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ON DUALITY IN OPTIMAL CONTROL PROBLEMS WITH

SECOND-ORDER DIFFERENTIAL INCLUSIONS AND

INITIAL-POINT CONSTRAINTS

ELIMHAN N. MAHMUDOV AND MISIR J. MARDANOV

Abstract. The paper deals with the optimal control problem described
by second-order differential inclusions. Based on the infimal convolution
concept of convex functions, dual problems for differential inclusions
are constructed and the results of duality are proved. In this case, it
turns out that Euler-Lagrange type inclusions are “duality relations” for
both primary and dual problems. In particular, the linear second-order
optimal control problem with the Mayer functional is considered. This
problem shows that maximization in the dual problems is realized over
the set of solutions of the adjoint equation. Finally, we construct the dual
problem to the problem with the second-order polyhedral differential
inclusion.

1. Introduction

Many extremal problems, for example, classical problems of optimal control,
differential games, models of economic dynamics, macroeconomic problems, etc.
are described in terms of set-valued mappings and form a component part of the
modern mathematical theory of controlled dynamical systems and mathematical
economics [3, 8, 17, 18]. The first and second-order ordinary and partial differ-
ential inclusions, naturally arising from certain physical and control problems,
have attracted the attention of many researchers, and as a result, various qual-
itative problems, including the existence results have been considered by many
authors (see [1, 5, 6], [9]-[11], [15, 21, 22] and references therein). The paper [12]
studies sufficient conditions of optimality for the Cauchy problem of fourth-order
differential inclusions. Mainly our purpose is to derive sufficient optimality condi-
tions for mentioned problems with fourth-order differential inclusions (DFIs) and
transversality conditions. The results reveal that the proposed method is very
accurate and efficient. The paper [21] concerns optimal control of discontinuous
differential inclusions of the normal cone type governed by a generalized version
of the Moreau sweeping process with control functions acting in both nonconvex
moving sets and additive perturbations.

In the papers [11]-[16], for optimal control problems of higher order discrete
processes and DFIs with the use of locally adjoint mappings (LAMs) the necessary
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and sufficient conditions of optimality are formulated. Along with these the dual-
ity theory plays a fundamental role in the analysis of optimization and variational
problems. The reader can consult [2, 3, 20] and their references for more details on
this topic. It not only provides a powerful theoretical tool in the analysis of these
problems, but also paves the way to designing new algorithms for solving them.
A key player in any duality framework is the Legendre-Fenchel conjugate trans-
form. Often, duality is associated with convex problems, yet it turns out that
duality theory also has a fundamental impact even on the analysis of nonconvex
problems. The work [10] is devoted to optimization of so-called first-order partial
DFIs in the gradient form on a square domain. In the Euler–Lagrange form,
necessary and sufficient conditions are derived for the discrete-approximate and
partial DFIs, respectively. The duality theorems are proved and duality relation
is established. In the present work, the optimality conditions for a second-order
DFIs together with their duality approach were considered for the first time. To
the best of our knowledge, there are a few papers (see [9, 10, 20] and the refer-
ences therein) devoted to duality problems of first order DFIs. Building on these
results, we then treat dual results according to the dual operations of addition
and infimal convolution of convex functions [2, 7, 8].

Thus, the present paper is dedicated to one of the difficult and interesting
fields construction of duality of optimization problems with second-order ordinary
discrete and DFIs. The posed problems and their dualities are new. The paper
is organized in the following order:

In Section 2, the needed facts and supplementary results from the book of
Mahmudov[8] are given; Hamiltonian function H and argmaximum sets of a set-
valued mapping F , the LAM, infimal convolution of proper convex functions,
conjugate function for Hamiltonian function taken with a minus sign are intro-
duced and the problems for second-order DFIs (PC) with initial point constraints
are formulated.

In Section 3 necessary and sufficient conditions of optimality for second-order
DFIs are formulated, the dual problem for second-order DFIs (PC) is constructed.
In what follows, we prove that if α and α∗ are the values of primary and dual
problems, respectively, then α ≥ α∗ for all feasible solutions. Moreover, if a
certain ”nondegeneracy condition”, that is standard condition of convex analysis
on existence of interior point, is satisfied, then the existence of a solution to
one of these problems implies the existence of a solution to the other problem,
where α = α∗, and in the case where α > ∞ the dual problem has a solution.
Finally, duality relationship between a pair of optimization problems with initial
point constraint established; it is proved that the Euler-Lagrange type adjoint
inclusion at the same time is a dual relation. Aft the of this section we consider a
Mayer problem with second-order linear optimal control problem. The considered
problem shows that maximization in the dual problems is realized over the set of
solutions of the adjoint equation. In addition, the optimal values in the primary
convex (PC) and the dual concave (P ∗C) problems are equal: inf(PC) = sup(P ∗C).
Thus, it is proved that the Euler-Lagrange type adjoint inclusion at the same
time is a dual relation, that is a pair of solutions of primary and dual problems
satisfies this relation.
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In Section 4 we establish the dual problem (PL∗) to the problem with the
following second-order polyhedral differential inclusion F (x, y) = {z : Ax+By−
Cz ≤ d}, where A,B,C and d are matrices of appropriate dimensions. Here is
proved that MF (x∗, y∗, z∗) = −

〈
d, λ
〉

and the dual problem (PL∗) is expressed
by transposed matrices A∗, B∗, C∗.

2. Needed Facts and Problem Statement

Further, for the convenience of the reader, all the necessary concepts, defi-
nitions of a convex analysis can be found in the book of Mahmudov [8]. Let
Rn be a n-dimensional Euclidean space, 〈x, u〉 be an inner product of elements
x, y ∈ Rn and (x, y) be a pair of x, y. Assume that G : Rn × Rn ⇒ Rn is a
set-valued mapping from R2n = Rn × Rn into the set of subsets of Rn. Then
G : R2n ⇒ Rn is convex if its gphG = {(x, y, z) : z ∈ G(x, y)} is a convex sub-
set of R3n. The set-valued mapping G is convex closed if its graph is a convex
closed set in R3n. The domain of G is denoted by domG and is defined as follows
domG = {(x, y) : G(x, y) 6= ∅}. G is convex-valued if G(x, y) is a convex set for
each (x, y) ∈ domG.

Let us introduce the Hamiltonian function and argmaximum set for a set-
valued mapping G

HG(x, y, z∗) = sup
z

{〈
z, z∗

〉
: z ∈ G(x, y)

}
, z∗ ∈ Rn,

GA(x, y; z∗) =
{
z ∈ G(x, y) :

〈
z, z∗

〉
= HG(x, y, z∗)

}
,

respectively. For convex G we set HG(x, y, z∗) = −∞ if G(x, y) = ∅. As usual,
WA(x∗) is a support function of the set A ⊂ Rn, i.e.,

WA(x∗) = sup
x

{〈
x, x∗

〉
: x ∈ A

}
, x∗ ∈ Rn.

Let intA be the interior of the set A ⊂ R3n and riA be the relative interior of
the setA i.e. the set of interior points of A with respect to its affine hull AffA.

The convex cone KA(w0), w0 = (x0, y0, z0), is called the cone of tangent direc-
tions at a point w0 ∈ A to the setA if from w̄ = (x̄, ȳ, z̄) ∈ KA(w0) it follows
that is a tangent vector to the setA at point w0 ∈ A, i.e., there exists such func-
tion η : R1 → R3n that w0 + λw̄ + η(λ) ∈ A for sufficiently small λ > 0 and
λ−1η(λ)→ 0, as λ ↓ 0.

A function ϕ is called a proper function if it does not assume the value −∞ and
is not identically equal to +∞. Obviously, ϕ is proper if and only if domϕ 6= ∅
and ϕ(x, y) is finite for (x, y) ∈ domϕ = {(x, y) : ϕ(x, y) < +∞.

In general, for a set-valued mapping G a set-valued mapping G∗(·, x, y, z) :
Rn ⇒ R2n defined by

G∗
(
z∗; (x, y, z)

)
:= {(x∗, y∗) : (x∗, y∗,−z∗) ∈ K∗gphG(x, y, z)},

is called the LAM to a set-valued G at a point (x, y, z), where K∗gphG(x, y, z)

is the dual to the cone of tangent directions KgphG(x, y, z). We provide another
definition of LAM to mapping G which is more relevant for further development
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G∗
(
z∗; (x, y, z)

)
:= {(x∗, y∗) : HG(x1, y1, z

∗)−HG(x, y, z∗) ≤
〈
x∗, x1 − x

〉
+
〈
y∗, y1 − y

〉
, ∀(x1, y1) ∈ R2n}, (x, y, z) ∈ gphG, z ∈ GA(x, y, z∗).

We note that the coderivative concept of Mordukhovich [19] is essentially dif-
ferent for nonconvex mappings. The notion of coderivative has been introduced
for set-valued mappings in terms of the basic normal cone to their graphs. In
the most interesting settings for the theory and applications, coderivatives are
nonconvex-valued and hence are not tangentially /derivatively generated. This
is the case of the first coderivative for general finite dimensional set-valued map-
pings for the purpose of applications to optimal control. The main advantage
of the definition of LAM is its simplicity. Clearly, for the convex mapping the
Hamiltonian H(·, ·, z∗) is concave and the latter and previous definitions of LAMs
coincide. However, for the smooth and convex maps the two notions are equiva-
lent.

Definition 2.1. A function ϕ(x, y) is said to be closed, if its epigraph epiϕ =
{(x0, x, y) : x0 ≥ ϕ(x, y) is a closed set.

Definition 2.2. The function ϕ∗(x∗, y∗) = supx,y
{〈
x, x∗

〉
+ 〈y, y∗〉 − ϕ(x, y)

}
is

called the conjugate of ϕ. It is clear to see that the conjugate function is closed
and convex.

Let us denote

MG(x∗, y∗z∗) = inf
x,y,z

{〈
x, x∗

〉
+
〈
y, y∗

〉
−
〈
z, z∗

〉
: (x, y, z) ∈ gphG

}
,

that is, for every (x, y) ∈ R2n

MG(x∗, y∗z∗) ≤
〈
x, x∗

〉
+
〈
y, y∗

〉
−HG(x, y, z∗).

It is clear that the function

MG(x∗, y∗z∗) = inf
x,y

{〈
x, x∗

〉
+
〈
y, y∗

〉
−HG(x, y, z∗)

}
is a support function taken with a minus sign. Besides, it follows that for a

fixed z∗

MG(x∗, y∗z∗) = −[HG(·, ·, z∗)]∗(x∗, y∗)
that is, MG is the conjugate function for HG(·, ·, z∗) taken with a minus sign.

Definition 2.3. We recall that the operation of infimal convolution ⊕ of func-
tions f1, f2 is defined as follows

(f1 ⊕ f2)(u) = inf{f1(u1) + f2(u
2) : u1 + u2 = u}, ui ∈ Rn, i = 1, 2.

The infimal convolution (f1⊕f2) is said to be exact provided the infimum above
is attained for every u ∈ Rn. One has dom(f1 ⊕ f2) = domf1 + domf2). Besides
for a proper convex closed functions f1, f2 their infimal convolution (f1 ⊕ f2)
is convex and closed (but not necessarily proper). If f1, f2 are functions not
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identically equal to +∞, then (f1⊕f2)∗ = f∗1 +f∗2 . Thus, the conjugate of infimal
convolution is the sum of the conjugates and this holds without any requirement
on the convex functions. The operations + and ⊕ are thus dual to each other
with respect to taking conjugates.

In Section 3 we deal with the Mayer problem for (PC) type of the evolution
DFIs:

infimum ϕ
(
x(1), x′(1)

)
, (2.1)

(PC) x′′(t) ∈ F
(
x(t), x′(t), t

)
, a.e. t ∈ [0, 1], (2.2)

x(0) ∈ Q0, x
′(0) ∈ Q1. (2.3)

Here F (·, t) : Rn ⇒ Rn is a time dependent set-valued mapping, ϕ is continuous
ϕ : R2n → R1, Qi ⊆ Rn(i = 0, 1) are nonempty subsets. The problem is to
find an arc x̃(·) of the problem (2.1)-(2.3) satisfying (2.2) almost everywhere
(a.e.) on [0, 1] and the initial-point constraints (2.3) on [0, 1] that minimizes the
Mayer functional ϕ

(
x(1), x′(1)

)
. We label this problem as (PC). Here, a feasible

trajectory x(·) is understood to be an absolutely continuous function on a time
interval [0, 1] together with the first order derivatives for which x′′(·) ∈ Ln1 ([0, 1]).
Obviously, such class of functions is a Banach space, endowed with the different
equivalent norms. For example, ||x(·)|| =

∑1
k=0 |x(k)(0)|+ ||x′′(·)||1 or ||x′′(·)|| =∑2

k=0 ||x(k)(0)||1, where ||x(k)(0)||1 =
∫ 1
0 |x

(k)(t)|dt and |x| is an Euclidean norm
in Rn.

Note that an absolutely continuous function is a.e. differentiable function and
in the Lebesgue sense, its derivative function is integrable. But not always a
function having a.e. integrable derivative is absolutely continuous. For example,
the Cantor function [4] is the such a function; it is well known that the Cantor
function f : [0, 1] → [0, 1] is a.e. differentiable, where f ′(t) = 0, f(0) = 0, f(1) =

1. Then the condition of the familiar Lebesgue theorem [4]
∫ 1
0 f
′(t)dt = f(1)−f(0)

is not satisfied.

3. The Dual Problem for Convex DFIs

Here we treat dual results according to the dual operations of addition and
infimal convolution of convex functions [7, 8]. But the construction of the duality
problem would lead us too far astray from the main themes of this paper and is
therefore omitted. And in this sense the obtained results here are only the visible
part of the ”icebergs”. In order to establish a dual problem to the main problem
(PC), we have used a limiting process in dual problem for a discrete-approximate
problem to continuous problem (PC); by passing to the formal limit as a discrete
step tends to zero, the obtained maximization problem will be the dual problem
to the previous continuous convex problem (PC):

(P ∗C) supx∗(·),v∗(·)

{
− ϕ∗

(
v∗(1) + x∗

′
(1),−x∗(1)

)
+
∫ 1
0

[
MF (·,t)

(
x∗
′′
(t)

+v∗
′
(t), v∗(t), x∗(t)

)]
dt−WQ0

(
− v∗(0)− x∗′(0)

)
−WQ1

(
x∗(0)

)}
.
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Furthermore, we assume that x∗(t), t ∈ [0, 1] is absolutely continuous function

together with the first order derivatives and x∗
′′
(·) ∈ Ln1 ([0, 1]). Moreover, v∗(·)

is absolutely continuous and v∗
′
(·) ∈ Ln1 ([0, 1]).

In order that to prove the duality theorem we need to formulate the dual-
ity relation. We shall prove that the duality relation is an adjoint inclusion of
Euler-Lagrange type. To this end, in the following theorem, sufficient optimal-
ity conditions are formulated for convex second-order DFIs with convex non-
functional initial point constraints (PC).These conditions are more precise since
they involve useful forms of the Weierstrass-Pontryagin condition and second-
order Euler-Lagrange type adjoint inclusions. In the reviewed results this effort
culminates in Theorem 3.1.

First, we formulate the reminded second-order Euler-Lagrange type adjoint
inclusion and transversality conditions for the problem (PC)

(a)
(
x∗
′′
(t) + v∗

′
(t), v∗(t)

)
∈ F ∗

(
x∗(t); (x̃(t), x̃′(t), x̃′′(t)), t

)
, a.e. t ∈ [0, 1],

where

(b) x̃′′(t) ∈ FA
(
x̃(t), x̃′(t);x∗(t), t

)
, a.e. t ∈ [0, 1].

The transversality conditions at the endpoints t = 0 and t = 1 consist of the
following

(c)
(
v∗(0) + x∗

′
(0),−x∗(0)

)
∈ K∗Q0

(
x̃(0)

)
×K∗Q1

(
x̃′(0)

)
,

(d)
(
v∗(1) + x∗

′
(1),−x∗(1)

)
∈ ∂(x,y)ϕ(x̃(1), x̃′(1)),

respectively. Now we are ready to formulate the following optimality theorem.

Theorem 3.1. Suppose that ϕ is a continuous and proper convex function, F (·, t)
is a convex set-valued mapping and Qi(i = 0, 1) are convex sets. Then for opti-
mality of the feasible trajectory x̃(t) in the problem (PC) it is sufficient that there
exists a pair of absolutely continuous functions {x∗(t), v∗(t)}, t ∈ [0, 1] satisfying
a.e. the second-order Euler-Lagrange type differential inclusion (a)-(b) and the
transversality conditions (c), (d) at the initial point t = 0 and endpoint t = 1,
respectively.

Proof. By the proof idea of Theorem 5.1 [13] from (a), (b) we derive the following
inequality

0 ≥
〈
x′(1)− x̃′(1), x∗(1)

〉
−
〈
x′(0)− x̃′(0), x∗(0)

〉
−
〈
v∗(1) + x∗

′
(1), x(1)− x̃(1)

〉
+
〈
v∗(0) + x∗

′
(0), x(0)− x̃(0)

〉
. (3.1)

Now, by definition of dual cones K∗Q0

(
x̃(0)

)
,K∗Q1

(
x̃′(0)

)
from the transversality

condition (c) we deduce that

−
〈
x′(0)− x̃′(0), x∗(0)

〉
+
〈
v∗(0) + x∗

′
(0), x(0)− x̃(0)

〉
≥ 0,

∀x(0) ∈ Q0; ∀x′(0) ∈ Q1. (3.2)

Thus, it follows from 3.1 and 3.2 that
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0 ≥
〈
x′(1)− x̃′(1), x∗(1)

〉
−
〈
v∗(1) + x∗

′
(1), x(1)− x̃(1)

〉
. (3.3)

Now, it is not hard to see that the transversality conditions (d) at the endpoint
t = 1, can be rewritten as follows

ϕ(x(1), x′(1))− ϕ(x̃(1), x̃′(1))

≥
〈
v∗(1) + x∗

′
(1), x(1)− x̃(1)

〉
−
〈
x′(1)− x̃′(1), x∗(1)

〉
. (3.4)

Then, summing the inequalities 3.3, 3.4 for all feasible trajectories x(·) satis-
fying the initial conditions x(0) ∈ Q0, x

′(0) ∈ Q1 we have the needed inequality:

ϕ(x(1), x′(1))− ϕ(x̃(1), x̃′(1)) ≥ 0 or ϕ(x(1), x′(1)) ≥ ϕ(x̃(1), x̃′(1)).

�

We are now in a position to establish our duality relations between (PC) and
(P ∗C).

Remark 3.1. Obviously, in the convex case HF (·, z∗) is concave and the latter
definition of LAM coincide with the previous definition. Besides, note that, the
LAM (as well as the coderivative of Mordukhovich [19]) is a set-valued extension
of the classical notion of the adjoint linear operator in functional analysis.

Remark 3.2. Suppose now we have a problem (PC) with initial-value problem of
Cauchy, where Q0 = {α0}, Q1 = {α1} and α0, α1 are fixed vectors: αi ∈ Rn(i =
0, 1). Then the cones of tangent vectors KQ0(x̃(0)),KQ1(x̃′(0)) consist of a zero
vectors, i.e KQ0(x̃(0)) = KQ1(x̃′(0)) = {0} and the dual to the cones of tangent
directions K∗Q0

(x̃(0)) = K∗Q1
(x̃′(0)) = Rn. As a consequence, it follows that the

condition (c) of theorem is superfluous.

Theorem 3.2. Suppose that the conditions of Theorem 3.1 are satisfied and x̃(t)
is an optimal solution of the primary problem (PC) with convex DFI. Then a
pair of functions {x̃∗(·), ṽ∗(·)} is an optimal solution of the dual problem (P ∗C) if
and only if the conditions (a)-(d) of Theorem 3.1 are satisfied. In addition, the
optimal values in the primary (PC) and dual (P ∗C) problems are equal.

Proof. Before all we prove that for all feasible solutions x(·) and dual variables
{x∗(·), v∗(·)} of the primary (PC) and dual (P ∗C) problems, respectively, the in-
equality holds:

ϕ(x(1), x′(1)) ≥ −ϕ∗
(
v∗(1) + x∗

′
(1),−x∗(1)

)
+∫ 1

0

[
MF (·,t)

(
x∗
′′
(t) + v∗

′
(t), v∗(t), x∗(t)

)]
dt

−WQ0

(
− v∗(0)− x∗′(0)

)
−WQ1

(
x∗(0)

)
. (3.5)

To this end, by using the conjugate ϕ∗ and definition of Hamiltonian function
we can write
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∫ 1
0

[
MF (·,t)

(
x∗
′′
(t) + v∗

′
(t), v∗(t), x∗(t)

)]
dt−WQ0

(
− v∗(0)− x∗′(0)

)
−WQ1

(
x∗(0)

)
− ϕ∗

(
v∗(1) + x∗

′
(1),−x∗(1)

)
≤
∫ 1
0

[〈
x(t), x∗

′′
(t) + v∗

′
(t)
〉

+
〈
x′(t), v∗(t)

〉
−
〈
x′′(t), x∗(t)

〉]
dt

+ϕ(x(1), x′(1))− 〈x(1), v∗(1) + x∗
′
(1)
〉
−
〈
x(1),−x∗(1)

〉
+
〈
v∗(0) + x∗

′
(0), x(0)

〉
−
〈
x∗(0), x′(0)

〉
=
∫ 1
0

[〈
x(t), x∗

′′
(t)
〉
−
〈
x′′(t), x∗(t)

〉]
dt

+
∫ 1
0 d
〈
x(t), v∗(t)

〉
+ ϕ

(
x(1), x′(1)

)
−
〈
x(1), v∗(1) + x∗

′
(1)
〉

−
〈
x′(1),−x∗(1)

〉
+
〈
v∗(0) + x∗

′
(0), x(0)

〉
−
〈
x∗(0), x′(0)

〉
=
∫ 1
0

[〈
x(t), x∗

′′
(t)
〉
−
〈
x′′(t), x∗(t)

〉]
dt+

〈
x(1), v∗(1)

〉
−
〈
x(0), v∗(0)

〉
+ϕ(x(1), x′(1))−

〈
x(1), v∗(1) + x∗

′
(1)
〉
−
〈
x′(1),−x∗(1)

〉
+
〈
v∗(0) + x∗

′
(0), x(0)

〉
−
〈
x∗(0), x′(0)

〉
=
∫ 1
0

[〈
x(t), x∗

′′
(t)
〉
−
〈
x′′(t), x∗(t)

〉]
dt

+ϕ(x(1), x′(1))−
〈
x(1), x∗

′
(1)
〉
−
〈
x′(1),−x∗(1)

〉
+
〈
x∗
′
(0), x(0)

〉
−
〈
x∗(0), x′(0)

〉
. (3.6)

Further, it is not hard to see that

∫ 1
0

[〈
x∗
′′
(t), x(t)

〉
−
〈
x′′(t), x∗(t)

〉]
dt =

∫ 1
0 d
[〈
x∗
′
(t), x(t)

〉
−
〈
x′(t), x∗(t)

〉]
=
〈
x∗
′
(1), x(1)

〉
−
〈
x′(1), x∗(1)

〉
−
〈
x∗
′
(0), x(0)

〉
+
〈
x′(0), x∗(0)

〉
. (3.7)

Then the relationships (3.6) and (3.7) give us

∫ 1
0

[
MF (·,t)

(
x∗
′′
(t) + v∗

′
(t), v∗(t), x∗(t)

)]
dt−WQ0

(
− v∗(0)− x∗′(0)

)
−WQ1

(
x∗(0)

)
− ϕ∗

(
v∗(1) + x∗

′
(1),−x∗(1)

)
≤
〈
x∗
′
(1), x(1)

〉
−
〈
x′(1), x∗(1)

〉
−
〈
x∗
′
(0), x(0)

〉
+
〈
x′(0), x∗(0)

〉
+ ϕ

(
x(1), x′(1)

)
−
〈
x(1), x∗

′
(1)
〉

−
〈
x′(1),−x∗(1)

〉
+
〈
x∗
′
(0), x(0)

〉
−
〈
x∗(0), x′(0)

〉
= ϕ

(
x(1), x′(1)

)
and this proves the inequality (3.5). Furthermore, suppose that a pair {x̃∗(·), ṽ∗(·)}

satisfies the conditions (a)-(d) of Theorem 3.1. Then by definition of LAM the
Euler-Lagrange type inclusion (a) and the condition (b) imply that

HF

(
x(t), x′(t), x∗(t)

)
−HF

(
x̃(t), x̃′(t), x̃∗(t)

)
≤
〈
x̃∗
′′
(t) + ṽ∗

′
(t), x(t)− x̃(t)

〉
+
〈
ṽ∗(t), x′(t)− x̃′(t)

〉
,

whence by the definition of function MF we deduce that

〈
x̃∗
′′
(t) + ṽ∗

′
(t), x̃(t)

〉
+
〈
ṽ∗(t), x̃′(t)

〉
−HF

(
x̃(t), x̃′(t), x̃∗(t)

)
= MF

(
x̃∗
′′
(t) + ṽ∗

′
(t), ṽ∗(t), x̃∗(t)

)
. (3.8)

On the other hand, by the transversality condition (c) we can write
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−
〈
ṽ∗(0) + x̃∗

′
(0), x̃(0)

〉
= WQ0

(
− ṽ∗(0)− x̃∗′(0)

)
,〈

x̃∗(0), x̃′(0)
〉

= WQ1

(
x̃∗(0)

)
(3.9)

Finally, by Theorem 1.27 [8] the transversality condition (d) is equivalent to
the relation

ϕ∗
(
ṽ∗(1) + x̃∗

′
(1),−x̃∗(1)

)
=
〈
x̃(1), ṽ∗(1) + x̃∗

′
(1)
〉

+
〈
x̃′(1), x̃∗(1)〉 − ϕ

(
x̃(1), x̃′(1)

)
. (3.10)

Thus, taking into account the relationships (3.8)-(3.10) in (3.6) the inequality
sign is replaced by equality and for x̃(·) and {x̃∗(·), ṽ∗(·)} the equality of values
of the primary and dual problems is ensured. Moreover, x̃(·) and {x̃∗(·), ṽ∗(·)}
are satisfies the conditions (a)-(d) of Theorem 3.1 and the collection (a)-(d) is a
dual relation for the primary (PC) and dual (P ∗C) problems. �

Remark 3.3. It is interesting to note that in the theory of mathematical program-
ming problem the analogy of these results consists of the following. Suppose that
we have a problem

inf
x∈A

f(x) (G)

where f is a closed, proper convex function and that A is a convex closed
set. It is known from convex analysis that the operations of addition and infimal
convolution of convex functions are dual to each other [7, 8]. By this result, if
there exists a point u0 ∈ A, where f is continuous (f is continuous on ridomf ,
however, f may have a point of discontinuity in its boundary), the optimal value
of problem (G) is

infu∈A f(u) = inf{f(u) + δA(u)} = − sup{−f(u)− δA(u)}
= − sup{

〈
u, 0
〉
− [f(u) + δA(u)]} = −

(
f + δA

)∗
(0) = −

(
f∗ ⊕ δ∗A

)
(0)

= − inf{f∗(u∗) + δ∗A(−u∗)} = sup{−f∗(u∗)− δ∗A(−u∗)},
where δA(·) is the indicator function of A.
In general, it can be noticed that (f + δA)∗(0) ≤ (f∗ ⊕ δ∗A)(0) and so

inf
u∈A

f(u) ≥ sup{−f∗(u∗)− δ∗A(−u∗)}.

Then it is reasonable to announce that the dual problem to the primary prob-
lem (3.4) has the form

sup{−f∗(u∗)− δ∗A(−u∗)}. (G∗)

In addition, if the value of the problem (G) is finite, then the supremum in the
problem (G∗) is attained for all u∗. The problem sup{−f∗(u∗)−δ∗A(−u∗)}(G∗) we
call the dual problem to the primary problem (G). Then if a pair (x, x∗) of points
x and x∗ is such that x∗ ∈ ∂F (x) ∩ K∗A(x), then x and x∗ are solutions of the
problems (G) and(G∗), respectively (see, for example [7, 8]). Consequently, the
results of Sections 2,3 have an important theoretical significance. In practise, we
should solve only the dual problems sup(P ∗C) similar the linear dual programming
problem.
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Example 3.1. (Second-order linear optimal control problems). Suppose
we have the linear continuous case of second-order DFI:

infimum ϕ
(
x(1), x′(1)

)
,

subject to x′′(t) = A0x(t) +A1x
′(t) +Bu(t), u(·) ∈ U,

x(0) ∈ Q0, x
′(0) ∈ Q1, t ∈ [0, 1], (3.11)

where A0, A1 and B are n × n and n × r matrices, respectively, the function
ϕ and Qi(i = 0, 1) are the same, U ⊆ Rr is a convex compact. The problem is
to find a controlling parameter ũ(t) ∈ U such that the arc x̃(t) corresponding
to it minimizes ϕ

(
x(1), x′(1)

)
. We introduce a set-valued mapping of the form

F (x, y) = A0x+A1y +BU . Then it is easy to see that

MF (x∗, y∗, z∗) = inf(x,y,z)∈gphF
{〈
x, x∗

〉
+
〈
y, y∗

〉
−
〈
z, z∗

〉}
= infx,y

[〈
x, x∗ −A∗0z∗

〉
+
〈
y, y∗ −A∗1z∗

〉]
− supu∈U

〈
u,B∗z∗

〉
=

{
−WU (B∗z∗), if x∗ = A∗0z

∗, y∗ = A∗1z
∗,

−∞ , otherwise.

Then using the formula for MF , in view of the dual problem (P ∗C) we can
write

MF

(
x∗
′′
(t) + v∗

′
(t), v∗(t), x∗(t)

)
=

{
−WU (B∗x∗(t)), if x∗

′′
(t) + v∗

′
(t) = A∗0x

∗(t), v∗(t) = A∗1x
∗(t),

−∞ , otherwise.

or, more compactly,

MF

(
x∗
′′
(t) + v∗

′
(t), v∗(t), x∗(t)

)
=

{
−WU (B∗x∗(t)), if x∗

′′
(t) = A∗0x

∗(t)−A∗1x∗
′
(t),

−∞ , otherwise.

Then the dual problem of problem (3.11) is

supx∗(·)

{
− ϕ∗

(
A∗1x

∗(1) + x∗
′
(1),−x∗(1)

)
−
∫ 1
0 WU (B∗x∗(t))dt

−WQ0

(
−A∗1x∗(0)− x∗′(0)

)
−WQ1(x∗(0))

}
,

where x∗(·) is a solution of the adjoint Euler-Lagrange inclusion/equation

x∗
′′
(t) = A∗0x

∗(t)−A∗1x∗
′
(t)

Consequently, maximization in this dual problem to primary problem (3.11) is
realized over the set of solutions of the adjoint equation.
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4. Duality in Problems with Second-Order Polyhedral DFIs

In this section we establish the dual problem (PL∗) to the problem with the
following second-order polyhedral differential inclusion:

infimum ϕ
(
x(1), x′(1)

)
,

(PL) x′′(t) ∈ F
(
x(t), x′(t), t

)
, a.e. t ∈ [0, 1],

x(0) ∈ Q0, x
′(0) ∈ Q1, F (x, y, t) = {z : Ax+By − Cz ≤ d},

where F is a second-order polyhedral set-valued mapping, A,B and C are
s × n dimensional matrices, d is a s-dimensional column-vector, ϕ : R2n → R1

is a convex function, Q0, Q1 are nonempty convex subsets of Rn. We label this
problem by (PL). Then with respect to the dual problem (P ∗C) first we should
calculate MF (x∗, y∗, z∗):

MF (x∗, y∗, z∗) = inf
{〈
x, x∗

〉
+
〈
y, y∗

〉
−
〈
z, z∗

〉
: (x, y, z) ∈ gphF

}
. (4.1)

In fact, denoting w = (x, y, z) ∈ R3n, w∗ = (x∗, y∗,−z∗) ∈ R3n we have a linear
programming problem

inf
{〈
w,w∗

〉
: Dw ≤ d

}
, (4.2)

where D = [A
...B

... − C] is s × 3n block matrix. Then according to the linear
programming theory if w̃ = (x̃, ỹ, z̃) is a solution of (4.2), then there exists s-
dimensional vector λ ≥ 0 such that

w∗ = −D∗λ,
〈
Ax̃+Bỹ − Cz̃ − d, λ

〉
= 0.

On the contrary, if these conditions are satisfied, then w̃ = (x̃, ỹ, z̃) is a solution
of the problem (4.2).

Hence, w∗ = −D∗λ means that x∗ = −A∗λ, y∗ = −B∗λ, z∗ = −C∗λ, λ ≥ 0.
Thus, we find that

MF (x∗, y∗, z∗) =
〈
x̃,−A∗λ

〉
+
〈
ỹ,−B∗λ

〉
−
〈
z̃,−C∗λ

〉
= −

〈
Ax̃, λ

〉
−
〈
Bỹ, λ

〉
+
〈
Cz̃, λ

〉
= −

〈
d, λ
〉
. (4.3)

On the other hand, from the form of MF

(
x∗
′′
(t) + v∗

′
(t), v∗(t), x∗(t)

)
by The-

orem 3.1 we derive that

x∗
′′
(t) + v∗

′
(t) = −A∗λ(t), v∗(t) = −B∗λ(t), x∗(t) = −C∗λ(t), λ(t) ≥ 0 (4.4)

or

C∗λ′′(t) +B∗λ′(t)−A∗λ(t) = 0, λ(t) ≥ 0. (4.5)

Therefore, taking into account (4.3)-(4.5) and Theorem 3.2 we have the follow-
ing dual problem:
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supλ(t)≥0

{
− ϕ∗

(
− C∗λ(1)−B∗λ(1), C∗λ(1)

)
−
∫ 1
0

〈
d, λ(t)

〉
dt

−WQ0

(
C∗λ′(0) +B∗λ(0)

)
−WQ1

(
− C∗λ(0)

)}
.

Now, before formulation of duality theorem we should proof sufficient condition
of optimality for a problem (PL).

Theorem 4.1. Let ϕ : R2n → R1 be continuous proper convex function and F be
a polyhedral set-valued mapping given in problem (PL). Moreover, let Q0, Q1 be
convex sets. Then for the optimality of the trajectory x̃(·) in problem (PL) with
second-order polyhedral differential inclusions, it is sufficient that there exists a
function λ(t) ≥ 0, t ∈ [0, 1] satisfying a.e. the following second-order Euler-
Lagrange type polyhedral differential inclusion and transversality conditions at
the endpoints t = 0 and t = 1:

(1) C∗λ′′(t) +B∗λ′(t)−A∗λ(t) = 0, λ(t) ≥ 0,〈
Ax̃(t) +Bx̃′(t)− Cx̃′′(t)− d, λ(t)

〉
= 0, a.e. t ∈ [0, 1],

(2) −C∗λ′(0)−B∗λ(0) ∈ K∗Q0
(x̃(0)); C∗λ(0) ∈ K∗Q1

(x̃′(0)), t = 0,

(3)
(
− C∗λ′(1)−B∗λ(1), C∗λ(1)

)
∈ ∂ϕ

(
x̃(1), x̃′(1)

)
, t = 1.

Proof. In fact, condition (2.1) of the theorem is formula (4.5). Further, by the
conditions (c), (d) of Theorem 3.1 we have

x∗
′
(0) + v∗(0) ∈ K∗Q0

(x̃(0)); −x∗(0) ∈ K∗Q1
(x̃′(0)), (4.6)

(
x∗
′
(1) + v∗(1),−x∗(1)

)
∈ ∂ϕ

(
x̃(1), x̃′(1)

)
. (4.7)

Since by (4.4) v∗(t) = −B∗λ(t), x∗(t) = −C∗λ(t), we derive from (4.6), (4.7)
that

−C∗λ′(0)−B∗λ(0) ∈ K∗Q0
(x̃(0)); C∗λ(0) ∈ K∗Q1

(x̃′(0)),(
− C∗λ′(1)−B∗λ(1), C∗λ(1)

)
∈ ∂ϕ

(
x̃(1), x̃′(1)

)
.

The proof of theorem is completed. �

Then, as a result of Theorems 3.1 and 3.2 for a problem (PL) we have the
following duality theorem.

Theorem 4.2. Let the conditions of Theorem 3.1 be satisfied and x̃(·) be an op-
timal solution of the primary problem (PL). Then x̃∗(t), t ∈ [0, 1] is an optimal
solution of the dual problem (PL∗) if and only if the sufficient optimality condi-
tions of Theorem 3.1 are satisfied. In addition, the optimal values in the primary
(PL) and dual (PL∗) problems are equal.
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5. Conclusion

First are derived necessary and sufficient optimality conditions in the form of
Euler-Lagrange type inclusions and transversality conditions. Then we treat dual
results according to the dual operations of addition and infimal convolution of
convex functions. For construction of the duality problem skilfully computation of
conjugate and support functions are required. It appears that the Euler-Lagrange
type inclusions are duality relations for both primary and dual problems and that
the dual problem for discrete-approximate problem make a bridge between the
dual problems of discrete and continuous problems. We believe that relying to
the method described in this paper it can be obtained the similar duality re-
sults to optimal control problems with any higher order differential inclusions.
In this way for computation of the conjugate function and support function of
discrete-approximate problem a Pascal triangle with binomial coefficients, can
be successfully used for any ”higher order” calculations. These difficulties, of
course, are connected with the existence of higher order difference derivatives in
Mayer functional and discrete-approximate inclusions, respectively. There has
been a significant development in the study of duality theory to problems with
first order differential/difference inclusions in recent years. As an open problem
for further investigations, we mention the study of duality theory for an arbitrary
higher-order differential inclusion. Besides, there can be no doubt that investiga-
tions of duality results to problems with second-order differential inclusions can
have great contribution to the modern development of the optimal control the-
ory. Consequently, there arises a rather complicated problem with simultaneous
determination of conjugacy of a Mayer functional depending of high order deriva-
tives of searched functions. Thus, we can conclude that the proposed method is
reliable for solving the various duality problems with higher order discrete and
differential inclusions.
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