− 1

2

∫ 1

0
gk (t) dt. (4.25)

From (4.21) and (4.25), we have

∞∑
k=N

∞∑
n=0

(
2axk,n

∫ 1
0 (1 + cos 2xk,nt) gk (t) dt

2axk,n + a sin 2xk,n + 4x3
k,n sin2 xk,n

−
∫ 1

0
gk (t) dt

)
=

=
∞∑
k=N

gk (0) + gk (1)

4
−
∞∑
k=N

∫ 1

0
gk (t) dt =

∞∑
k=N

gk (0)

4
−
∞∑
k=N

∫ 1

0
gk (t) dt (4.26)

(4.26) is followed from

gk (1) =
(
q2 (1)ϕk, ϕk

)
= (q (1)ϕk, q (1)ϕk) = 0.

By similar way we will have

N−1∑
k=1

∞∑
n=1

(
2axk,n

∫ 1
0 (1 + cos 2xk,nt) gk (t) dt

2axk,n + a sin 2xk,n + 4x3
k,n sin2 xk,n

−
∫ 1

0
gk (t) dt

)
=
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=

N−1∑
k=1

gk (0)

4
−
N−1∑
k=1

∫ 1

0
gk (t) dt. (4.27)

Combining (4.26) and (4.27) the sum of two last series in (4.13) gives

N−1∑
k=1

gk (0)

4
−
N−1∑
k=1

∫ 1

0
gk (t) dt+

∞∑
k=N

gk (0)

4
−

−
∞∑
k=N

∫ 1

0
gk (t) dt =

trq2 (0)

4
−
∫ 1

0
trq2 (t) dt. (4.28)

Note that in [19] the following is calculated

∞∑
k=N

∞∑
n=0

∫ 1

0

2axk,n cos 2xk,ntfk (t) dt

2axk,n + a sin 2xk,n + 4x3
k,n sin2 xk,n

+

+
N−1∑
k=1

∞∑
n=1

∫ 1

0

2axk,n cos 2xk,ntfk (t) dt

2axk,n + a sin 2xk,n + 4x3
k,n sin2 xk,n

=

=
1

4

∞∑
k=1

[ ∞∑
n=0

cos n · 0 · 2

π

∫ π

0
cos nzfk

( z
π

)
dz +

+
∞∑
n=0

cos n · π · 2

π

∫ π

0
cos nzfk

( z
π

)
dz

]
. (4.29)

From (4.29) we get

N−1∑
k=1

∞∑
n=1

γk
4axk,n

∫ 1
0 cos 2xk,ntfk (t) dt

2axk,n + a sin 2xk,n + 4x3
k,n sin2 xk,n

+

+
∞∑
k=N

∞∑
n=0

γk
4axk,n

∫ 1
0 cos 2xk,ntfk (t) dt

2axk,n + a sin 2xk,n + 4x3
k,n sin2 xk,n

=

=
1

4

∞∑
k=1

2γk

[ ∞∑
n=0

cos n · 0 · 2

π

∫ π

0
cos nzfk

( z
π

)
dz+

+

∞∑
n=0

cos n · π · 2

π

∫ π

0
cos nzfk

( z
π

)
dz

]
=

=
trAq (0) + trAq (1)

2
(4.30)

and by using condition 2) we have (Note that in this case we consider as the func-
tion of complex variable H (z) = −2az cos 2zt

(a ctg z
z
−1−(z2+γk)) sin2 z,

whose residues at the

poles πn and xk,n are equal to−2 (πn)2 cos 2πnt and
4ax3k,n cos 2xk,nt

2axk,n+a sin 2xk,n+4x3k,n sin2 xk,n
,

respectively.)
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∞∑
k=N

∞∑
n=0

4ax3
k,n

∫ 1
0 cos 2xk,ntfk (t) dt

2axk,n + a sin 2xk,n + 4x3
k,n sin2 xk,n

=

=

∞∑
k=N

∞∑
n=0

∫ 1

0
2 (πn )2 cos 2πntfk (t) dt =

= −
∞∑
k=N

∞∑
n=0

∫ 1

0
πn sin 2πntf ′k (t) dt = −

∞∑
k=N

∞∑
n=0

1

2

∫ 1

0
cos 2πntf ′′k (t) dt =

= −
∞∑
k=N

∞∑
n=0

1

2π

∫ π

0
cos 2nzf ′′k

( z
π

)
dz =

= −1

8

∞∑
k=N

∞∑
n=0

[
cos n · 0 · 2

π

∫ π

0
cos nzf ′′k

( z
π

)
dz +

+ cos n · π · 2

π

∫ π

0
cos nzf ′′k

( z
π

)
dz

]
= −

∞∑
k=N

q′′k (0) + q′′k (1)

8
(4.31)

By similar way we will get

N−1∑
k=1

∞∑
n=1

4ax3
k,n

∫ 1
0 cos 2xk,ntfk (t) dt

2axk,n + a sin 2xk,n + 4x3
k,n sin2 xk,n

= −
N−1∑
k=1

q′′k (0) + q′′k (1)

8
(4.32)

From (4.31) and (4.32) we have

N−1∑
k=1

∞∑
n=1

4ax3
k,n

∫ 1
0 cos 2xk,ntfk (t) dt

2axk,n + a sin 2xk,n + 4x3
k,n sin2 xk,n

+

+
∞∑
k=N

∞∑
n=0

4ax3
k,n

∫ 1
0 cos 2xk,ntfk (t) dt

2axk,n + a sin 2xk,n + 4x3
k,n sin2 xk,n

=

= −
N−1∑
k=1

q′′k (0) + q′′k (1)

8
−
∞∑
k=N

q′′k (0) + q′′k (1)

8
= − trq

′′ (0) + trq′′ (1)

8
. (4.33)

Combining (4.28), (4.30) and (4.33) we get the formula (4.12). Theorem is proved.
�
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