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ON THE APPROXIMATION OF FUNCTIONS BY SOME
SINGULAR INTEGRALS

RAHIM M. RZAEV AND GULNARA KH. MAMMADOVA

Abstract. In this paper, we define a new linear operator with the help
of convolution singular integral of Fejer’s type, consider its convergence
properties and obtain the degree of approximation in terms of higher
order characteristics.

1. Introduction

Approximation of functions by singular integrals has long history and is an
important topic in approximation theory. In this paper we study questions about
the approximation of locally integrable functions by singular integrals. The rate
of approximation in terms of various metric characteristics describing the struc-
tural properties of a given function is estimated. We define a new linear operator
with the help of convolution singular integral of Fejer’s type, consider its conver-
gence properties and obtain the degree of approximation in terms of higher order
characteristics.

Various aspects of the question of the approximation of a function by singular
integrals have been investigated by many authors and quantitative estimates for
approximation have been presented in a large literature (see, for example, [1],
[3]-[9], [15], [16] and the literature cited therein).

2. Preliminaries

Let R™ be n-dimensional Euclidean space of points z = (x1, 9, ..., 2, ), B (a,7): =
{z € R": |z —a| <r} —be a closed ball in R" of radius » > 0 centered at the
point @ € R™, N be the set of all natural numbers, v = (v1,v2,...,1p), ¥ =
it g - xbr, v| = v+ va + ...+ vy, where vy, 19, ..., U, are non-negative
integers. Denote by Lj,. (R™) the union of all functions locally summable in
R™.
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Let f € Lioe (R™), k € N|J{0}. Let us consider the polynomial (see [2], [10])

Pusien (o) = 32 (,B(lﬂ L. swe(50) dt) e (50,

where |B (a,r)| denotes the volume of the ball B(a,r) and {¢,}, |v| <k, is an
orthonormal system obtained from applications of orthogonalization process with
respect to the scalar product

1
(f,g9) = 1B, 1] o) f(t)g(t)dt

to the system of power functions {2}, |v| < k, located in partially lexicographic
order (this means that z precedes z* if either |v| < |u|, or |v| = |u| but the first
nonzero difference v; — ; is negative) (see [11], [12]).

Py, B(a,)f 1s @ polynomial of degree at most k. We denote the union of all
polynomials in R" of degree at most k by Pg. Thus Py p(a,)f € Pk

We determine the local modulus of the k-th order mean oscillation (k € N) of
locally summable function f by the equality

m];é (20;0) :=sup{Q (f, B(zg,7)) : 0< r <0} (zg €R", §>0),

where
1
Qi (f, B(z,7)) = \B(JJJ’N/B(M) |f(t) = Po1,Ban) f(t)] dt (x € R, 7> 0).

Qi (f, B (a,r)) is said to be the k-th order mean oscillation of the function f
in the ball B (a,r) in the metric L.

Modulus of the k-th order mean oscillation (k € N) of the locally summable
function f is determined by the equality

M}]Z”(é) ::sup{mff(x;é) : xER”}, 0 > 0.

Let ®(x), x € R", be a function summable in R" (i.e. ® € L' (R")) such that
®(x) >0 (z € R"), and let

O, (x) :=r"P (§> , z €R" r>0,
T

Qo (fBw) = [ B (e =110 = Pior, e O]t
where f € L, . (R"), k € N. Further, we assume

h’;’q) (x;0) :==sup{ Q.o (f,B(z,r)): 0<r <4}, z€R"”, §>0,

ij’q) (6) :=sup {hl;fb (;0): =ze€ R”} , 0>0.

We call the quantity Q¢ (f, B(x,r)) the k-th order ®-oscillation of the func-
tion f in the ball B (a,r) in the metric L' [13].
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3. On the quantity Py_i (. f(20)

From the definition of the polynomial Py, g4, f(z) it follows that if xp € R"
a fixed point, and k € N, then

Pr_1,B(zo.r) f (20) = Z <B(zlo,r)| /B(IO’T) f () wu (t —TfBo> dt) ey (0) =

lv|<k—1
_ 1 t — x0 ‘
R /B(J:O’T) |V§Zk—1 |B($07T)| o < r ) Pv (0) f (t) dt.
Denote 1
K (t) = WXB(O’I) (t) Z Yy (—t) Y (0) .
7 lv|<k—1

Then we have P,_1 p(z,)f(T0) = %n Jan K (221 £ (2) dt.
By the property of the system {¢,}, [v| <k — 1, we get

K (t)dt = 50, 1|/01 > () ey (0)dt =

lv|<k—1

- ( B |/01) )%(0)=<P3(0)=1-
[v|<k—1

Thus the quantity Py,_1 g(z,.r)f(70) is expressed by a convolution type singular
integral.

Denote i Py 1 p(ag.r) f(20) =t sg,f(x0).
Let g € R™ and f € L, (R™). Then we have

| Pec1 Bao.r) f(@0) = f(20)| = | Pre1,Bwor) (f — f(20)) (z0)] <
1
s c m Bzor) |f (t) — f(zo)| dt,

where the constant ¢ > 0 depends only on the system {¢,}, |v| <k — 1. Hence
it follows that if zg € R™ is the Lebesgue point of the function f, then

}ai_I)%Pkfl,B(xo,r)f(xO) = f(ilfo)

Thus, almost everywhere in R™ there exists the limit s; ¢(x) and almost every-
where the equality sy ¢(z) = f(x) is fulfilled.

R

< HPk—LB(TOvT) (f - f(zo))HLOO(B(CBOJ”))

Lemma 3.1. For any polynomial m € Py_1 the identity
Pkfl,B(xo.r)Tr(x) = 7'('(56), reR”
1s valid.
Proof. Obviously, the polynomial m € P,_; may be represented in the form

") = Y ) e (150,

lv|<k—1
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where ¢, (zg,r) are the coefficients of representation. Then we have

Pkfl,B(xo,r)ﬂ-(w) =

= 2 (500 70 (52 1) (52) -

lul<k—1
1
= Z Z CV(ZII(),T) ' |B(I0,T)‘ X

ul<k—1 \|v|<k—1

t—xo t—xo T — X
X P ©u dt | ou =
B(:vo;/‘) T T T
1 5 [t — o xr — X
2 C“@”O””)<|B<xo,r>|/3<xo,r>%( ) )90“( =)

|| <k—1
= > cul@or) wu (aj_rxo) = 7(),

|| <k—1

i.e. Py_1,B(zor)™(z) = m(x), z € R". The lemma is proved. O
Now we prove a lemma that will be used in the sequel.

Lemma 3.2. If f € L, (R"), 290 € R", k € N, 0 < n < & < oo, then the
following inequality is valid

€ mk(zo;t)
| Pe1,Bao.e) f (%0) — Py—1,Bwom [ (0)| < ¢ (ml}(ﬂfosf) +/ det ,
n

(3.1)
where the constant ¢ > 0 is independent of n, &, f and xg.

Proof. Taking into account the definition of functions ¢,, from the expression for

the quantity Py_1 B(ao.r)f(z0) We easily get

1
| Pi—1,B(wo.r) [ (20)| <1 - |Bx0|/ |f(y)] dy, (3.2)
’ Zo,

where ¢; > 0 depends only on the system {p,}, [v| < k—1. Let 277 1. ¢ <
n < 27™. ¢ where m is an entire non-negative number. Denote B; = B (acg, 257),
i=0,1,....,m. Then |B;| = v," (2_i§)n, where v, = s [F (% + 1)]_1. Therefore
Busa] = 3 [Bil (i =0,1,..,m — 1) and |B (z0,m)| >|B (20, 557 ) | =3 Bl
Further we have

m—
| Pe1.Bao.6) f (0) = Pre1,Bmom | Z P18, f(20) = Pec1,B,,1 f(20)| +
i=0

+ | Pre1,8, f (%0) = Py—1,Baom [ (20)| - (3.3)
By inequality (3.2) for i = 0,1,...,m — 1 we get

| Po—1,8,f(20) = Poe1,B1 f(0)| = | Prie1,8,41 (f — Pi—1,8,f) (20)| <
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<ecp- / — P ,B; f( )’dt <ec-2"- / ’f Pkfl,Bif(t)’ dt <
‘Bi'f‘l’ 1+1

| Bil

Furthermore,

’Pk_LB(mQ%)f(wo) - Pk—l,B(a:O,n)f(xO)) = |Py_1.Bwom) (f — Pr—1,B,.[f) (x0)| <

1
<clrrm— t) — Py t)| dt <
< BTl o O Pt S0l

1 3
2 —— t)— P._ dt < 2" . . .
c1 Bl /s |f (t) = Pe_1,B,.f ()] - 2" mf <$07 2m> (3.5)

Thus, by means of inequalities (3.4) and (3.5) from inequality (3.3) we get
| Pe1,Bao.e) [ (0) = Pre1,Bom f(@0)| <

cp 2" (m? (03 &) + Zml; <x0; ;)) , (3.6)
=1

moreover, if m = 0, then the second term in brackets on the right hand side of
the inequality, is absent.
For m > 1 we have

/£ M _Z//Ql Io’t)dtzim’}<xo;§i)-ln2- (3.7)

g/2m ¢/ i=1
Since i
(zo; t & mi(zo;t
/ dt > / Ldt,
/2m t
then from inequalities (3.6) and (3 7) we get

o [ € mf (zo;t)
| Pet.B@0.6)f(@0) = PectBao.ap f(20)] < er:3—+| mj (900;5”/ — ).
n

The lemma is proved. O

Theorem 3.1. Let f € Lj,. (R™), 29 € R", k € N, and

Lk (xo;t
/ f(to)dt < to0. (3.8)
0

Then there exists finite limit sy, (o) :lir%Pk,lyB(xo,r)f(wo) and the following
r—

iequality is valid

| Pre1,B(ao) f (x0) = sk.f(x0)| < ¢ (mf (zosT / mf ot dt) (3.9)

where the constant ¢ > 0 is independent of v, f and xg.

Proof. The existence of the finite limit s, s(x) follows from condition (3.8) and
inequality (3.1). If we pass to limit as 7 — 0 in inequality (3.1), then we get the
desired inequality (3.9). The theorem is proved. O
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4. On approximation of functions by singular integrals

Introduce the following singular integral

Sk (f) (®) = Spr (f; K) (z) =

= an Kr (l’ - t) [f (t) - Pk—l,B(a:,r)f (t)] dt + Pk—l,B(:c,r)f(x)v (41)

where K € L' (R"), K,(z) :=r"K (£), 7 > 0, k € N, # € R". The function
K (z) with the indicated properties is called a kernel.

For approximation of the locally summable function f by the singular integrals
in the terms of the characteristics m]} (x0; 0) it is convenient to choose a singular
integral in the form (4.1).

Remark 4.1. Introduce the denotation

K, f(x) =K, x f(z) = o K, (z—1t) f(t)dt.

Let is satisfied the condition
Vi€ Py : Kymi(z) =7(x) (x € R, r>0). (4.2)
Then for f € Ljy. (R™) we have

Koflw) = K @) = [ Koo =1) f(t)dt =

= o Kr (‘T - t) [f (t) - Pk—l,B(m,r)f (t)] dt + - KT (l‘ - t) Pk—l,B(x,r)f (t) dt =

= Kr (l‘ - t) [f (t) - Pk—l,B(m,r)f (t)] dt + (KT * Pk—l,B(z,'r)f) (.’L’) =

Rn
= /Rn K, (CL‘ - t) [f (t) - Pk—l,B(a:,r)f (t)] dt + Pk—l,B(z,r)f(x) = Sk,rf(x)

Thus, if condition (4.2) is fulfilled, then we can represent the convolution type
singular integral K, f(x) in the form of the singular integral Sy, f(z).

Remark 4.2. Show that
Vr € Py_y: Sppm(x) =m(x) (x € R, r>0). (4.3)

Indeed, let m € P;_1 be any polynomial. Then taking into account that for
any polynomial m € Py_; the identity

Pk—l,B(x.r)ﬂ— (t) =7 (t) te an
is valid, we have

S]W”W(:U) = R K"‘ (:B - t) [T( (t) - Pk—l,B(x,T)Tr (t)] dt + Pk:—LB(x,r)’/T(x) =

— [ Ko=) - 7 (@) dt + Py piayn(o) = 7o)
The least decreasing radial majorant of the function K (x) measurable in R"
is determined by the equality ¥ (x) := esssup{|K(y)|: |y| > |=|}. In future,

we will use the denotation ¢ (|z|) := ¥(z). Let k& € N. By Apwe will denote
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the class of all functions K (z) measurable in R such that ¢ € L' (B(0,1)),
2"t e LV (R™\B(0,1)). It is easy to see that A, C L' (R").

Theorem 4.1. Let K € Ay, k € N, 29 € R", f € Lo (R"). Then under
convergence of the integrals in the right hand side, the following inequality is
valid

[Skr (F5 ) (20) = Pt pao f(@0)] < ey, ) (mf (o) +

o) r mk ot t/r
+/ x”_lgp(m)ml} (zo; 4rz) dx +/ f(tO) (/ x”_lgp(x)dx) dt+
0 0 0

00 mk To: 00
—i—rklfr f(tko’t) (/tr x”+k2g0(x)d:c> dt) , (4.4)

where ¢ (n,1, k) is a positive constant dependent only on n, 1 and k.

Proof. From the definition of the singular integral Sy, (f; K) (z) it follows that

| Sk (f5 K) (20) = Pyt B(ao.n f(0)| =

[ Ky (a0 )10 = Py (0] ] <

</unm—muw—aﬂmWﬁwwz
Rn

1

K (22170 = Peosmieon 0] dt =

rm Rn

= /]R K|, (z0 — ) | f (t) = Pao1,Bao.n)f (t)| dt = Q| (f, B(wo, 7))
Applying Theorem 1 from [14] we find
Sk (f3 K) (20) = Poe1,Bao.r) f (@0)| < Qi (f, B(wo, 7)) <

<c(n,, k) (mlj‘é (xo;T) +/ x"_lgo(x)m’} (xo; 4rz) de+
0
rmk(zo;t t/r
+/ f(to) </ :U”_lgp(:n)dx> dt+
0 0
k—1 > m.];‘(xo’t) > n+k—2 d d
+7r : —F » x o(x)dzr | dt |,

where c(n,,k) is a positive constant dependent only on n, ¢ and k. The
theorem is proved. O

The following statement is obtained from theorems 3.1 and 4.1.
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Theorem 4.2. Let K € A, k € N, 29 € R", f € Ljo. (R"). Then under
the convergence of the integrals in the right hand side, there exists finite limit
sk, f(xo0) = hII(lJPk_LB(IO’r)f(l‘()) and the following inequality is valid

r—

Sk, (f5 K) (20) — 81,7 (20)] <

rmk (z ;T o0
< c(n, v, k) (m'; (i) + | f(t“)dw | o totam; o ar) d+
0 0

rmk (xo;t t/r
+/ M / 2" Lo(x)dr | di+
0 t 0
o mk (z it o0
+rk_1/ s iko ) (/ $"+k_2<p(3:)dx> dt),
r t/r

where ¢ (n, 1, k) is a positive constant dependent only on n, ¢ and k.

Proposition 4.1. Let K € L' (R"), K,.(z) :==r "K (%), r>0,zeR” ke N.
Then the following conditions are equivalent:

A) [on K (—t) @y (t) dt = ¢, (0), where |v| < k—1;

B) for any polynomial m € Py_1 and for any number r > 0 it holds the identity
(K, x7) () =7(x), z € R™.

Proof. Let condition A) be fulfilled. Then for f € Lj,. (R™) we have

R K’I‘ (‘T - t) Pkfl,B(z,r)f (t) dt =

- /K (z=%) VKZH (B(i” /B(m)ﬂym (y — x) dy> o (t;f”) it =
-y (WW/BW)J@@)% (y;x>dy> RIEEOTE

[v|<k—1
1 Yy— 1
= TN f(y)ew < ) dy | — X%
|u|§—1 <’B(JJ,T)‘ B(z,r) ( ) r rr

x/ K(‘T_t> b <t_x>dt, z € R™
n T T

Making change of variables by the formulas ¢ — x = ru, dt = r™du in the last
integral we get

Ky (z —t) Pyy B(ay)f () dt =

R
= 1 y- —u w)du, x "
—V%}l(Bw’m,/ﬂmf(ym( - )dy> [ K@i s e R
(4.5)
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Furthermore, from the definition of the polynomial Py_1 p(;,) [ it follows that

1 _
Py 1 By f(x) = Z (|B($ﬂ“)| o) f@)ew (y " :r) dy) o, (0), = € R™

lv|<k—1
(4.6)
From equalities (4.5) and (4.6) by condition A) we get
R K, (x - t) Pkfl,B(x,r)f (t) dt = Pkfl,B(x,r)f(x)v z €R"™ (47)
Therefore, if f € Ly (R™), then
Sk,r (f) (SU) = ® KT (x - t) [f (t) - Pk*l,B(x,r)f (t)] dt + Pkfl,B(z,r)f(x) =
= e K, (i’ - t) f (t) dt — . K, (33 - t) Pk—l,B(m,r)f (t) dt + Pk—l,B(ac,r)f(x) =

= (KT * f) (.’E) - Pk—LB(a:,T)f(‘r) + Pk—l,B(x,r)f(x) = (KT * f) (.’B), r € R™ (48)

We showed above that for any polynomial m € P,_; and for any number r > 0
the identity Si,m(x) = m(x), x € R", is valid. Therefore, as it follows from
equality (4.8) the relation

V€ Po_1: (K, *7)(z) =n(z), € R" r>0,

will be also fulfilled, i.e. condition B) holds.

Now, let condition B) be fulfilled. There in particular it follows that for each
multi-index v = (v1, 12, ..., v,) with the condition |v| < k — 1 the identity

(K xpy) () =pu(z), z€R™, >0
is valid. Then
(Krx9y) (0) =0y (0), 7>0, [V <k -1

Finally, if r = 1, |v| < k—1, then (K % ¢,) (0) = ¢, (0), and this is condition A).
The proposition is proved. 0

Remark 4.3. In the course of the proof of proposition 4.1 we showed that if the
kernel K (z) satisfies condition A), then for any function f € L. (R™) equality
(4.8) is fulfilled, i.e. singular integrals Sy, f(z) and (K, * f) (z) coincide between
themselves. Therefore, from theorems 4.1 and 4.2 we get appropriate statements
for the singular integral (K,  f) (z).

Theorem 4.3. Let K € A, k € N, o € R", f € Ljp. (R™) and let condition A)
be fulfilled. Then under the convergence of the integrals in the right hand side,
the following inequality is valid

(K 5 £) (20) = Pt pag ) F(@0)| < ¢ (.16, k) (ol (v057) +

o r mk (zo;t) t/r
+/0 xn_lgp(:r)ml} (zo; 4rx) d$+/0 ff /0 2" Lo(x)dr | dt+

[ee) mk Tn: [e%e]
4kt / L iko’t) < /t i x”*kzw(x)da:> dt), (4.9)

where ¢ (n,, k) is a positive constant dependent only on n, 1 and k.



ON THE APPROXIMATION OF FUNCTIONS ... 247

Theorem 4.4. Let K € A, k € N, zy € R", f € Lip. (R™) and let condition

A) be fulfilled. Then under the convergence of the integrals in the right hand

side, there exists finite limit sy r(xo) :hInOPk_LB(xO,T)f(ZL‘o) and the following
r—

mequality is valid

r mk ot
(5 5 ) (20) = s g(20)| < €(n,0,K) (m'ff (w0;7) + /0 mf(f())du
© r mk . /r

0 mk (z it o0
—l—rk_l/ e (tko ) / w”+k_24p(x)dw dt |,
r t/r

where ¢ (n,, k) is a positive constant dependent only on n, ¥ and k.

Theorem 4.5. Let K € A, k € N, f € Ljo. (R™). Then under the convergence
of the integrals in the right hand side, the following inequality is valid

(St (£ K) (2) = Pt e f(@)] <m0, ) (M (1) +

00 r MF (¢ t/r
+/D "oy M} (4ry) dy+/0 ft<) (/0 y”‘lw(y)dy> dt+

oo Mk (¢ o0
—H“k_l/ Jtck( ) (/ y”+k-2gp(y)dy> dt) , ¢ €R", (4.10)
T t/r

where ¢ (n,, k) is a positive constant dependent only on n, ¥ and k.

Theorem 4.6. Let K € Ay, k € N, f € Liyo. (R™). Then under the convergence
of the integrals in the right hand side, at any point x € R™ there exists finite
limit sy f(x) = lirr(l)Pk_LB(x’r)f(x) and the following inequality is valid

r—

Sk (£ ) (@) = s p(@)| < e n, v, k) (M (r) +

r Mk (t) 00 VL (t) t/r
+/0 ft dt+/0 y"o(y) MF (4ry) dy+/0 ft /0 y"o(y)dy | di+

oo Mk (t o0
+rt / ;k ) ( / y"*”w(y)dy> dt) , z €R",
r t/r

where ¢ (n,, k) is a positive constant dependent only on n, 1 and k.

Theorem 4.7. Let K € Ag, k € N, f € Li,. (R™) and let condition A) be
fulfilled. Then under the convergence of the integrals in the right hand side, the
following inequality is valid

(K 5 1) (2) = Py e f@)] < e (n,0, k) (M (r) +

00 r ME t/r
+/O " p(y) M (4ry) dy+/0 ft(t) (/0 ynlw(y)dy> dt+
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o My (t) [ [
—I—Tk_l/ Jtck (/ y"+k_2g0(y)dy> dt> , reR", (4.11)
T t/r

where ¢ (n,, k) is a positive constant dependent only on n, ¥ and k.

Theorem 4.8. Let K € Ag, k € N, f € L. (R") and let condition A) be

fulfilled. Then under the convergence of the integrals in the right hand side, at

any point x € R™ there exists finite limit sy y(x) :lirr(l)Pk_l,B(xm)f(x) and the
r—

following inequality is valid

r MF (¢
(K% £) (2) = s, (@)] < e (n, 0, k) (M? (r) */0 ft()dt+

00 r ‘]\41€ t/r
+/0 " o(y) M (4ry) dy+/0 Mi© (/0 y"‘lw(y)dy> dt+

t

o) Mk t o]
+rt / ;k( ) ( / y”*’“‘z@(y)dy) dt) ,z €R",
r t/r

where ¢ (n,, k) is a positive constant dependent only on n, 1 and k.

Theorem 4.9. Let K € Ag, k € N and let for any function f € Lj, (R™),
for which the integrals in the right hand side of inequality (4.11) converge, this
inequality is valid. Then condition A) is fulfilled.

Proof. Let f(z) = w(z), where m € P;_1. Then M]]f (r) =0, r > 0. Therefore, for
any polynomial w € P,_; the integrals in the right hand side of inequality (4.11)
converge, and by the theorem conditions this inequality is valid. Furthermore,
Py_1 Bz, () = 7(x), ¥ € R". Therefore, from inequality (4.11) we get that for
any polynomial m € P,_4 it holds the identity

(K, *7) () =n(z), x € R", r >0,

i.e. condition B) from proposition 4.1 is fulfilled. Hence, by this proposition it
follows that condition A) is fulfilled. The theorem is proved. O
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