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SOME CONVOLUTION INEQUALITIES IN MUSIELAK

ORLICZ SPACES

RAMAZAN AKGÜN

Abstract. Uniform boundedness of some family of convolution-type
operators with kernels, such as Steklov, Poisson, Cesàro, De la Vallée-
Poussin, Fejér, Jackson, having some properties are investigated in Musielak
Orlicz spaces. As an application we obtained approximate identities in
these spaces.

1. Introduction

Approximate identities are very useful tool ([4, p.31, Def. 1.1.4], [19, p.62],
[20, Ch.9]) in Fourier and Harmonic Analysis. In these books there are two
approaches. For the approach defined in the books [19, p.62] and [20, Ch.9]
approximate identities are investigated by Benkirane, Douieb, Val ([3]); Cruz-
Uribe, Fiorenza ([5]); Hudzik ([8]); Maeda, Ohno, Mizuta, Shimomura ([10, 11])
and Samko ([13]) in generalized Lebesgue spaces with variable exponent and
Musielak Orlicz spaces. Some convolution type inequalities were investigated by
R. A. Bandaliev, A. H. Isayev in [2] and F. I. Mamedov, S. H. Ismailova in [12].

For the approach similar to definition in [4, p.31, Def. 1.1.4] some results are
obtained by Sharapudinov ([15]) and Shah-Emirov ([14]) in (weighted) generalized
Lebesgue spaces with variable exponent. Continuing this fact our work mainly
focus on to obtain approximate identities in Musielak Orlicz spaces. To do this
we will consider λ ≥ 1 and 2π-periodic, essentially bounded kernels kλ = kλ(x)
on T := [−π, π) such that ∫

T
|kλ(x)|dx ≤ C1; (1.1)

supx∈T |kλ(x)| ≤ C2λ
ν ; (1.2)

|kλ(x)| ≤ C3; λ−γ ≤ |x| ≤ π (1.3)

for some constants C1,2,3, ν, γ > 0, which are independent of λ. We define the
operator

Kλf(x) =

∫
T
f(t)kλ(t− x)dt, 1 ≤ λ <∞, x ∈ T.
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Then we prove that sequence of operators {Kλf}1≤λ<∞ is uniformly bounded (in
λ) in Musielak Orlicz spaces Lϕ for some conditions on ϕ. For example Steklov,
Poisson, Cesàro, De la Vallée-Poussin, Fejér, Jackson’s and some other kernels
satisfy (1.1-1.3). As a result we can obtain several approximate identities in
Musielak Orlicz spaces Lϕ. Note that we will use a Dini-Lipschitz type condition
on ϕ. Also we obtain that the family {Sλ,τf}1≤λ<∞ formed with translation of
Steklov-type means in Lϕ, is uniformly bounded for γ > 0, |τ | ≤ πλ−γ , where
Sλ,τf is defined ([16]) by

Sλ,τf(x) := Sλf(x+ τ) := λ

∫ τ+1/(2λ)

τ−1/(2λ)
f(x+ u)du.

In §2 we give preliminary notations and definitions. In §3 we consider uniform
boundedness of the family {Sλ,τf}1≤λ<∞. In §4 we consider the uniform bound-
edness of some family of convolution-type operators with kernels, such as Steklov,
Poisson, Cesàro, De la Vallée-Poussin, Fejér, Jackson, having properties (1.1-1.3)
in Musielak Orlicz spaces Lϕ. In the last section §5 we obtain approximate iden-
tities in Musielak Orlicz spaces Lϕ.

In what follows, A . B will mean that, there exists a positive constant Cu,v,...,
dependent only on the parameters u, v, . . . and can be different in different places,
such that the inequality A ≤ CB is hold. If A . B and B . A then we will write
B ≈ A.

2. Preliminaries

A function ϕ : [0,∞) → [0,∞] is called Φ-function (briefly ϕ ∈ Φ) if Φ is
convex, left continuous and

ϕ (0) := lim
t→0+

ϕ (t) = 0, ϕ (∞) := lim
x→∞

ϕ (x) =∞.

A Φ-function ϕ is said to be an N -function if it is continuous, positive and satisfies

lim
t→0+

ϕ (t)

t
= 0, lim

t→∞

ϕ (t)

t
=∞.

Let Φ (T ) be the collection of functions ϕ : T × [0,∞)→ [0,∞] such that
(i) ϕ (x, ·) ∈ Φ for every x ∈ T,
(ii) ϕ (x, u) is in L0 (T ), the set of measurable functions, for every u ≥ 0.
A ϕ (·, u) ∈ Φ (T ) said to satisfy ∆2 condition (ϕ ∈ ∆2) with respect to u if

ϕ (x, 2u) ≤ Kϕ (x, u) holds for all x ∈ T, u ≥ 0, with some constant K ≥ 2.
Subclass Φ (N) consists of functions ϕ ∈ Φ (T ) such that
(I) ϕ (x, ·) is, for every x ∈ T , an N -function and ϕ ∈ ∆2;
(II) there exists a constant c > 0 such that infx∈T ϕ (x, 1) ≥ c;
(III)

∫
T ϕ (x, 1) <∞ and ψ (x, 1) ≤ c a.e. on T ;

(IV) there exists a constant A > 0 such that for all x, y ∈ T we have

ϕ (x, u)

ϕ (y, u)
≤ u−A ln 1

|x−y| , u ≥ 1.

Some examples belonging to Φ (N): Let p : T → [1,∞) be in L0 (T ) such that
2π-periodic, essentially bounded on T and, for all x, y ∈ T it has Dini-Lipschitz
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property

|p (x)− p (y)| ln 1

|x− y|
≤ c

with a constant c > 0. Then the functions

• ϕ (x, u) = up(x), supx∈T p (x) <∞,
• (ii) ϕ (x, u) = up(x) log (1 + u) , supx∈T p (x) <∞,
• (iii) ϕ (x, u) = u (log (1 + u))p(x)

belong to the class Φ (N) .
For ϕ ∈ Φ (N) we set %ϕ (f) :=

∫
T ϕ (x, |f (x)|) dx. Generalized Orlicz class

Lϕ (or Musielak Orlicz space) is the class of 2π periodic Lebesgue measurable
functions f : T → R satisfying the condition limλ→0 %ϕ (λf) = 0. Equivalent
condition for f ∈ L0 (T ) to belong to Lϕ is that %ϕ (λf) <∞ for some λ > 0. Lϕ

becomes a normed space with the Orlicz norm

‖f‖[ϕ] := sup

{∫
T
|f (x) g (x)| dx : %ψ (g) ≤ 1

}
and with the Luxemburg norm

‖f‖ϕ = inf

{
λ > 0 : %ϕ

(
f

λ

)
≤ 1

}
where ψ (t, v) := supu≥0 (uv − ϕ (t, u)), v ≥ 0, t ∈ T, is the complementary
function (with respect to variable v) of ϕ in the sense of Young. These two
norms are equivalent:

‖f‖ϕ ≤ ‖f‖[ϕ] ≤ 2 ‖f‖ϕ .

Young’s inequality holds for complementary functions ϕ,ψ ∈ Φ (N)

us ≤ ϕ (x, u) + ψ (x, s)

where u, s ≥ 0, x ∈ T. From Young’s inequality we have

‖f‖[ϕ] ≤ %ϕ (f) + 1.

Also ‖f‖ϕ ≤ %ϕ (f) if ‖f‖ϕ > 1 and ‖f‖ϕ ≥ %ϕ (f) if ‖f‖ϕ ≤ 1. Hölder’s inequality
holds: ∫

T
|f (x) g (x)| dx ≤ ‖f‖ϕ ‖f‖[ψ] . (2.1)

If ϕ is an N -function, r (x) is nonnegative and r (x) 6≡ 0, then Jensen’s integral
inequality holds:

ϕ

(
1∫

T r (x) dx

∫
T
f (x) r (x) dx

)
≤ 1∫

T r (x) dx

∫
T
ϕ (f (x)) r (x) dx. (2.2)

3. Steklov operator

In this section we will consider the uniform boundedness of the family formed
with translation of Steklov means.
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Theorem 3.1. If we take γ > 0, 1 ≤ λ < ∞, |τ | ≤ πλ−γ, then the sequence of
operators {Sλ,τ}1≤λ<∞ defined by

Sλ,τf(x) := Sλf(x+ τ) = λ

∫ x+τ+1/(2λ)

x+τ−1/(2λ)
f(u)du

is uniformly bounded in λ and τ , for functions f in Lϕ with ϕ ∈ Φ (N) .

Proof. Let N := bλγc, h := 1/N , x ∈ T , xk := (kh− 1)π, Uk := [xk, xk+1). Then

T =
2N−1⋃
k=0

Uk where the length of Uk is l (Uk) = |xk+1 − xk| = π/bλγc.

Assume that ‖f‖ϕ ≤ 1. We need to show that

ρϕ (Sλ,τf) =

∫
T
ϕ (x, |(Sλ,τf) (x)|) dx ≤ c

with c > 0 independent of f . Then

ρϕ (Sλ,τf) = ρϕ

(
λ

∫ x+τ+1/(2λ)

x+τ−1/(2λ)
f(t)dt

)

=

∫
T
ϕ

(
x,

∣∣∣∣∣λ
∫ x+τ+1/(2λ)

x+τ−1/(2λ)
f(t)dt

∣∣∣∣∣
)
dx

≤
2N−1∑
k=0

∫ xk+1

xk

ϕ

(
x, 1 + λ

∣∣∣∣∣
∫ x+τ+1/(2λ)

x+τ−1/(2λ)
f(t)dt

∣∣∣∣∣
)
dx.

We set

ϕk (u) := inf
{
ϕ (x, u) : x ∈ Ξk

}
≤ inf {ϕ (x, u) : x ∈ Uk} =: ϕ̌ (u)

for some larger set Ξk ⊃ Uk, which will be chosen later with the property

l
(

Ξk
)
≤ mπ/bλγc (3.1)

for some m > 1. On the other hand

ρϕ (Sλ,τf) .
2N−1∑
k=0

∫ xk+1

xk

Ak (x, λ)ϕk

(
1 + λ

∣∣∣∣∣
∫ x+τ+1/(2λ)

x+τ−1/(2λ)
f(t)dt

∣∣∣∣∣
)
dx

where

Ak (x, λ) :=
ϕ
(
x, 1 + λ

∣∣∣∫ x+τ+1/(2λ)
x+τ−1/(2λ) f(t)dt

∣∣∣)
ϕk

(
1 + λ

∣∣∣∫ x+τ+1/(2λ)
x+τ−1/(2λ) f(t)dt

∣∣∣) :=
ϕ (x, α (x, λ))

ϕk (α (x, λ))
.

We prove the uniform estimate Ak (x, λ) ≤ c for x ∈ Uk where c > 0 is indepen-
dent of x, k and λ. Indeed, since

ϕ (x, t)

ϕk (t)
=

ϕ (x, t)

ϕk (ςk, t)
≤ t

A

ln

(
1

|x−ςk|

)
, x ∈ Uk, ςk ∈ Ξk

we have

Ak (x, λ) =
ϕ (x, α (x, λ))

ϕk (α (x, λ))
≤ α (x, λ)

A

ln

(
1

|x−ςk|

)
.
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Also |x− ςk| ≤ l
(
Ξk
)
≤ mπ/bλγc and

λ

A

ln

(
1

|x−ςk|

)
≤ λ

A

ln( λγ6m) ≤ c (m,A) ,(∫ x+τ+1/(2λ)

x+τ−1/(2λ)
|f(t)| dt

)
≤ C ‖f‖ϕ ≤ C,

α (x, λ)

A

ln

(
1

|x−ςk|

)
≤ (λ (C + 2))

A

ln( λγ6m) ≤ C (m,A) .

Since ϕ (x, t) is convex with respect to t, ϕk is convex and

ρϕ (Sλ,τf) .
2N−1∑
k=0

∫ xk+1

xk

c

2
ϕk (1) dx+

2N−1∑
k=0

∫ xk+1

xk

C

2
ϕk

(
λ

∫ x+τ+1/(2λ)

x+τ−1/(2λ)
|f(t)| dt

)
dx

=
c ϕ̌ (2π)

2

∫
T
dx+

C

2

2N−1∑
k=0

∫ xk+1

xk

ϕk

(
λ

∫ x+τ+1/(2λ)

x+τ−1/(2λ)
|f(t)| dt

)
dx

= cϕ̌ (2π)π +
C

2

2N−1∑
k=0

∫ xk+1

xk

ϕk

(
λ

∫ x+τ+1/(2λ)

x+τ−1/(2λ)
|f(t)| dt

)
dx.

In the last integral we use the Jensen’s integral inequality (2.2) and

ρϕ (Sλ,τf) . c+
2N−1∑
k=0

∫ xk+1

xk

ϕk

(
λ

∫ x+τ+1/(2λ)

x+τ−1/(2λ)
|f(t)| dt

)
dx

. c+

2N−1∑
k=0

∫ xk+1

xk

λ

∫ x+τ+1/(2λ)

x+τ−1/(2λ)
ϕk (|f(t)|) dtdx

. c+ λ
2N−1∑
k=0

∫ xk+1

xk

∫ τ+1/(2λ)

τ−1/(2λ)
ϕk (|f(x+ t)|) dtdx

. c+ λ

∫ τ+1/(2λ)

τ−1/(2λ)

2N−1∑
k=0

∫ xk+1

xk

ϕk (|f(x+ t)|) dxdt

. c+ λ

∫ τ+1/(2λ)

τ−1/(2λ)

2N−1∑
k=0

∫ xk+1−t

xk−t
ϕk (|f(x)|) dxdt

We take as Ξk the set ⋃
t∈(−τ−1/(2λ),τ+1/(2λ))

{x : x+ t ∈ Uk} .

Clearly Ξk ⊃ Uk and l
(
Ξk
)
≤ 5π/bλγc. Then (3.1) is satisfied with m = 5. Since

each point x ∈ T belongs simultaneously not more than to a finite number n0
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of the sets Uk, taking maximum with respect to all the sets Uk containing x we
obtain

ρϕ (Sλ,τf) . c+ λ

∫ τ+1/(2λ)

τ−1/(2λ)
dt

∫
T
ϕ̃ (x, |f(x)|) dx

. c+

∫
T
ϕ̃ (x, |f(x)|) dx

with ϕ̃ (x, u) := maxi ϕi (t). Now using

ϕ̃ (x, u) ≤ ϕ (x, u) , ∀x ∈ T,

we get

ρϕ (Sλ,τf) . c+

∫
T
ϕ (x, |f(x)|) dx . c+ ‖f‖ϕ ≤ C.

These are give

‖Sλ,τf‖ϕ . ‖f‖ϕ .
and the result follows. �

Let ϕ ∈ Φ (N), f ∈ Lϕ, 0 < h ≤ 1 and define the Steklov operator

Thf (x) := S1/h,h/2f (x) =
1

h

∫ h

0
f (x+ t) dt, x ∈ T.

For 0 ≤ δ ∈ R+ we define the modulus of continuity for f ∈ Lϕ, ϕ ∈ Φ (N), as

Ω (f, δ)ϕ := sup
0≤h≤δ

‖(I − Th) f‖ϕ

where I is the identity operator. We have that if ϕ ∈ Φ (N) , f ∈ Lϕ and δ ≥ 0,
then

Ω (f, δ)ϕ . ‖f‖ϕ
holds for some constant depending only on ϕ. In general, modulus of continuity
Ω (f, ·)ϕ is the main tool in Approximation Theory ([1, 9, 17]).

4. Some convolution inequalities

Let λ ≥ 1, kλ = kλ(x) be 2π-periodic, essentially bounded function defined on
T , such that (1.1-1.3) hold. We define the operator

Kλf(x) =

∫
T
f(t)kλ(t− x)dt, 1 ≤ λ <∞, x ∈ T. (4.1)

Such type conditions on kernel and operators (4.1) were investigated for variable
exponent Lebesgue spaces in [15].

Theorem 4.1. Let λ ≥ 1, kλ = kλ(x) be 2π-periodic, essentially bounded func-
tion defined on T , such that (1.1)-(1.3) to hold. If f in Lϕ with ϕ ∈ Φ (N), then
there exist a constant, independent of λ and f, such that

‖Kλf‖ϕ . ‖f‖ϕ
holds.
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Proof. The proof is similar to the proof of Theorem 3.1. Let N := bλγc, h := 1/N ,
x ∈ T , xk := (kh− 1)π, Uk := [xk, xk+1),

Ex :=

 T \ (x− πh, x+ πh) , when (x− πh, x+ πh) ⊂ T ,
T \ {(−π, x+ πh) ∪ (x− πh+ 2π, π)} , when x− πh < −π,
T \ {(x− πh, π) ∪ (−π, x+ πh− 2π)} , when x+ πh > π.

Then T =
2N−1⋃
k=0

Uk where the length of Uk is l (Uk) = |xk+1 − xk| = π/bλγc.

Assume that ‖f‖ϕ = 1. We need to show that

ρϕ (Kλf) =

∫
T
ϕ (x, |(Kλf) (x)|) dx ≤ c

with c > 0 independent of f . Then convexity of ϕ implies

ρϕ (Kλf) = ρϕ

(∫
T
f(t)kλ(t− x)dt

)
= ρϕ

({∫ x+πh

x−πh
+

∫
Ex

}
f(t)kλ(t− x)dt

)
≤ K

2
ρϕ

(∫ x+πh

x−πh
f(t)kλ(t− x)dt

)
+
K

2
ρϕ

(∫
Ex

f(t)kλ(t− x)dt

)
=: I1 + I2.

If x ∈ T and t ∈ Ex, then, from (1.3), we have

|kλ(t− x)| . 1.

Using Hölder’s inequality (2.1) and (III) we obtain∣∣∣∣∫
Ex

f(t)kλ(t− x)dt

∣∣∣∣ . ∫
T
|f(t)| dt

. ‖f‖ϕ ‖1‖[ψ] . ‖1‖[ψ] . c+ 1

and hence

I2 . ρϕ

(
2C

∫
Ex

f(t)kλ(t− x)dt

)
≤ K

∫
T
ϕ

(
x,

∫
Ex

f(t)kλ(t− x)dt

)
dx

.
∫
T
ϕ (x, c+ 1) dx .

∫
T
ϕ (x, 1) dx ≤ C.

Now

I1 .
∫
T
ϕ

(
x,

∫ x+πh

x−πh
|f(t)| |kλ(t− x)| dt

)
dx

≤
2N−1∑
k=0

∫ xk+1

xk

ϕ

(
x, 1 +

∫ x+πh

x−πh
|f(t)| |kλ(t− x)| dt

)
dx.

On the other hand

I1 .
2N−1∑
k=0

∫ xk+1

xk

Ak (x, λ)ϕk

(
1 +

∫ x+πh

x−πh
|f(t)| |kλ(t− x)| dt

)
dx



286 RAMAZAN AKGÜN

where

Ak (x, λ) :=
ϕ
(
x, 1 +

∫ x+πh
x−πh |f(t)| |kλ(t− x)| dt

)
ϕk

(
1 +

∫ x+πh
x−πh |f(t)| |kλ(t− x)| dt

) :=
ϕ (x, α (x, λ))

ϕk (α (x, λ))
.

We prove the uniform estimate Ak (x, λ) ≤ c for x ∈ Uk where c > 0 is indepen-
dent of x, k and λ. Indeed, since

ϕ (x, t)

ϕk (t)
=

ϕ (x, t)

ϕk (ςk, t)
≤ t

A

ln

(
1

x−ςk

)
, x ∈ Uk, ςk ∈ Ξk

we have

Ak (x, λ) =
ϕ (x, α (x, λ))

ϕk (α (x, λ))
≤ α (x, λ)

A

ln

(
1

x−ςk

)
.

Also |x− ςk| ≤ l
(
Ξk
)
≤ mπ/bλγc and

|α (x, λ)| ≤ λυ
(

1 +

∫ x+πh

x−πh
|f(t)| dt

)
≤ cλυ ‖f‖ϕ = cλυ,

α (x, λ)

A

ln

(
1

x−ςk

)
≤ α (x, λ)

A

ln( λγ6m) ≤ (Cλυ)

A

ln( λγ6m)

≤ C (m,A)
(
λ1/ ln(

λ
6m)
)υA
≤ C (m,A, υ) .

Let µλ =
∫ x+πh
x−πh |kλ(t− x)| dt =

∫ πh
−πh |kλ(t)| dt.Then µλ ≤ C. Without loss

of generality we may assume that µλ > 0, because the sequence of operators
{Kλf}1≤λ<∞ formed with with µλ = 0 is uniformly bounded in Lϕ, ϕ ∈ Φ (N).

As before, by Jensen’s integral inequality (2.2)

I1 .
2N−1∑
k=0

∫ xk+1

xk

ϕk

(
1 + C

1

µλ

∫ x+πh

x−πh
|f(t)| |kλ(t− x)| dt

)
dx

. c+ C
2N−1∑
k=0

∫ xk+1

xk

ϕk

(
1

µλ

∫ x+πh

x−πh
|f(t)| |kλ(t− x)| dt

)
dx

. c+

2N−1∑
k=0

∫ xk+1

xk

1

µλ

∫ x+πh

x−πh
ϕk (|f(t)|) |kλ(t− x)| dtdx

. c+
2N−1∑
k=0

1

µλ

∫ πh

−πh
|kλ(t)|

∫ xk+1

xk

ϕk (|f(x+ t)|) dxdt

. c+
1

µλ

∫ πh

−πh
|kλ(t)|

2N−1∑
k=0

∫ xk+1

xk

ϕk (|f(x+ t)|) dxdt

. c+
1

µλ

∫ πh

−πh
|kλ(t)|

2N−1∑
k=0

∫ xk+1−t

xk−t
ϕk (|f(x)|) dxdt.

We take as Ξk the set ⋃
t∈(−πh,πh)

{x : x+ t ∈ Uk} .
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Clearly Ξk ⊃ Uk and l
(
Ξk
)
≤ 3π/bλγc. Then (3.1) is satisfied with m = 3. Since

each point x ∈ T belongs simultaneously not more than to a finite number n0
of the sets Uk, taking maximum with respect to all the sets Uk containing x we
obtain

I1 . c+
1

µλ

∫ πh

−πh
|kλ(t)| dt

∫
T
ϕ̃ (x, |f(x)|) dx

. c+

∫
T
ϕ̃ (x, |f(x)|) dx

with ϕ̃ (x, u) := maxi ϕi (t). Now using

ϕ̃ (x, u) ≤ ϕ (x, u) , ∀x ∈ T,
we get

ρϕ (Kλf) . c+

∫
T
ϕ (x, |f(x)|) dx . c+ ‖f‖ϕ ≤ C.

These are give

‖Kλf‖ϕ . ‖f‖ϕ
and the result follows. �

5. Approximate identities

Hölder’s inequality (2.1) and (III) imply∫
T
|f(t)| dt . ‖f‖ϕ ‖1‖[ψ] ≤ C ‖f‖ϕ

and hence Lϕ ⊂ L1. Let

f (x) v
a0 (f)

2
+
∞∑
k=1

(ak (f) cos kx+ bk (f) sin kx) =:
∞∑
k=0

Ak (x, f) (5.1)

be the Fourier series of f in Lϕ with ϕ ∈ Φ (N) and

Sn (x, f) :=
∑n

k=0
Ak (x, f) , n = 0, 1, 2, . . . .

be the partial sum of the Fourier series (5.1). It is well known that

Sn(x, f) =
1

2π

∫
T
f(t)Dn(t− x)dt (5.2)

with Dirichlet kernel Dn(u) := 1 + 2
n∑
k=1

cos ku.

We define, for n,m ∈ N ∪ {0}, De la Vallée-Poussin mean

V n
m(f, ·) =

1

m+ 1

m∑
i=0

Sn+i(·, f). (5.3)

Note that we can give below examples of kernels satisfying the properties (1.1)-
(1.3):

(a) Steklov Operator σλf : Let ∆λ := [−1/(2λ), 1/(2λ)], λ ≥ 1 and

kλ(x) :=

{
λ , x ∈ ∆λ,
0 , x ∈ T \∆λ.
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We extend kλ to R : =(−∞,∞) with period 2π. Steklov operator σλf is repre-
sented as

σλf(x) = λ

∫ x+1/(2λ)

x−1/(2λ)
f(u)du =

∫
T
f(t)kλ(t− x)dt.

kernel kλ satisfies the properties (1.1)-(1.3) with ν = 1 = γ.
(b) De la Vallée-Poussin Operator Vnmf : Based on (5.3)and (5.2) we define De

la Vallée-Poussin Operator as

Vnmf (x) =

∫
T
f(t)Kn

m(t− x)dt

where

Kn
m(u) :=

sin2 (m+ n+ 1)u/2− sin2 (nu/2)

2 (m+ 1) sin2 (nu/2)
.

In this case kernels Kn
n−1 and Kn

n are satisfy the conditions (1.1)-(1.3).
(c) Fejér Operator Fλf : Let n ∈ N,

kn (x) =
1

2 (n+ 1)

[
sin ((n+ 1)x/2)

sin (x/2)

]2
, (5.4)

be the Fejér kernel and kλ (x) := kn (x) for n ≤ λ < n + 1. The Fejér Operator
is defined as Fλf (x) := 1

π

∫
T f(t)kλ(t− x)dt. The Fejér kernel (5.4) satisfies the

properties (1.1)-(1.3) with ν = 1, γ = 1/2 since

kn(t) ≤ n+ 1

2
, kn(t) ≤ C

(n+ 1) t2

for 0 < t < π.
(d) Cesàro Operator Cλf : Let λ ∈ N, α > 0 and

Cλf (x) :=
1

π

∫
T
f(t)kαλ (t− x)dt

be the Cesàro Operator with Cesàro kernel

kαλ (t) =

λ∑
k=0

Aα−1λ−kDk (t)

Aαλ
, Dk (t) =

k∑
v=0

sin ((v + 1/2) t)

2 sin (1/2) t
,

Aαλ =

(
λ+ α
α

)
≈ λα

Γ (1 + α)

satisfies the properties (1.1)-(1.3) with ν = 1, γ = α/ (α+ 1), because

kαλ (t) ≤ 2n, kαλ (t) ≤ Cα

λα |t|α+1

for 0 < |t| < π.
(e) Poisson Operator Pλf : Let 0 ≤ r < 1 and λ = 1/ (1− r). We define

Poisson Operator

Pλ (f, x) :=
1

π

∫
T
f(t)kλ(t− x)dt

with the Poisson kernel

kλ (x) = P (r, x) =
1− r2

2 (1− 2r cosx+ r2)
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which satisfies the properties (1.1)-(1.3) with ν = 1, γ = 1 because
∫
T kλ(x)dx =

π, kλ(x) ≤ (1 + r) / (2 (1− r)), kλ(x) ≤ π (λ ≤ x ≤ π).
(f) Jackson Operator Jλf : We define the Jackson operator

Jλf(x) :=
1

π

∫
T
f(t)kλ(t− x)dt, λ ∈ N,

where kn is the Jackson kernel

kλ(x) :=
3

2λ(2λ2 + 1)

(
sin(λx/2)

sin(λ/2)

)4

satisfy (1.1)-(1.3) with ν = 1, γ = 3/4 as

1

π

∫
T
kλ(t)dt = 1,

|kλ(u)| . 1, λ−3/4 ≤ u ≤ 2π − λ−3/4,
maxt∈T |kλ(u)| . λ.

(g) Let kn(u) :=

{
1

n(2 sin π
2n)

2 , |u| ≤ π
2n

n−1
(
2 sin u

2

)
sinnu , π

2n < u ≤ 2π − π
2n

and extend kn(u)

to a 2π-periodic function ([18]) on the whole real axis. Then satisfy kn(u) (1.1)-
(1.3) with ν = 1, γ = 1/2.

Now, Theorem 4.1 gives that

Corollary 5.1. The sequence of operators {Oλf}1≤λ<∞, given in examples (a)-
(g), is uniformly bounded (in λ) in Lϕ with Φ (N) .

Theorem 5.1. Let λ ≥ 1, kλ = kλ(x) be 2π-periodic, essentially bounded func-
tion defined on T , such that (1.1)-(1.3) and

∫
T kλ(x)dx = 1. If f in Lϕ with

ϕ ∈ Φ (N), then Kλf is an approximate identity, i.e.

‖(Kλ − I) f‖ϕ → 0

as λ→∞.

Proof. Using Corollary 3.7 of [6] we have

L1 ∩ Lp ↪→ Lϕ, ϕ (x, |f(x)|) ≤ ϕ (x, 1) max {D |f(x)|p , |f(x)|}

where D > 2 is ∆2 constant of ϕ and p := log2D. Then

‖(Kλ − I) f‖ϕ ≤ C ‖Kλf − f‖p → 0

as λ→∞. �

Note that Steklov Operator σλf, Fejér Operator Fλf , Cesàro Operator Cλf ,
Poisson Operator Pλf, Jackson Operator Jλf is approximate identity in Lϕ with
Φ (N) .
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[6] P. Harjulehto, P. Hästö and R. Klén, Basic prop-
erties of generalized Orlicz spaces, Preprint, 2015.
http://www.helsinki.fi/˜pharjule/varsob/pdf/gOrlicz minimum150403.pdf
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