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OPTIMAL CONTROL OF LIPSCHITZIAN AND

DISCONTINUOUS DIFFERENTIAL INCLUSIONS WITH

VARIOUS APPLICATIONS

BORIS S. MORDUKHOVICH

Abstract. This paper is devoted to optimal control of dynamical sys-
tems governed by differential inclusions in both frameworks of Lipschitz
continuous and discontinuous velocity mappings. The latter framework
mostly concerns a new class of optimal control problems described by
various versions of the so-called sweeping/Moreau processes that are
very challenging mathematically and highly important in applications
to mechanics, engineering, economics, robotics, etc. Our approach is
based on developing the method of discrete approximations for opti-
mal control problems of such differential inclusions that addresses both
numerical and qualitative aspects of optimal control. In this way we
derive necessary optimality conditions for optimal solutions to differen-
tial inclusions and discuss their various applications. Deriving necessary
optimality conditions strongly involves advanced tools of first-order and
second-order variational analysis and generalized differentiation.

1. Introduction and Overview

This paper is devoted to the study of differential inclusions given by

ẋ(t) ∈ F
(
t, x(t)

)
a.e. t ∈ [a, b], (1.1)

where F : [a, b]×Rn ⇒ Rn is a set-valued mapping/multifunction acting in finite-
dimensional spaces, and where ẋ(t) denotes the standard derivative in time for
absolutely continuous vector functions x(t). Such dynamical systems arise as
extensions of the controlled differential equations described by

ẋ(t) = f
(
t, x(t), u(t)

)
, u(t) ∈ U a.e. t ∈ [a, b] (1.2)

with F (t, x) := f(t, x, U) = {v ∈ Rn| v = f(t, x, u) for some u ∈ U} in (1.1).
We refer the reader to the classical monograph by Pontryagin et al. [44] on
optimal control theory for systems (1.2) governed by velocity mappings f con-
tinuously differentiable in state variables x and to the author’s book [38] and
the bibliographies where differential inclusions of type (1.1) with Lipschitzian
set-valued mappings x 7→ F (t, x) are investigated from the viewpoint of modern
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variational analysis and generalized differentiation. Note that the differential in-
clusion formalism (1.1) covers not only the standard program control setting (1.1)
with constant control sets U , or the setting when U = U(t), but also much more
involved case where the moving control set depends on state variables U = U(t, x).
The latter case corresponds to F (t, x) = f(t, x, U(t, x)) in (1.1) and reflects a feed-
back control effect that is crucial for engineering design and other applications.
Furthermore, differential inclusions of type (1.1) naturally arise not only in the
parameterized control framework as in (1.2) with U depending or not depending
on (t, x), but also without any control parameterizations, which is often the case
of dynamical systems appearing in applied models from mechanics, economics,
and behavioral sciences; see, e.g., the sweeping processes considered below.

Our approach to study differential inclusions and optimization problems for
them is based on the method of discrete approximations. The idea is simple and
actually goes back to Euler [20]: replace the derivative ẋ by some finite difference,
then consider optimization of the obtained family of discrete-time problems with
a fixed step of discretization, and finally investigate what happens when the
discretization step is diminishing. Euler himself dealt with minimizing a specific
integral functional dependent on ẋ and observed in this way a certain necessary
condition for optimality, which was a prototype of what is now called “Euler
equation” or “Euler-Lagrange equation” in the calculus of variations.

The implementation of this idea in the presence of dynamic constraints of type
(1.1), or even of type (1.2) with smooth mappings f , is dramatically more in-
volved. We refer the reader to the author’s books [33, 38] with the extended bibli-
ographies therein for realizations of this approach in dynamical systems of various
kinds governed by ordinary differential equations and inclusions, delay-differential
and neutral-type inclusions, partial differential equations and inclusions of the
parabolic type, etc. Using the method of discrete approximations married to
appropriate robust tools of variational analysis and generalized differentiation al-
lowed us to establish the required well-posedness and convergence of discrete ap-
proximations, to derive necessary optimality conditions for discrete-time systems,
and then to justify limiting procedures of obtaining necessary optimality condi-
tions of the Euler-Lagrange and Hamiltonian types (including counterparts of the
Pontryagin maximum principle) for the corresponding continuous-time problems
of dynamic optimization with finite-dimensional and infinite-dimensional state
spaces.

In the framework of optimization problems for differential inclusions (1.1), the
most essential assumption imposed in the aforementioned publication was the
Lipschitz continuity of the velocity mapping F with respect to the state variable
x. This assumption was crucial for both convergence analysis of discrete approx-
imations and realization of the limiting procedure to derive necessary optimal-
ity conditions in continuous-time systems by employing machinery of variational
analysis; see Section 3.

Although the aforementioned Lipschitzian assumption seems to be rather gen-
eral, it heavily fails for recently discovered classes of optimal control problems
governed by differential inclusions, which are associated with the so-called sweep-
ing processes. The basic sweeping process (“processus de rafle”) was introduced
by Moreau in the 1970s to describe some mechanical problems mainly related to
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elastoplasticity; see [43] and the book [30] for more details and references. In a
parallel way, similar processes were considered in the Soviet literature by Kras-
nosel’skii and Pokrovskii in connection with systems of hysteresis; see, e.g., their
book [27]. Besides the original motivations, models of this type have found nu-
merous applications to electric circuits [1], traffic equilibria [29, 49], and various
other areas of applied sciences. For its own sake, sweeping process theory has
become an important area of nonlinear analysis with impressive mathematical
achievements; see, e.g., [16] with a large list of references.

The basic sweeping process of Moreau is described by the differential inclusion

ẋ(t) ∈ −N(x(t);C(t)) a.e. t ∈ [0, T ], x(0) := x0 ∈ C(0), (1.3)

where N(x; Ω) = NΩ(x) stands for the normal cone to a convex set Ω ⊂ Rn at x
defined by

N(x; Ω) :=

{
{v ∈ Rn| 〈v, u− x〉 ≤ 0 for all u ∈ Ω} if x ∈ Ω,
∅ otherwise,

(1.4)

and where the moving convex set C(t) nicely (in a certain continuous way)
evolves in time on the fixed interval [0, T ]. We see that the velocity set F (x) :=
−N(x;C(t)) on the right-hand side of (1.3) has unbounded values and is never
Lipschitz continuous; in fact, it is even discontinuous. Thus the aforementioned
theory for (1.1) cannot be applied to (1.3). On the other hand, for each t ∈ [0, T ]
the mapping x 7→ N(x;C(t)) is maximal monotone due to a fundamental result
of convex analysis [46], and so the differential inclusion in (1.3) is dissipative. It
stays behind a central result of sweeping process theory saying that the Cauchy
problem in (1.3) admits a unique solution; see [43] and also [16] for further de-
velopments. This clearly excludes the possibility to consider any optimization
problem for the sweeping differential inclusion (1.3) in contrast to model (1.1)
with a Lipschitzian velocity mapping F .

In [11] we initiated a new approach to sweeping process theory that made it
possible to control and optimize the sweeping dynamics. The idea in [11] was to
enter control actions into the moving set by

C(t) := C(u(t)
)

for all t ∈ [0, T ] (1.5)

and to regulate in this way the sweeping dynamics by the choice of appropriate
control functions u(t) under certain constraints while changing via (1.5) the shape
of the moving sets C(t) and hence the corresponding trajectories x(t) of (1.3) in
order to minimize a given cost functional. By the second line in the normal
cone definition (1.4), the control parametrization (1.5) of the moving set in (1.3)
always contains implicitly the pointwise state-control constraints

x(t) ∈ C
(
u(t)

)
for a.e. t ∈ [0, T ], (1.6)

which are among the most difficult in control theory even for standard ODE
control systems in form (1.2) with smooth velocity mappings f . Remembering
the discontinuity of the set-valued mapping x 7→ −N(x;C(t)) on the right-hand
side of (1.3), we arrive therefore at a class of highly challenging and previously
unsolved problems in systems control that are strongly motivated by applications.

Starting in [11] with the case where C(u) is given by a half-space in Rn, we
obtained in [13] a set of necessary optimality conditions to solve optimal control
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problems of the generalized Bolza type under the general polyhedral description
of the moving sets in (1.3) presented in the form

C(t) :=
{
x ∈ Rn

∣∣ 〈ui(t), x〉 ≤ wi(t), i = 1, . . . ,m
}

(1.7)

with ‖ui(t)‖ = 1 for all t ∈ [0, T ], i = 1, . . . ,m, (1.8)

where the control functions u(·) = (u1(·), . . . , um(·)) and w(·) = (w1(·), . . . , wm(·))
are absolutely continuous on [0, T ]. Taking into account the structure of C(t) in
(1.7) and the absolute continuity assumptions on the feasible controls (u(t), w(t)),
which are needed for the existence of the corresponding trajectories in (1.3), the
state-control constraints in (1.6) are written now as

x(t) ∈ C
(
u(t), w(t)

)
for all t ∈ [0, T ] (1.9)

with u(t) satisfying the equality constraints (1.8) required by applications. The
approach used in [11, 13] is based on constructing well-posed and largely modified
in comparison with [36, 38] discrete approximations as in [12], establishing their
strong convergence in Sobolev space W 1,2([0, T ];Rn), and then deriving necessary
optimality conditions in the extended Euler-Lagrange form expressed entirely via
the given data of the problem and the local optimal solution under consideration.
In Section 4 we present more general necessary optimality conditions obtained
not only in the Euler-Lagrange form but also in the new Hamiltonian form with
a novel version of the maximum principle for a more general class of controlled
sweeping processes. The derivation of the obtained results is based on the ap-
propriate development of the method of discrete approximations as given in the
recent paper [26].

Another class of controlled sweeping processes was introduced and studied in [5]
by using the method of discrete approximations. The difference from [11, 13, 26]
is that—along with controls u(·) ∈W 1,2([0, T ];Rn) entering the moving set C(t)
as

C(t) := C+u(t) where C :=
{
x ∈ Rn

∣∣ 〈x∗i , x〉 ≤ 0 for all i = 1, . . . ,m
}

(1.10)

with the fixed generating vectors x∗i of the convex polyhedron C in (1.10)-we
also employ the other type of controls v(·) ∈ W 1,2([0, T ];Rd) in the additive
perturbation of (1.3) given by

−ẋ(t) ∈ N
(
x(t);C(t)

)
+ g
(
x(t), v(t)

)
for a.e. t ∈ [0, T ], x(0) := x0 ∈ C(0)

(1.11)
within a controlled external force g : Rn × Rd → Rd. The necessary optimality
conditions from [5] were then applied in [6] to solving some optimal control prob-
lems for the corridor version of the crowd motion model of traffic equilibria. The
dynamics of the aforementioned model was described as a sweeping process in
[29, 49], while our optimal control approach and the results obtained open the
gate to find the best strategies for regulating the pedestrian traffic and related
dynamical processes.

However, the polyhedral description of the moving set in (1.10) does not allow
us to cover a more realistic planar crowd motion model the dynamic of which
was described in [29, 49]. This was the main motivation for us to consider in
[7] nonconvex (and hence nonpolyhedral) sweeping control problems and derive
necessary optimality conditions for them by employing the method of discrete
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approximations. Some applications of the obtained results to the planar crowd
motion model were given in [8]. We discuss these and related topics in more
detail in Sections 5 and 6.

Finally, in Section 7 we present very recent results on controlled sweeping
process with control actions entering the external force as in (1.11), which may
be discontinuous while satisfying certain pointwise/hard constraints. The results
obtained therein by using a new version of the discrete approximation method
from [14] contain necessary optimality conditions including the maximization of
the corresponding Hamiltonian function (i.e., the maximum principle) were then
applied in [15] to some practical models arising in robotics and traffic flow models
different from those for crowd motions mentioned above.

The structure of the rest of the paper is as follows. Section 2 contains basic
preliminaries from variational analysis and generalized differentiation that are
widely used in the text. Section 3 is devoted to optimization problems for Lip-
schitzian differential inclusions. Each of the subsequent sections presents the
most advanced results on various types of controlled sweeping processes and also
discusses some open questions for further research and possible interest of the
readers.

Section 4 is mainly based on the recent paper [26], where we consider opti-
mization problems for a general class of sweeping processes with W 1,2-smooth
controls entering moving sets. It contains discrete approximations and necessary
optimality conditions in both extended Euler-Lagrange and Hamiltonian forms
with a new version of the maximum principle that is different from the expected
form, which actually fails. Applications to hysteresis systems and elastoplasticity
problems are also discussed there.

In Section 5 is devoted to optimization of sweeping processes with W 1,2-smooth
controls in both moving sets and external perturbations. We consider control prob-
lems for polyhedral and nonpolyhedral (prox-regular) moving sets. The obtained
necessary optimality conditions are applied to optimal control of the microscop-
ical crowd motion model in the corridor and planar versions. The planar version
of this model is presented in Section 6.

The last Section 7 concerns a class of optimal control problems for a perturbed
sweeping process with constrained discontinuous controls located only in the per-
turbation term. By using an extended version of the discrete approximation
approach, we establish a certain strong convergence of discrete optimal solution
to a given local minimizer and derive a new set of necessary optimality conditions
including the maximum principle. Then obtained results are applied to determine
optimal strategies in some constrained models of robotics and traffic equilibria.

Throughout the paper we use the standard notation of variational analysis
and control theory; see, e.g., [39, 47, 50]. Recall that N := {1, 2, . . .}, that A∗

stands for the transposed/adjoint matrix to A, and that B denotes the closed unit
ball of the space in question. The symbol F : Rn ⇒ Rm indicates that F may
be a set-valued mapping/multifunction (i.e., takes values in the collections of all
subsets of Rm), in contrast to the usual notation F : Rn → Rm for single-valued
mappings.



OPTIMAL CONTROL OF LIPSCHITZIAN AND DISCONTINUOUS . . . 57

2. Tools of Variational Analysis and Generalized Differentiation

Modern machinery of variational analysis and optimal control, especially for
differential inclusions, are largely based on generalized differentiation; see, e.g.,
the books [37, 38, 39, 50] and the references therein. Nonsmoothness comes nat-
urally and frequently even for problems with smooth initial data due to the very
essence of constraints of inequality and inclusion types and via using variational
principles and techniques. Thus appropriate tools of generalized differentiation
are required in the study of control problems and particularly in the derivation
(and often in formulation) of necessary optimality conditions for them.

In this section we briefly overview some basic notions of generalized differ-
entiation for nonsmooth functions, sets, and set-valued mappings needed for our
purposes while referring to the books [33, 37, 39, 47] and the bibliographies therein
for more details. Our approach to generalized differentiation is geometric as de-
veloped in [33, 37, 39] and numerous papers. This means that we start with gen-
eralized normals to sets, then proceed with generalized derivatives (coderivatives)
of set-valued or single-valued mappings, and finally end up with first-order and
second-order subdifferentials of extended-real-valued (in particular, of usual—
nonsmooth at the first or second order—real-valued) functions.

Given a set Ω ⊂ Rn, which is locally closed around a point x ∈ Ω, the normal
cone to Ω is defined by

N(x; Ω) = NΩ(x) :=

 {v ∈ R
n| ∃ xk → x, αk ≥ 0, wk ∈ Π(xk; Ω),
αk(xk − wk)→ v if x ∈ Ω,

∅ otherwise,
(2.1)

where Π(x; Ω) stands for the Euclidean projector of x onto Ω. This cone
has been widely spread in variational analysis and its numerous applications as
the basic or limiting normal cone by Mordukhovich; it was introduced by the
author in [31]. If Ω is convex, the normal cone (2.1) reduces to the classical
normal cone of convex analysis (1.4). If Ω is not convex, then the normal cone
(2.1) is often nonconvex as well, even for very simple sets as, e.g., the graph
of the function ϕ(x) := |x| or epigraph of the function −|x| at (0, 0) ∈ R2.
This tells us that the collections of normals in (2.1) cannot be generated by any
tangential approximation of Ω via the polarity/duality relation, since polarity
always yields convexity. In spite of (actually due to) it, the normal cone (2.1) and
the associated constructions of subdifferentials for lower semicontinuous (l.s.c.)
functions and coderivatives of set-valued mappings enjoy full calculus based on
variational/extremal principles of variational analysis; see [37, 39, 47] for more
details.

Given next a set-valued (in particular, single-valued) mapping F : Rn ⇒ Rm
and a point (x̄, ȳ) ∈ gphF from the (locally closed) graph of F which is defined
by

gphF :=
{

(x, y) ∈ Rn × Rm
∣∣ y ∈ F (x)

)}
,

the coderivative [32] of F at (x̄, ȳ) is the set-valued mapping D∗F (x̄, ȳ) : Rm ⇒ Rn
with the values

D∗F (x̄, ȳ)(u) :=
{
v ∈ Rn

∣∣ (v,−u) ∈ N
(
(x̄, ȳ); gphF

)}
for all u ∈ Rm, (2.2)
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while we drop y in (2.2) when F is single-valued. If in this case F is C1-smooth
around x, then

D∗F (x̄)(u) =
{
∇F (x̄)∗u

}
for all u ∈ Rm

expressed via the transpose Jacobian matrix. In the nonsmooth and set-valued
cases of F , the coderivative (2.2) is a positively homogeneous and always set-
valued mapping enjoying comprehensive calculus rules and providing complete
characterizations (called the “Mordukhovich criteria” in [47]) of the major well-
posedness properties in nonlinear analysis related to Lipschitzian stability, metric
regularity, and linear openness/covering of multifunctions; see [35] and then [37,
39, 47] for different proofs and applications.

Consider finally an extended-real-valued function ϕ : Rn → R := (∞,∞], which
may take the (plus) infinity value along with real numbers. This framework has
been recognized, starting from convex analysis [46], as a convenient language in,
e.g., constrained optimization. Define the domain and epigraph of ϕ by

domϕ :=
{
x ∈ Rn

∣∣ ϕ(x) <∞} and epiϕ :=
{

(x, α) ∈ Rn+1
∣∣ α ≥ ϕ(x)

}
.

Picking x̄ ∈ domϕ, the (first-order) subdifferential of ϕ at x̄ is introduced geo-
metrically as in [31] by

∂ϕ(x̄) :=
{
v ∈ Rn

∣∣ (v,−1) ∈ N
(
(x̄, ϕ(x̄)); epiϕ

)}
(2.3)

via the normal cone (2.1) to the epigraph of ϕ at (x̄, ϕ(x̄)). In the case where
ϕ(x) := δΩ(x) is the indicator function of a set Ω that equals 0 for x ∈ Ω and ∞
otherwise, we have ∂ϕ(x̄) = N(x̄; Ω).

To proceed further with second-order constructions, we employ the (dual)
generalized “derivative-of-derivative” approach, which is implemented as follows
[34]. Picking v̄ ∈ ∂ϕ(x̄), the second-order subdifferential (or generalized Hessian)
∂2ϕ(x̄, v̄) : Rn ⇒ Rn of ϕ at x̄ relative to v̄ is defined as the coderivative of the
first-order subgradient mapping by

∂2ϕ(x̄, v̄)(u) := (D∗∂ϕ)(x̄, v̄)(u), u ∈ Rn, (2.4)

where we drop v̄ = ∇ϕ(x̄) when ϕ is differentiable at x̄. If ϕ is C2-smooth around
x̄, then (2.4) reduces to the classical (symmetric) Hessian matrix of ϕ at x̄:

∂2ϕ(x̄)(u) =
{
∇2ϕ(x̄)u

}
for all u ∈ Rn.

Dealing with the sweeping processes defined via the normal cone mappings as
in (1.3) and (1.7) and deriving necessary optimality conditions for them which
involve appropriate adjoint systems, we naturally arrive at considering coderiva-
tives of normal cone mappings, i.e., second-order subdifferentials. To be more
precise, define the set-valued mapping N : Rn × Rm ⇒ Rn by

N(x,w) := N
(
x;S(w)

)
for x ∈ S(w) :=

{
x ∈ Rn

∣∣ θ(x,w) ∈ Θ
}
, w ∈ Rm,(2.5)

where S(w) is a paremeter/control dependent solution map to the constraint
system θ(x,w) ∈ Θ ⊂ Rd, which covers many important models that frequently
appear in applications; see below. Considering further an arbitrary function
ϕ : Rn × Rm → R of two variables, define the partial second-order subdifferential
of ϕ with respect to x at (x̄, w̄) relative to v̄ by

∂2
xϕ(x̄, w̄, v̄)(u) :=

(
D∗∂xϕ)(x̄, w̄, v̄)(u) for all u ∈ Rn (2.6)
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via the coderivative (2.2) of the corresponding first-order partial subdifferential
given by

∂xϕ(x,w) := ∂ϕw(x) with ϕw(x) := ϕ(x,w). (2.7)

In the case where ϕ is C2-smooth around (x̄, w̄), the partial second-order subd-
ifferential (2.6) reduces to

∂2ϕ(x̄, w̄)(u) =
{(
∇2
xxϕ(x̄, w̄)∗u,∇2

xwϕ(x̄, w̄)∗u
)}

for all u ∈ Rn.

However, smoothness is absolutely not the case to be suitable for applications to
sweeping processes, which are described by highly discontinuous extended-real-
valued functions. Indeed, it is easy to observe that the normal cone mapping
(2.5) admits the representation N(x,w) = ∂xϕ(x,w) via the composite function
ϕ(x,w) := (δΘ◦θ)(x,w) with θ and Θ taken from (2.5). This gives us the following
expression of the coderivative of (2.5) as the partial second-order subdifferential
(2.6) of the above composite function:

D∗N(x̄, w̄, v̄)(u) = ∂2
xϕ(x̄, w̄, v̄)(u) whenever v̄ ∈ N(x̄, w̄) and u ∈ Rn. (2.8)

Due to the composite structure of ϕ in (2.8) we need a second-order chain rule
to calculate the coderivative of the normal cone mapping in (2.8). The most
appropriate result for our applications is the one obtained by the author and
Rockafellar in [42, Theorem 3.1]:

Generalized Second-Order Chain Rule. Assume that θ : Rn × Rm → Rd
be a vector function which is C2-smooth around (x̄, w̄) with the surjective partial
Jacobian operator ∇xθ(x̄, w̄). Then for each v̄ ∈ N(x̄, w̄) there exists a unique
vector q̄ ∈ NΘ(θ(x̄, w̄)) satisfying the equation ∇xθ(x̄, w̄)∗q̄ = v̄ and such that the
coderivative (2.2) of the normal cone mapping (2.5) is computed for all u ∈ Rn
by

D∗N(x̄, w̄, v̄)(u) =

[
∇2

xx〈q̄, θ〉(x̄, w̄)
∇2

xw〈q̄, θ〉(x̄, w̄)

]
u+∇θ(x̄, w̄)∗D∗NΘ

(
θ(x̄, w̄), q̄

)(
∇xθ(x̄, w̄)u

)
.(2.9)

The obtained second-order chain rule allows us to reduce the calculation of the
coderivative of the normal cone mapping associated with the solution map S in
(2.5) to, besides the classical Jacobian and Hessian terms, the coderivative of the
normal cone mapping associated with the given set Θ. Constructive computation
of D∗NΘ for various classes of sets Θ, which are overwhelmingly encountered in
optimization and control theories and their applications, can be found in [23, 39,
41, 42] and the references therein.

3. Lipschitzian Differential Inclusions

In this section we consider optimal control problems for general differential
inclusions of type (1.1) defined by a Lipschitzian set-valued mapping F with
respect to state variables. For simplicity and having in mind the subsequent
material on optimal control of sweeping processes, we concentrate here only on
autonomous problems in finite-dimensional spaces under convexity assumptions.
In [38, Chapter 6] and further publications the reader can find results for nonau-
tonomous and nonconvex problems where state spaces are Banach. The problem
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under consideration in this section is as follows:

minimize J [x] := ϕ
(
x(0), x(T )

)
+

∫ T

0
`
(
x(t), ẋ(t)

)
dt (3.1)

over absolutely continuous trajectories x : [0, T ] → Rn of the autonomous differ-
ential inclusion

ẋ(t) ∈ F
(
x(t)

)
a.e. t ∈ [0, T ] (3.2)

subject to the geometric endpoint constraints(
x(0), x(T )

)
∈ Ω. (3.3)

We assume in this section that the mapping F : Rn ⇒ Rn is locally Lipschitz con-
tinuous, convex-valued, and bounded; that the terminal cost function ϕ : R2n → R
is locally Lipschitzian; that the integrand `(x, v) is locally Lipschitzian in (x, v)
and convex with respect to the velocity variable v = ẋ; and that the set Ω is
closed. As mentioned above, problem (3.1)–(3.3) can be treated under much
more general assumptions, while the (local) Lipschitz continuity of F in x is
essential for the obtained results.

Our approach to study problems of type (3.1)–(3.3) is based on the method of
discrete approximations, which consists of the following major steps:

Step A: Construct a well-posed family of discrete approximations involving a
finite-difference replacement of the derivative ẋ in (3.2) and a matched perturba-
tion of the endpoint constraints in (3.3). The key issue of this step is to verify
the possibility to approximate any feasible trajectory of (3.2) by feasible trajec-
tories of discrete systems in a topology yielding (along a subsequence if needed)
the a.e. convergence of the extended discrete derivatives. We address here not
only qualitative aspects of well-posedness but also quantitative ones with estimat-
ing error bounds, convergence rates, etc. Achieving this (in [38] it was done in
the norm topology of W 1,2) leads us then to the strong W 1,2-norm approxima-
tion of a given local minimizer for the continuous-time problem (3.1)–(3.3) by
a sequence of optimal solutions to the discrete-time problems that are piecewise
linearly extended to the whole interval [0, T ]. In [38] it was done for a class of the
so-called “intermediate local minimizers” introduced in [36]. This class includes
strong local minimizers while occupying an intermediate position between the
latter and weak local minimizers in dynamic optimization; see Definition 3.1 and
the discussion after it.

Step B: For each fixed step of discretization, the approximating discrete-
time problems can be reduced to nondynamic problems of mathematical pro-
gramming with increasingly many geometric constraints. The latter problems
are finite-dimensional (of increasing dimensions) provided that the dimension
of the state space in the original infinite-dimensional optimization problem for
(3.2) is finite. Powerful tools of generalized differentiation in variational anal-
ysis can be employed for deriving discrete-time necessary optimality conditions
in the approximation problems in full generality, without any Lipschitzian and
convexity assumptions, by using appropriate calculus rules. However, dealing
with the graphical structure of the geometric constraints in the approximation
problems requires robust generalized differential constructions, which—besides
enjoying comprehensive calculus rules—should be subtle and small enough to
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handle graphical sets. In particular, applying the convexified normal cone and re-
lated constructions by Clarke [10] to graphs of mappings often gives us the whole
space or its subspace of maximal dimension; see [37, 39, 47] for more details. On
the other hand, the nonconvex generalized differential constructions presented in
Section 2 satisfy all the required properties and can be successfully used for our
purposes.

Step C: The final step in deriving necessary optimality conditions for opti-
mal solutions of (3.1)–(3.3) is the passage to the limit from those for discrete
approximation problems obtained in Step B with taking into account the strong
convergence of discrete optimal solutions established in Step A. This step is highly
involved, since it requires justifying an appropriate convergence of dual arcs as
trajectories of adjoint differential inclusions. For the case of Lipschitzian differ-
ential inclusions considered in this section while following [38], it is done by using
the Mordukhovich coderivative criteria for the Lipschitz continuity and metric
regularity of set-valued mappings mentioned in Section 2. In this way we ar-
rive at the continuous-time necessary optimality conditions presented below in
Theorem 3.1.

Recall first the appropriate notion of local minimizers for problem (3.1)–(3.3)
taken from [36].

Definition 3.1. (intermediate local minimizers for differential inclu-
sions). Let x̄(·) be an absolutely continuous vector function satisfying the dif-
ferential inclusion (3.2) and the endpoint constraint (3.3). We say that x̄(·) is an
intermediate local minimizer of rank p ∈ [1,∞) for the dynamic optimiza-
tion problem (3.1)–(3.3) if there exist real numbers ε > 0 and α ≥ 0 such that
J [x̄] ≤ J [x] for any feasible solution to this problem localized by the conditions

‖x(t)− x̄(t)‖ < ε for all t ∈ [0, T ] and α

∫ T

0
‖ẋ(t)− ˙̄x(t)‖pdt < ε. (3.4)

The conditions in (3.4) tell us that a neighborhood of x̄(·) in the space
W 1,p

(
[0, T ];Rn

)
is actually considered. If α = 0 in (3.4), we get the classical

strong local minimum corresponding to a neighborhood of x̄ in the norm topol-
ogy of C([0, T ];Rn). If we replace (3.4) by the more restrictive requirement

‖ẋ(t)− ˙̄x(t)‖ < ε a.e. t ∈ [0, T ],

then it gives us the classical weak local minimum in the framework of Defini-
tion 3.1. This corresponds to considering a neighborhood of x̄(·) in the norm
topology of W 1,∞([0, T ];Rn). We refer the reader to [36, 50] and particularly to
[38, Subsection 6.1.2] for various examples showing that the intermediate notion
of Definition 3.1 is properly different from both strong and weak local minimiz-
ers of (3.1)–(3.3) for the autonomous differential inclusion under the convexity
assumptions imposed above.

Now we are ready to present the main necessary optimality conditions for
problem (3.1)–(3.3) obtained via the method of discrete approximations by im-
plementing the procedure outlined in Steps A–C. Under the assumptions imposed
in this section, it is sufficient to consider the case where p = 2 in Definition 3.1
when we refer to x̄(·) as simply to an intermediate local minimizer.
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Theorem 3.1. (extended Euler-Lagrange and maximum conditions for
intermediate local minimizers). Let x̄(·) be an intermediate local minimizer
for problem (3.1)–(3.3) under the assumptions made. Then there exist a number
λ ≥ 0 and an absolutely continuous vector function p : [0, T ]→ Rn, which are not
equal to zero simultaneously, satisfying the extended Euler-Lagrange inclusion

ṗ(t) ∈ co
{
u ∈ Rn

∣∣∣ (
u, p(t)

)
∈ λ∂`

(
x̄(t), ˙̄x(t)

)
+N

(
(x̄(t), ˙̄x(t)); gphF

)}
a.e. t ∈ [0, T ],

(3.5)

the Weierstrass-Pontryagin maximum condition〈
p(t), ˙̄x(t)

〉
− λϑ

(
x̄(t), ˙̄x(t)

)
= max

v∈F (x̄(t))

{〈
p(t), v

〉
− λ`

(
x̄(t), v

)}
a.e. t ∈ [0, T ], (3.6)

and the transversality inclusion at both endpoints(
p(0),−p(T )

)
∈ λ∂ϕ

(
x̄(0), x̄(T )

)
+N

(
(x̄(0), x̄(T )); Ω

)
. (3.7)

When the convexity assumptions do not hold (but the Lipschitzian one still
do), we can proceed with relaxed intermediate local minimizers as in [38]. In many
settings concerning mostly strong minimizers, we automatically have the relax-
ation stability telling us that (local) optimal values in the original and convexified
problems agree, and thus the given local minimizer for the original problems
provides a local minimum to the convex problem as well. This is due to the con-
tinuity/nonatomicity of the Lebesgue measure on [0, T ]; see [18, 19, 38, 39, 48, 50]
for more details and references.

4. Sweeping Processes with Controlled Moving Sets

In this section we start the study of optimal control problems for sweeping
differential inclusions where the Lipschitz continuity of the velocity mapping F
in (3.2) dramatically fails. The main attention here is paid to problems of the
following type:

minimize J [x, u] := ϕ
(
x(T )

)
+

∫ T

0
`
(
x(t), u(t), ẋ(t), u̇(t)

)
dt (4.1)

over absolutely continuous control actions u : [0, T ]→ Rm and the corresponding
absolutely continuous trajectories x : [0, T ] → Rn of the sweeping differential
inclusion

ẋ(t) ∈ g
(
x(t)

)
−N

(
h(x(t));C(u(t))

)
a.e. t ∈ [0, T ], x(0) = x0 ∈ C

(
u(0)

)
(4.2)

with the controlled moving set defined by

C(u) :=
{
x ∈ Rn

∣∣ θ(x, u) ∈ Θ
}
, u ∈ Rm, (4.3)

where g : Rn → Rn and h : Rn → Rn are C1-smooth mapping, while θ : Rn×Rm →
Rd is C2-smooth mapping around the references points and its partial Jacobian
matrix ∇xθ is of full rank therein. We keep the same assumptions on the cost
functions ϕ and ` from (4.1) as in Section 3 and also suppose that the set Θ
in (4.3) is locally closed and may not be convex, and thus the set C(u) therein
is generally nonconvex as well. The normal cone in (4.2) is understood in the
sense of (2.1). Among other areas, our investigation of such control problems is
motivated by applications to rate-independent systems arising in hysteresis and
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related areas. We refer to [1, 2, 4, 25, 27] for sweeping process descriptions of
the dynamics in systems of this type. Note also that controlled moving sets (4.3)
surely cover the polyhedral ones defined in (1.7), which were considered in [13].

It follows from (4.2) due to (2.1) that problem (4.1)–(4.3) automatically con-
tains the irregular pointwise state-control constraints given by the functional
inclusion

θ
(
g(x(t)), u(t)

)
∈ Θ for all t ∈ [0, T ],

which are the most challenging even in standard optimal control theory for ODE
systems with smooth dynamics and are being largely underinvestigated.

Besides the assumptions on the initial data of (4.1)–(4.3) formulated above, we
suppose that (H): there are a number r > 0 and a mapping ϑ : Rn × Rn × Rn ×
Rm → Rm locally Lipschitz continuous and uniformly bounded on bounded sets
such that for all v̄ ∈ N(θū(x̄); Θ) and x ∈ θ−1

u (Θ) with u := ū+ ϑ(x− x̄, x, x̄, ū)
there exists a vector v ∈ N(θu(x); Θ) satisfying ‖v − v̄‖ ≤ r‖x − x̄‖. This
assumption is rather technical, while it automatically holds in the polyhedral
setting of [13] as well as in simple nonconvex settings; see [26] for more details,
discussions, and examples.

We now present by following [26] necessary optimality conditions for local
minimizers of problem (4.1)–(4.3) in both extended Euler-Lagrange and Hamil-
tonian forms with significantly new elements. Our approach is based again on
the method of discrete approximations, which allows us to investigate two new
types of local minimizers for controlled sweeping processes that surely cover con-
ventional ones.

Definition 4.1. (local minimizers for controlled sweeping processes).
Under the assumptions imposed above in this section, fix a feasible pair (x̄(·), ū(·))
to problem (4.1)–(4.3).

(i) We say that (x̄(·), ū(·)) be a local W 1,2×W 1,2-minimizer for this problem
if x̄(·) ∈W 1,2([0, T ];Rn), ū(·) ∈W 1,2([0, T ];Rm), and it holds

J [x̄, ū] ≤ J [x, u] whenever x(·) ∈W 1,2([0, T ];Rn)

and u(·) ∈W 1,2([0, T ];Rm)
(4.4)

are sufficiently close to (x̄(·), ū(·)) in the norm topology of the W 1,2 spaces in
(4.4).

(ii) In the case where the integrand `(·) in (4.1) does not depend on u̇, we say
that (x̄(·), ū(·)) be a local W 1,2×C-minimizer for the optimal control problem
under consideration if x̄(·) ∈W 1,2([0, T ];Rn), ū(·) ∈ C([0, T ];Rm), and it holds

J [x̄, ū] ≤ J [x, u] whenever x(·) ∈W 1,2([0, T ];Rn) and u(·) ∈ C([0, T ];Rm)(4.5)

are sufficiently close to (x̄(·), ū(·)) in the norm topology of the corresponding
spaces in (4.5).

Note that the notion of local minimizers from Definition 4.1(i) can be viewed
as a counterpart for the sweeping control problem (4.1)–(4.3) of the intermediate
local minimizer notion for general differential inclusions taken from Definition 3.1
with respect to both (x, u) variables. The notion in Definition 4.1(ii) is specific
for controlled sweeping processes and first appeared in [26].
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The following major result can be treated as a far-going extension of the Euler-
Lagrange conditions in the form specific for the controlled sweeping process under
consideration with new phenomena established in this framework. Its proof is
given in [26, Theorem 4.3] by using the method of discrete approximations and
employing the generalized second-order calculus rule given in (2.9). For simplicity
we present the theorem in the case where g(x) := 0 and h(x) := x for all x.

Theorem 4.1. (extended Euler-Lagrange formalism for sweeping pro-
cesses with controlled moving sets). Let (x̄(·), ū(·)) be a local minimizer for
problem (4.1)–(4.3). Then we have:

(i) If (x̄(·), ū(·)) is a local W 1,2×W 1,2-minimizer, then there exist a multiplier
λ ≥ 0, an adjoint arc p(·) = (px, pu) ∈ W 1,2([0, T ];Rn × Rm), a vector measure
γ ∈ C∗([0, T ];Rd), as well as pairs (wx(·), wu(·)) ∈ L2([0, T ];Rn × Rm) and
(vx(·), vu(·)) ∈ L∞([0, T ];Rn × Rm) with(

wx(t), wu(t), vx(t), vu(t)
)
∈ co ∂`

(
x̄(t), ū(t), ˙̄x(t), ˙̄u(t)

)
a.e. t ∈ [0, T ] (4.6)

satisfying the following collection of necessary optimality conditions:
• Primal-dual dynamic relationships:

ṗ(t) = λw(t) +

[
∇2

xx

〈
η(t), θ

〉(
x̄(t), ū(t)

)
∇2

xw

〈
η(t), θ

〉(
x̄(t), ū(t)

) ] (− λvx(t) + qx(t)
)

a.e. t ∈ [0, T ],(4.7)

qu(t) = λvu(t) a.e. t ∈ [0, T ], (4.8)

where η(·) ∈ L2([0, T ];Rs) is a uniquely defined vector function determined by the
representation

˙̄x(t) = −∇xθ
(
x̄(t), ū(t)

)∗
η(t) a.e. t ∈ [0, T ] (4.9)

with η(t) ∈ N(θ(x̄(t), ū(t)); Θ), and where q : [0, T ] → Rn × Rm is a function of
bounded variation on [0, T ] with its left-continuous representative given, for all
t ∈ [0, T ] except at most a countable subset, by

q(t) = p(t)−
∫

[t,T ]
∇θ
(
x̄(τ), ū(τ)

)∗
dγ(τ). (4.10)

• Measured coderivative condition: Considering the t-dependent outer
limit

Lim sup
|B|→0

γ(B)

|B|
(t) :=

{
y ∈ Rs

∣∣∣ ∃ sequence Bk ⊂ [0, 1]

with t ∈ IBk, |Bk| → 0,
γ(Bk)

|Bk|
→ y

} (4.11)

over Borel subsets B ⊂ [0, 1] with the Lebesgue measure |B|, for a.e. t ∈ [0, T ] we
have

D∗NΘ

(
θ(x̄(t), ū(t)), η(t)

)(
∇xθ(x̄(t),ū(t))(qx(t)− λvx(t))

)
∩

∩ Lim sup
|B|→0

γ(B)

|B|
(t) 6= ∅.

(4.12)

• Transversality condition at the right endpoint:

−
(
px(T ), pu(T )

)
∈ λ
(
∂ϕ(x̄(T )), 0

)
+∇θ

(
x̄(T ), ū(T )

)
NΘ

(
(x̄(T ), ū(T )

)
. (4.13)
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• Measure nonatomicity condition: Whenever t ∈ [0, T ) with
θ(x̄(t), ū(t)) ∈ int Θ there is a neighborhood Vt of t in [0, T ] such that γ(V ) = 0
for any Borel subset V of Vt.
• Nontriviality condition:

λ+ sup
t∈[0,T ]

‖p(t)‖+ ‖γ‖ 6= 0 with ‖γ‖ := sup
‖x‖C([0,T ]=1

∫
[0,T ]

x(s)dγ. (4.14)

(ii) If (x̄(·), ū(·)) is a local W 1,2×C-minimizer, then all the conditions (4.7)–
(4.14) in (i) hold with the replacement of the quadruple (wx(·), wu(·), vx(·), vu(·))
in (4.6) by the triple (wx(·), wu(·), vx(·)) ∈ L2([0, T ];Rn)× L2([0, T ];Rm)×

L∞([0, T ];Rn) satisfying the inclusion(
wx(t), wu(t), vx(t)

)
∈ co ∂`

(
x̄(t), ū(t), ˙̄x(t)

)
a.e. t ∈ [0, T ].

Observe that the extended Euler-Lagrange optimality conditions of
Theorem 4.1, as well as the previous results from [11] and [13] obtained for poly-
hedral sweeping control problems with movings sets defined in (1.7) and (1.8), do
not contain a maximization condition like in the Pontryagin maximum principle
for standard control problems governed by the ODE systems (1.2) with smooth
dynamics and also like for Lipschitzian differential inclusions as given in (3.6) of
Theorem 3.1. Necessary optimality conditions in sweeping control theory con-
taining the maximization of the corresponding Hamiltonian were first obtained
in [4] for (global) optimal solutions to a sweeping process of another type with
an uncontrolled strictly smooth and convex set C(t) ≡ C having nonempty in-
terior and control functions that linearly enter an adjacent ordinary differential
equation. Quite recent results in this direction were derived in the case of the
sweeping control system given by

ẋ(t) ∈ g
(
x(t), u(t)

)
−N

(
x(t);C(t)

)
a.e. t ∈ [0, T ], (4.15)

where measurable controls u(t) enter the additive smooth term g while the uncon-
trolled moving set C(t) is compact, convex or mildly nonconvex, and possesses a
C3-smooth boundary for each t ∈ [0, T ] along with some additional assumptions.
The very recent paper [17] also deals with a sweeping control system of type (4.15)
and establishes necessary optimality conditions for global minimizers involving
the maximization of the usual Hamiltonian function, provided that the convex
and compact set C(t) ≡ C of nonempty interior given by C := {x ∈ Rn| ψ(x) ≤ 0}
via a C2-smooth function ψ under other assumptions, which are partly differ from
[3]. Certain penalty-type approximation methods developed in [3], [4], and [17]
are different from each other, significantly based on the smoothness of uncon-
trolled moving sets while being sharply disparate from the method of discrete
approximations discussed above.

Let us now present necessary optimality conditions in the modified Hamilton-
ian form, which is complemented to Theorem 4.1 and contains a maximization
condition of the new type appeared in our papers [26, 40] as the first version
of the maximum principle for sweeping process with controlled moving sets. To
proceed, consider problem (4.1)–(4.3) with Θ = Rd− being a nonpositive orthant

in Rd. This result is based on the generalized second-order chain rule given in
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Section 2 and the precise calculation of the second-order construction D∗NRd
−

taken from [41]. When Θ = Rd− in (4.3), define the active index set

I(x, u) :=
{
i ∈ {1, . . . , d}

∣∣ θi(x, u) = 0
}

and observe that under the standing surjectivity assumption on the partial Ja-
cobian operator ∇xθ for each v ∈ −N(x;C(u)) there is a unique collection
{αi}i∈I(x,u) with αi ≤ 0 and v =

∑
i∈I(x,u) αi[∇xθ(x, u)]i. Given ν ∈ Rd, de-

fine further the vector [ν, v] ∈ Rn by

[ν, v] :=
∑

i∈I(x,u)

νiαi
[
∇xθ(x, u)

]
i

and introduce the new Hamiltonian function by

Hν(x, u, p) := sup
{〈

[ν, v], p
〉∣∣ v ∈ −N(x;C(u)

)}
,

(x, u, p) ∈ Rn × Rm × Rn.
(4.16)

Now we are ready to present a new form of the maximum principle, along
with the extended Euler-Lagrange conditions, in sweeping optimal control with
controlled moving sets.

Theorem 4.2. (new maximum principle in sweeping optimal control).
Consider the optimal control problem (4.1)–(4.3) in the frameworks of Theo-
rem 4.1 with Θ = Rd−. Then, in addition to all the conditions in assertions
(i) and (ii) of Theorem 4.1, we have the maximization condition〈[
ν(t), ˙̄x(t)

]
, qx(t)− λvx(t)

〉
= Hν(t)

(
x̄(t), ū(t), qx(t)− λvx(t)

)
= 0 a.e. t ∈ [0, T ].

holds with a measurable vector function ν : [0, T ]→ Rd satisfying the inclusion

ν(t) ∈ D∗NRd
−

(
θ(x̄(t), ū(t)), µ(t)

)
×

×
(
∇xθ(x̄(t), ū(t))(qx(t)− λvx(t))

)
∩ Lim sup
|B|→0

γ(B)

|B|
(t)

for a.e. t ∈ [0, T ], where Lim sup is defined in (4.11).

Furthermore, it is shown in [26] that a conventional form of the maximum
principle with replacing the new Hamiltonian function (4.16) by the standard
one

H(x, u, p) := sup
{〈
p, v
〉∣∣ v ∈ −N(x;C(u)

)}
, (x, u, p) ∈ Rn × Rm × Rn.

fails as a necessary optimality condition even for global minimizers of (4.1)–(4.3).

The obtained necessary optimality conditions for the sweeping control problem
(4.1)–(4.3) and its specifications admit various applications to practical models.
We refer the reader to [13] for applications of the results established for controlled
polyhedral moving sets of type (1.7), (1.8) to quasistatic elastoplasticity models
with hardening the sweeping dynamics of which is described in [21]. Other appli-
cations to nonpolyhedral models of elastoplasticity and hysteresis can be found
in [26], where the necessary optimality conditions from Theorems 4.1 and 4.2 are
used for complete calculations of optimal solutions in the controlled hysteresis
model which dynamics is described in the sweeping form (4.2) in [2]. Further
applications in this direction, including hysteresis models that arise in problems
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of contact and nonsmooth mechanics [1, 45], require elaborations of the results
presented above; in particular, a serious relaxation of assumption (H) imposed
at the beginning of this section.

5. Sweeping Processes with Smooth Controlled Perturbations

As mentioned in Section 1, another interesting class of controlled sweeping
processes involves control actions not only in the moving set, but also in additive
perturbations. Such problems were first formulated and studied in [5, 6], where
the controlled sweeping dynamics was described by polyhedral systems of type
(1.11), (1.10). The discrete approximation result and necessary optimality con-
ditions obtained in [5, 6] were then applied in [6] to optimal control of the crowd
motion model in a corridor the dynamics of which was described in [29, 49] as
a sweeping process with a polyhedral moving set. Since the polyhedral descrip-
tion does not cover a more realistic planar crowd motion model from [29, 49],
in the recent paper [7] we considered a more advanced and challenging optimal
control problem for the sweeping process (1.10) with the nonconvex (and hence
nonpolyhedral) moving set{

C(t) := C + u(t) =
⋂m
i=1Ci + u(t) with

Ci :=
{
x ∈ Rn

∣∣ ϑi(x) ≥ 0
}

for all i = 1, . . . ,m,
(5.1)

defined via some convex and C2-smooth functions ϑi : Rn → R. In this case we
replace the convex normal cone (1.4) by the nonconvex one from (2.1). Further-
more, the assumptions imposed in [49] to describe the dynamics of the planar
crowd motion model ensure that the set C(t) in (5.1) is uniformly prox-regular
(as in [7, Definition 2.1]), which is the notion that has been well understood in
variational analysis and geometric measure theory; see [16] for more details and
references.

The following optimal control problem is investigated in our newly published
paper [7], where the obtained results cover the previous ones from [5, 6] for
polyhedral moving sets:

minimize J [x, u, v] := ϕ
(
x(T )

)
+

∫ T

0
`
(
x(t), u(t), v(t), ẋ(t), u̇(t), v̇(t)

)
dt (5.2)

over smooth control pairs u(·) ∈ W 1,2([0, T ];Rn), v(·) ∈ W 1,2([0, T ];Rd) and
the corresponding trajectories x(·) ∈ W 1,2([0, T ];Rn) of the perturbed sweeping
differential inclusion (1.11) with the controlled moving set (5.1). Suppose that
the time final time T > 0 and the initial vector x0 ∈ Rn are fixed. Besides
the dynamic constraints (1.11), we imposed the pointwise/hard constraints on
u-controls defined by

r1 ≤ ‖u(t)‖ ≤ r2 for all t ∈ [0, T ] (5.3)

with the given constraint bounds 0 < r1 ≤ r2 separated from zero; this is largely
due the physical sense of the introduced model. It follows (1.11) and the second
line in the normal cone definition (2.1) that the formulated problem automatically
contains the pointwise mixed state-control constraints

ϑi
(
x(t)− u(t)

)
≥ 0 for all t ∈ [0, T ] and i = 1, . . . ,m, (5.4)
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which are irregular while being the most difficult in optimal control theory.
We are able to deal with this problem by using the method of discrete ap-

proximations. The aforementioned paper [7] contains, under some technical as-
sumptions in addition to the main ones presented above, existence theorems and
verifiable necessary optimality conditions for intermediate local minimizers of the
sweeping optimal control problem formulated in (1.11), (5.2)–(5.4). Besides the
discrete approximation machinery, our developments in [7] are strongly based
on the constructions and calculus rules of second-order variational analysis and
generalized differentiation that are briefly discussed in Section 2.

The major application (and motivation) of the necessary optimality conditions
obtained in [7] are given to the planar crowd motion model in the fresh paper [8].
Let us discuss this model next.

6. Controlled Crowd Motion Model

The original developments on the crowd motion model concerns local interac-
tions between participants in order to describe the dynamics of pedestrian traffic.
Nowadays this model is successfully used to study more general classes of prob-
lems in socioeconomics, operations research, etc.

The so-called microscopic form of the crowd motion model is based on the
following two postulates. Firstly, each individual has a spontaneous velocity that
he/she intends to implement in the absence of other participants. However, in
reality the actual velocity must be taken into account. The latter one is in-
corporated via a projection of the spontaneous velocity into the set of admis-
sible/feasible velocities, i.e., those which do not violate certain nonoverlapping
constraints. A mathematical description of the uncontrolled microscopic crowd
motion model was given in [29, 49] as a sweeping process, and then it was used
these and other papers for numerical simulations and various applications.

In [6] we formulated an optimal control version of the crowed motion model in
a corridor and developed efficient procedure to solve it on the basic of necessary
optimality conditions obtained in [5, 6] for a sweeping process with polyhedral
moving set. In contrast to the corridor model, the major overlapping condition
in the more realistic planar crowd motion model is not polyhedral anymore while
being represented in the following form of (5.1):{

x ∈ R2n
∣∣ Dij(x) ≥ 0 for all i 6= j

}
,

where Dij(x) := ‖xi − xj‖ − 2R is the signed distance between the disks i and j
of the same radius R identified with n ≥ 2 participants on the plane. The corre-
sponding optimal control problem formulated and investigated in [8] is described
via the sweeping dynamics as follows: minimize the cost functional of type (5.2)
over the constrained controlled sweeping process{

−ẋ(t) ∈ N
(
x(t);C(t)) + g

(
x(t), v(t)

)
for a.e. t ∈ [0, T ],

C(t) := C + ū(t), ‖ū(t)‖ = r ∈ [r1, r2] on [0, T ], x(0) = x0 ∈ C(0),

where the initial data and constraints are given by

g
(
x(t), v(t)

)
:=
(
s1v1(t) cos θ1(t), s1v1(t) sin θ1(t), . . . ,

. . . , snvn(t) cos θn(t), snvn(t) sin θn(t)
)
,
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ūi+1(t) = ūi(t) :=

(
r√
2n
,
r√
2n

)
, i = 1, . . . , n− 1,

C :=
{
x = (x1, . . . , xn) ∈ R2n

∣∣ ϑij(x) ≥ 0 for all i 6= j as i, j = 1, . . . , n
}

with the functions ϑij(x) := Dij(x) = ‖xi − xj‖ − 2R, and with

x(t)− ū(t) ∈ C for all t ∈ [0, T ].

This model belongs to optimal control theory for sweeping processes governed
by prox-regular moving sets which was discussed in Section 5. Applying the
necessary optimality conditions for such problems developed in [7] allowed us
to obtain in [8] a complete solution to this model in the case of lower numbers
of participants and also to establish efficient relationships to determine optimal
parameters in the general crowd model setting with finitely many participants.
On the other hand, further algorithmic developments are needed in the case of
many participants in crowd motion modeling.

7. Sweeping Processes with Constrained Discontinuous Controls

Yet another class of optimal control problems for controlled sweeping processes
have been studied in our new papers [14, 15] with applications to some practical
models in robotics and traffic flow dynamics. The description of this class of
problems is as follows:

minimize J [x, u] := ϕ
(
x(T )

)
(7.1)

over pairs (x(·), u(·)) of measurable controls u(t) and absolutely continuous tra-
jectories x(t) on the fixed time interval [0, T ] satisfying the controlled sweeping
differential inclusion

ẋ(t) ∈ −N
(
x(t);C

)
+ g
(
x(t), u(t)

)
a.e. t ∈ [0, T ], x(0) := x0 ∈ C ⊂ Rn, (7.2)

subject to the pointwise control constraints given by

u(t) ∈ U ⊂ Rd a.e. t ∈ [0, T ]. (7.3)

The set C in (7.2) is a convex polyhedron given by

C :=
m⋂
i=1

Ci with Ci :=
{
x ∈ Rn

∣∣ 〈x∗i , x〉 ≤ ci}. (7.4)

Note that the main difference between problem (7.1)–(7.4) and that considered
in [5, 6] (see Section 1) is that controls are not W 1,2-smooth while being discon-
tinuous and constrained by (7.3). On the hand, the set C in (7.2) given by (7.4)
does not depend on control and time variables as in (1.10).

Problems of type (7.1)–(7.4) have been already considered in the literature,
but only from viewpoints of the existence of solutions and relaxation stability; see
[9, 19, 48]. Deriving necessary optimality conditions is a highly challenging issue
with even more increasing complications in comparison with those mentioned
above for other controlled sweeping models. Our approach is based again on the
method of discrete approximations, which requires a serious modification in this
case.
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We say that a feasible pair (x̄(·), ū(·)) for (7.1)–(7.4) is a W 1,2×L2-local min-
imizer for this problem if there is ε > 0 such that J [x̄, ū] ≤ J [x, u] for all the
feasible pairs (x(·), u(·)) satisfying

T∫
0

(
‖ · x(t)− ˙̄x(t)‖2 + ‖u(t)− ū(t)‖2

)
dt < ε.

For simplicity we assume the following while referring the reader to [14] for more
general settings:

(H1) The control set U is compact and convex in Rd, and the image set g(x, U)
is convex in Rn.
(H2) The cost function ϕ : Rn → R in (5.2) is C1-smooth around x̄(T ).
(H3) The perturbation mapping g : Rn×Rd → Rn in (7.2) is C1-smooth around
(x̄(·), ū(·)) and satisfies the sublinear growth condition

‖g(x, u)‖ ≤ β
(
1 + ‖x‖

)
for all u ∈ U with some β > 0.

(H4) The vertices x∗i of (7.4) satisfy the linear independence constraint qualifi-
cation [ ∑

i∈I(x̄)

αix
∗
i = 0, αi ∈ R

]
=⇒

[
αi = 0 for all i ∈ I(x̄)

}
along the trajectory x̄ = x̄(t) as t ∈ [0, T ], where I(x̄) := {i ∈ {1, . . . ,m} | 〈x∗i , x̄〉 =
ci}.

Among other results of [14], we present the necessary optimality conditions
obtained by using discrete approximations together with advanced tools of vari-
ational analysis and generalized differentiation.

Theorem 7.1. (necessary optimality conditions for constrained sweep-
ing processes). Let (x̄(·), ū(·)) be a W 1,2 × L2-local minimizer for problem
(7.1)–(7.4) under the assumptions in (H1)–(H4), where ū(·) is of bounded vari-
ation (BV) with a right continuous representative on [0, T ]. Then there exist a
multiplier λ ≥ 0, a measure γ = (γ1, . . . , γn) ∈ C∗([0, T ];Rn) as well as adjoint
arcs p(·) ∈ W 1,2([0, T ];Rn) and q(·) ∈ BV ([0, T ];Rn) such that λ + ‖q(t)‖L∞ +
‖p(T )‖ > 0 and the following conditions are satisfied:
• Primal velocity representation:

− ˙̄x(t) =

m∑
i=1

ηi(t)x
∗
i − g

(
x̄(t), ū(t)

)
for a.e. t ∈ [0, T ], (7.5)

where ηi(·) ∈ L2([0, T ];R+) being uniquely determined by (7.5) and well defined
at t = T .
• Adjoint system:

ṗ(t) = −∇xg
(
x̄(t), ū(t)

)∗
q(t) for a.e. t ∈ [0, T ],

where the dual arcs q(·) and p(·) are precisely connected by the equation

q(t) = p(t)−
∫

(t,T ]
dγ(τ)
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that holds for all t ∈ [0, T ] except at most a countable subset.
• Maximization condition:〈

ψ(t), ū(t)
〉

= max
{〈
ψ(t), u

〉∣∣ u ∈ U} with

ψ(t) := ∇ug
(
x̄(t), ū(t)

)∗
q(t) for a.e. t ∈ [0, T ].

• Complementarity conditions:〈
x∗i , x̄(t)

〉
< ci =⇒ ηi(t) = 0 and ηi(t) > 0 =⇒

〈
x∗i , q(t)

〉
= ci

for a.e. t ∈ [0, T ] including t = T and for all i = 1, . . . ,m.
• Right endpoint transversality conditions:

−p(T ) = λ∇ϕ
(
x̄(T )

)
+

∑
i∈I(x̄(T ))

ηi(T )x∗i with
∑

i∈I(x̄(T ))

ηi(T )x∗i ∈ N
(
x̄(T );C

)
.

• Measure nonatomicity condition: If t ∈ [0, T ) and 〈x∗i , x̄(t)〉 < ci for all
i = 1, . . . ,m, then there is a neighborhood Vt of t in [0, T ] such that γ(V ) = 0 for
all the Borel subsets V of Vt.

The subsequent paper [15] contains applications of the results from Theo-
rem 7.1 to two practical models, which can be written in the form of the con-
strained controlled sweeping process (7.1)–(7.4). The first model is an optimal
control version of the mobile robot model with obstacles the dynamics of which
was described as a sweeping process in [22]. The second one is a continuous-time,
deterministic, and optimal control version of the pedestrian traffic flow model
through a doorway for which a stochastic, discrete-time, and simulation (uncon-
trolled) counterpart was originated in [28].

The application of Theorem 7.1 leads us in [15] to complete calculations of op-
timal solutions for both models in several important settings, but many unsolved
issues remain in numerical implementations.

Major research goals concerning these models include developing efficient nu-
merical algorithms to solve optimal control problems for them with large numbers
of participants. It could be done, in particular, by using an appropriate discretiza-
tion and employing numerical algorithms of finite-dimensional optimization to the
discrete-time problems obtained in this way. We also believe that the developed
necessary optimality conditions for the perturbed sweeping processes would be
useful to investigate other practical model with a sweeping process dynamics
that frequently appear in various branches of mechanics, engineering, economics,
behavioral sciences, etc.

Regarding theoretical developments on constrained controlled sweeping pro-
cesses of type (7.1)–(7.4), the main open questions include the following issues:

• Derive necessary optimality conditions for nonpolyhedral descriptions of the
sweeping set C. Prox-regularity considered in Section 5 is an appropriate substi-
tution of polyhedrality to begin with.
• Investigate sweeping control models with two groups of controls similarly to

those considered above, but now with discontinuous controls in perturbations and
subject to control constraints. Involving controlled moving sets in the constrained
models is an important factor for further applications.
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