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THE SECOND ORDER OF ADS FOR REVERSE PARABOLIC

BOUNDARY VALUE PROBLEM WITH INTEGRAL

CONDITION

CHARYYAR ASHYRALYYEV

Abstract. Finite difference method to solve nonlocal reverse parabolic
(RP) problem with integral condition are applied. The second order
of accuracy difference scheme (ADS) for approximation of RP problem
is proposed. Stability estimates (SEs) for solutions of this difference
scheme (DS) are proved. Later, we propose the second order of ADS for
approximation of multidimensional RP boundary value problem (BVP)
with first kind boundary condition (BC) and establish SEs for its solu-
tion. Numerical illustration for simple test problems is given.

1. Preliminaries

Nonlocal BVPs for parabolic equations are used to model of biological, physi-
cal, system engineering and sociological processes and have been studied by many
authors (see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 23, 24,
25, 26] and bibliography therein).

RP equation arise in many applications such as fluid dynamics, plasma physics,
study of propagation of an electron beam through the solar corona [13, 18, 19, 23,
24]. In paper [17], computatıon of mean field equilibria in economics is carried
out by using model with RP equation.

Well-posedness of non classical BVPs for RP equation with various boundary
conditions and DSs for approximations were investigated in [2, 3, 4, 6, 7, 9, 10].
In paper [2], the authors established well-posedness of multipoint nonlocal BVPs
for RP equations. In [3, 4], first and second orders DSs for approximate solution
of multipoint nonlocal BVPs for RP equations were studied. In [8, 9], second
order DSs for approximate solution of multipoint nonlocal problems for multi-
dimensional RP equations with Dirichlet and Neumann boundary conditions,
respectively.

In paper [6], the RP problem
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
ut(t)−Au(t) = f(t), 0 ≤ t ≤ 1,

u(1) =

1∫
0

µ(s) u(s) ds + ϕ
(1.1)

with integral condition and some BVPs to multidimensional RP equation were

investigated on well-posedness under assumption
1∫
0

|µ(s)| ds ≤ 1 for coefficient

function in integral condition.
Here H is an arbitrary Hilbert space, A is self-adjoint positive definite (SAPD)

operator in H, I is identity operator, A > δI (δ > 0), µ : [0, 1]→ R, f : [0, 1]→
H are given functions and ϕ is known element is in H.

Let [0, 1]τ = { ti| ti = iτ} be the uniform grid space for some fixed natural

number N , τ = 1
N and Cτ (H) = C( [0, 1]τ , H) be the linear space of the

corresponding grid functions vτ = {vi}i=Ni=1 with values vi = v(ti) in H. By
Cτ (H), Cατ (H) = Cα( [0, 1]τ , H), and Cα1 (H) = Cα1 ( [0, 1]τ , H), we denote Ba-
nach spaces of vτ functions with the corresponding norms

‖vτ‖Cτ (H) = max
1≤i≤N

‖vi‖H ,

‖vτ‖Cατ (H) = ‖vτ‖Cτ (H) + max
1≤i<i+j≤N

(jτ)−α‖vi+j − vi‖H ,

‖vτ‖Cα1 (H) = ‖vτ‖
Cατ (H)

+ max
1≤i<i+j≤N

(jτ)−α ((N − i)τ)α ‖vi+j − vi‖H .
(1.2)

In [7], stability estimates for solution of first order DS for approximate solution
of RP problem with integral condition (1.1) were established under some condi-
tion for coefficient function. However, approximation of BVPs for RP equation
with integral conditions have not been well-investigated so far. Therefore, the
main aim of this paper is to study second order of ADS for approximation of RP
problem with nonlocal integral condition (1.1):

ui−ui−1

τ −A
(
I + τ

2A
)
ui−1 =

(
I + τ

2A
)
f
((
i− 1

2

)
τ
)
,

ti = iτ, 1 ≤ i ≤ N, τ = 1
N ,

(1.3)

uN =
N∑
j=1

µ(tj −
τ

2
)

(
uj + uj−1

2

)
τ + ϕ. (1.4)

In future throughout paper will be needed the following assumption:

N∑
j=1

∣∣∣µ(tj −
τ

2
)
∣∣∣ τ < 1. (1.5)

Introduce notations:

F =

(
I + τA+

(τA)2

2

)−1

, (1.6)

θi = f

((
i− 1

2

)
τ

)
, 1 ≤ i ≤ N, θτ = {θi}N1 . (1.7)
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Lemma 1.1. The following inequalities hold ([5]):∥∥Fm − e−mτA∥∥
H→H ≤

Mτ2

(mτ)2 ,m ≥ 1,

∥∥∥∥(τA)γ F

(
I +

τA

2

)∥∥∥∥
H→H

≤ 1,

γ ∈ {0, 1} ,
∥∥∥(τA)β Fm

∥∥∥
H→H

≤ 1

mβ
, m ≥ 1, 0 ≤ β ≤ 1,∥∥∥∥(I +

τA

2

)
F

(
I +

τA

2

)∥∥∥∥
H→H

≤ 1,

∥∥∥∥(I + τA) F

(
I +

τA

2

)∥∥∥∥
H→H

≤ 2.

(1.8)

Lemma 1.2. Under the assumption (1.5), for the operator

Tτ = I −
N∑
j=1

µ(tj −
τ

2
)
τ

2

(
FN−j + FN−j+1

)
exists inverse operator

Qτ =

I − N∑
j=1

µ(tj −
τ

2
)
τ

2

(
FN−j + FN−j+1

)−1

(1.9)

and the inequality
‖Qτ‖H→H ≤M (δ) (1.10)

is satisfied for some constant M which depends only on δ.

Proof. By using definition of function’s norm for SAPD operator (see [14]),
one can write

‖Qτ‖H→H ≤ sup
λ≥δ

1∣∣∣∣∣1− N∑
j=1

µ(tj − τ
2 )τ 1(

1+τλ+ τ2λ2

2

)N−j
1
2

(
1 + 1

1+τλ+ τ2λ2

2

) ∣∣∣∣∣
≤ sup

λ≥δ

1∣∣∣∣∣1− N∑
j=1

∣∣µ(tj − τ
2 )
∣∣ τ ∣∣∣∣∣
≤M.

The goal of the current paper is to construct stable DS for approximation of
RP problem (1.1). So, we will prove SEs for solution of the second order of ADS.
Later, we study the the second order of ADS for approximate solution of BVP
for RP multidimensional equation and establish stability inequalities for solution
of DS. Lasty, by using MATLAB program, we illustrate numerical results in test
examples.

2. Second order of ADS

Theorem 2.1. Assume that θτ ∈ Cτ (H), ϕ ∈ D(A), and (1.5) is satisfied.
Then, difference problem (1.3) , (1.4) has solution and stability estimate for its
solution

max
0≤j≤N

‖uj‖H ≤M (δ, µ)
(
‖ϕ‖H + ‖θτ‖

Cτ (H)

)
(2.1)

is valid, for some positive real constant M (δ, µ) which is independent of τ, ϕ, θτ ,
but depends on δ, µ.
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Proof. If uN is given, then solution of (1.3) can be defined by

uj = FN−juN −
N∑

l=j+1

F l−j
(
I + τ

A

2

)
θlτ, 0 ≤ j ≤ N − 1. (2.2)

By virtue (2.2), from (1.4) implies

uN =
N∑
j=1

µ(tj −
τ

2
)
τ

2

(
FN−j + FN−j+1

)
uN

−
N∑
j=1

µ(tj −
τ

2
)

 N∑
l=j+1

(
F l−j + F l−j+1

)(
I +

τA

2

)
θlτ


−

N∑
j=1

µ(tj −
τ

2
)F

(
I +

τA

2

)
θjτ + ϕ.

(2.3)

According to the Lemma 2.2, there exists solution of DS (1.3), (1.4) in the form
(2.2) with the corresponding value uN :

uN = −Qτ
N∑
j=1

µ(tj − τ/2)

 N∑
l=j+1

(
F l−j + F l−j+1

)(
I +

τ

2
A
)
θlτ



−Qτ
N∑
j=1

µ(tj −
τ

2
)F
(
I +

τ

2
A
)
θjτ +Qτϕ.

(2.4)

So, difference problem (1.3), (1.4) is uniquely solvable and its solution is defined
by (2.2), (2.4).

From (1.5), (2.2), τN = 1 follows

‖uj‖H ≤
∥∥FN−j∥∥

H→H ‖uN‖H + max
1≤l≤N

‖θl‖
H

N∑
l=j+1

∥∥∥F l−j (I +
τ

2
A
)∥∥∥

H→H
τ

≤M1

(
‖uN‖H + ‖θτ‖

Cτ (H)

)
.

Thus,

max
0≤j≤N

‖uj‖H ≤M1

(
‖uN‖H + ‖θτ‖

Cτ (H)

)
.

Under assumption (1.5), by using formula (2.4), we get

‖uN‖H ≤M2

(
‖θτ‖

Cτ (H)
+ ‖ϕ‖H

)
.

Combining these estimates, one can establish (2.1) and complete proof of state-
ment.
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Theorem 2.2. Assume that ϕ ∈ D(A), θτ ∈ Cα1 (H), and (1.5) is valid. Then,
solution of DS (1.3), (1.4) satisfies the coercive SE∥∥∥∥∥

{
ui − ui−1

τ

}N
1

∥∥∥∥∥
Cατ (H)

+

∥∥∥∥∥
{
A

(
I +

τA

2

)
ui−1

}N
1

∥∥∥∥∥
Cα1 (H)

≤M (δ, µ)

(
1

α(1− α)
‖θτ‖Cα1 (H) + ‖Aϕ‖H

) (2.5)

for some positive real constant M (δ, µ) which is independent of τ, ϕ, θτ , but de-
pends on δ, µ.

Proof. By vitue (2.2), definition of operator F , and the following identity

τAF
(
I +

τ

2
A
)

= I − F, (2.6)

we get

A
(
I +

τ

2
A
)
ui−1 =

(
I +

τ

2
A
)
FN−i+1AuN

−
N∑
j=i

AF j−iF
(
I +

τ

2
A
)

(θj − θi) τ +
(
FN−i+1 − I

)
θi

(2.7)

for any 1 ≤ i ≤ N. By using triangle inequality to (2.7), and by applying estimates
(1.8), the definition of norm in Cα1 (H), we have

∥∥∥∥A(I +
τA

2

)
ui−1

∥∥∥∥
H

≤
∥∥FN−i+1

∥∥
H→H · ‖AuN‖H

+
N∑
j=i

‖θτ‖Cα1 (H) τ

(j − i+ 1)1−α (N − i+ 1)α
+
(∥∥FN−i+1

∥∥
H→H + 1

)
‖θτ‖Cα1,τ (H)

≤ ‖AuN‖H + 4α−1 ‖θτ‖Cα1 (H) , i = 1, ..., N.

(2.8)

From definition of F and (2.4) it implies that

AuN = −Qτ
N∑
j=1

µ(tj −
τ

2
)

 N∑
l=j+1

τ
(
AF l−j +AF l−j+1

)(
I +

τ

2
A
)
θl


−Qτ

N∑
j=1

µ(tj −
τ

2
)τAF

(
I +

τ

2
A
)
θj + τQAϕ.

(2.9)

So, by (1.5), (1.8), (1.10), (2.9), the definition of Cα1 (H) -norm, one can show

‖AuN‖H ≤M (δ, µ)
(

4α−1 ‖θτ‖Cα1 (H) + ‖Aϕ‖H
)
, i = 1, ..., N. (2.10)

Therefore, from inequalities (2.8), (2.10) it can be conlcluded that∥∥∥∥∥
{
A

(
I +

τA

2

)
ui−1

}N
1

∥∥∥∥∥
Cτ (H)

≤M (δ, µ)
(
α−1 ‖θτ‖Cα1 (H) + ‖Aϕ‖H

)
. (2.11)
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Now, let us estimate
∥∥∥{A (I + τA

2

)
ui−1

}N
1

∥∥∥
Cα1 (H)

. Let us N − i + l > 2l. Then,

by virtue (2.2), we have

A

(
I +

τA

2

)
ui−1 −A

(
I +

τA

2

)
ui−1+l

=

(
I +

τA

2

)(
FN−i+1 − FN−i−l+1

)
AuN

−
k+2l−1∑
k=i

τAF k−iF

(
I +

τA

2

)
(θk − θi)

−
N∑

k=i+2l

τA
(
F k−i − F k−(i+l)

)
F

(
I +

τA

2

)
(θk − θi−1)

+

k+2l−1∑
k=i+l

τAF k−(i+l)F

(
I +

τA

2

)
(θk − θi+l)

+
(
I − F l−1

)
(θi+l − θi) +

(
FN−i+1 − FN−(i−1+l)

)
θi =

6∑
j=1

Pj(i).

(2.12)

By using (1.8), (1.10), we can show

‖P1(i)‖H ≤M (δ, µ)
(lτ)α

((N − i+ l) τ)α

(
α−1 ‖θτ‖Cα1 (H) + ‖Aϕ‖H

)
.

Estimates for ‖Pj(i)‖H (j = 2, 3, 4, 5, 6) were established in the paper [4] by
(29)-(33):

‖P2(i)‖H ≤
(lτ)α

((N−i+l)τ)α
4α

α ‖θ
τ‖Cα1 (H) , ‖P3(i)‖H ≤M

4α

1−α
(lτ)α

((N−i+l)τ)α
‖θτ‖Cα1 (H) ,

‖P4(i)‖H ≤
3α

α
(lτ)α

((N−i+l)τ)α
‖θτ‖Cα1 (H) , ‖P5(i)‖H ≤ 21+α (lτ)α

((N−i+l)τ)α
‖θτ‖Cα1 (H) ,

‖P6(i)‖H ≤ 3α (lτ)α

((N−i+l)τ)α
‖θτ‖Cα1 (H) .

Combining these estimates one can obtain

max
1≤i<i+l≤N

((N − i+ l) τ)α

(lτ)α

∥∥∥∥A(I +
τA

2

)
ui−1 −A

(
I +

τA

2

)
ui−1+l

∥∥∥∥
H

≤M (δ, µ)
(
α−1 (1− α)−1 ‖θτ‖Cα1 (H) + ‖Aϕ‖H

)
.

(2.13)
From (2.11) and (2.13) it follows that∥∥∥∥∥
{
A

(
I +

τA

2

)
ui−1

}N
1

∥∥∥∥∥
Cα1 (H)

≤M (δ, µ)
(
α−1 (1− α)−1 ‖θτ‖Cα1 (H) + ‖Aϕ‖H

)
.

(2.14)
Finally, estimate (2.5) implies from (1.3), triangle inequality and estimate (2.14).
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3. DS for RP multidimensional problem

Let Ω = (0, l)× (0, l)× ...× (0, l) be open cube in Rn, S = ∂Ω,
Ω = Ω ∪ S, and ar : Ω → R,ϕ : Ω → R, µ : [0, 1] → R, f : (0, 1) × Ω → R
be given functions, σ be known positive real number. In addition, ∀r = 1, ..., n,
∀x = (x1, .., xn) ∈ Ω, ar(x) ≥ a0 > 0.

In the work [6], BVP for RP multidimensional equation with integral and first
kind of BCs

ut (t, x) +

n∑
r=1

(ar(x) uxr(t, x)) xr − σ u(t, x) = f(t, x),

t ∈ (0, 1) , x ∈ Ω,

u(1, x) =

1∫
0

µ(s)u(s, x)ds+ ϕ(x), x ∈ Ω,

u(t, x) = 0, x ∈ S, t ∈ [0, 1]

(3.1)

was investigated on well-posedness.
Now, we will construct the second order of ADS to solve BVP (3.1).
Let us denote by

Ω̃h = {xm = (h1m1, · · · , hnmn);m = (m1, · · · ,mn),

mr = 0, · · · , Nr, hrNr = l, r = 1, · · · , n},

space of grid points and Ωh = Ω ∩ Ω̃h, Sh = Ω̃h ∩ S, and by Axh the operator

Axhu
h(x) = −

∑n
r=1

(
ar(x)uhxr(x)

)
xr,jr

+ σuh(x) acting in the space of grid func-

tions uh(x) which satisfies the condition uh(x) = 0 on x ∈ Sh.
By using notation Axh, the problem (3.1) reduces to the following nonlocal BVP

for an infinite system of ordinary differential equations with integral condition
d

dt
uh(t, x)−Axh uh(t, x) = fh(t, x), t ∈ (0, 1) , x ∈ Ω̃h,

uh(1, x) =

1∫
0

µ(s) uh(s, x) ds+ ϕh(x), x ∈ Ω̃h.
(3.2)

In sequel, BVP (3.1) is replaced by the the second order of ADS

uhk(x)− uhk−1(x)

τ
−AxhBx

hu
h
k−1(x) = ψk(x),

ψk(x) = Bx
hf

h(tk− τ
2
, x), Bx

h = I +
τAxh

2
,

tk = kτ, k = 1, ..., N, Nτ = 1, x ∈ Ω̃h,

uhN (x) =

N∑
j=1

µ(tj − τ
2 )τ

2

[
uhj (x) + uhj−1(x)

]
+ ϕh(x), x ∈ Ω̃h.

(3.3)
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We denote by L2h and W 2
2h spaces of the grid functions ϕh(x) defined on grid

space Ω̃h, equipped with the appropriate norms

∥∥∥ϕh∥∥∥
L2h

=

∑
x∈Ω̃h

|ϕh(x)|2h1 · · ·hn

1/2

,

∥∥∥ϕh∥∥∥
W 2

2h

=

∑
x∈Ω̃h

n∑
r=1

∣∣∣(ϕh(x))xrxr, mr

∣∣∣2 h1 · · ·hn

1/2

.

Throughout this section, let |h| =
(

n∑
r=1

h2
r

) 1
2

and τ be small positive real num-

bers.

Theorem 3.1. For the solution of DS (3.3) the SE∥∥∥∥{uhk}N1
∥∥∥∥
Cτ (L2h)

≤M(δ, µ)

[∥∥∥ϕh∥∥∥
L2h

+

∥∥∥∥{ψhk}N1
∥∥∥∥
Cτ (L2h)

]

is fulfilled, where M(δ, µ) is independent of τ, ϕh(x), and
{
ψhk
}N

1
.

The proof of Theorem 3.1. is based on estimate (2.1), assumption (1.5), and
the following theorem on the coercivity stability property for the solution of the
elliptic difference problem (EDP) in L2h.

Theorem 3.2. ([22]) For the solution of the EDP
Axhu

h(x) = ωh(x), x ∈ Ω̃h,

uh(x) = 0, x ∈ Sh,

the coercivity estimate holds :

n∑
r=1

∥∥∥(uhk)xrxr,jr

∥∥∥
L2h

≤M ||ωh||L2h
,

where M does not depend on ωh and h.

Theorem 3.3. Solution of difference problem (3.3) satisfies the following coer-
civity SE:∥∥∥∥{τ−1(uhk − uhk−1)

}N
1

∥∥∥∥
Cα1 (L2h)

≤M(δ, µ, α)

[∥∥∥ϕh∥∥∥
W 2

2h

+
1

α (1− α)

∥∥∥∥{ψhk}N1
∥∥∥∥
Cα1 (W 2

2h)

]
,

where M(δ, µ, α) is independent of τ,
{
ψhk
}N

1
, and ϕh(x).

4. Numerical examples

4.1. 1D example. To illustrate test example, for one-dimensional RP equation
and given functions
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ϕ(x) =

(
e−1 +

e−3

3
− 1

3

)
sinx, µ(t) = e−2t,

f(t, x) = −e−t (4 cosx+ cos 2x) , t ∈ [0, 1] , x ∈ [0, π] ,

we consider the following BVP

ut(t, x) + (2 + cosx)uxx(t, x) + sinx ux(t, x)− u(t, x) = f(t, x),
0 ≤ t ≤ 1, x ∈ (0, π) ,

u(1, x) =

1∫
0

µ (s) u(s, x)ds+ ϕ(x), x ∈ [0, π] ,

u(t, 0) = 0, u(t, π) = 0, t ∈ [0, 1]

(4.1)

with nonlocal integral condition.
Exact solution of problem(4.1) u(t, x) = e−t sinx.
Now, applying (3.3) to this problem, we get the next second order of ADS in

t and x for approximation of BVP (4.1):



ukn − uk−1
n

τ
+ (1 + τ/2)uk−1

n + q1,n

(
uk−1
n+1 − u

k−1
n−1

)
(2h)−1

+
q2,n

h2

(
uk−1
n+1 − 2uk−1

n + uk−1
n−1

)
− q3,n

2h3

(
uk−1
n+2 − 2uk−1

n+1 + 2uk−1
n−1 − u

k−1
n−2

)
−q4,n

h4

(
uk−1
n+2 − 4uk−1

n+1 + 6uk−1
n − 4uk−1

n−1 + uk−1
n−2

)
= −

(
1− τ

2

)
e
−t
k− 1

2 (4 cosxn+ cos 2xn)

−τ
2

(
(2 + cos(xn))e

−t
k− 1

2 (−4 cosxn−4 cos 2xn)

− sin(xn) (−4 sinxn−2 sin 2xn)) , tk− 1
2

= tk −
τ

2
, n = 2,M − 2, , k = 1, N,

uk0 = 0, uk1 =
4

5
uk2 −

1

5
uk3, u

k
M = 0, ukM−1 =

4

5
ukM−2 −

1

5
ukM−3, k = 0, N,

uNn =

N∑
j=1

1

2
µ(tj −

τ

2
)τ
[
ujn + uj−1

n

]
+ ϕn, n = 0,M,

(4.2)
where

q1,n = (1 + 2τ + τ cosxn) sinxn,

q2,n =

(
(2 + cosxn)

(
1 + τ +

3τ

2
cosxn

)
− τ sin2 xn

)
,

q3,n = (2 + cosxn) sinxnτ, q4,n = (2 + cos(xn))2.

One can write (4.2) in the next matrix form{
Anun+2 +Bnun+1 + Cnun +Dnun−1 + Enun−2 = IN+1ϕn, n = 2,M − 2,

u0 =
−→
0 , u1 =

4

5
u2 −

1

5
u3, uM−1 =

4

5
uM−2 −

1

5
uM−3, uM =

−→
0 .

(4.3)
Here, Ik is k× k identity matrix, ϕn is (N + 1)× 1 type matrix, and An, Bn, Cn,
Dn, En are (N + 1)× (N + 1) type matrices

ϕn =
[
ϕ0
n · · · ϕNn

]t
,
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Ok×m is k ×m type matrix with zero elements,

An =

[
O1×(N+1)

vnIN ON×1

]
, Bn =

[
O1×(N+1)

ynIN ON×1

]
,

Dn =

[
O1×(N+1)

znIN ON×1

]
, En =

[
O1×(N+1)

wnIN ON×1

]
,

Cn =



s0 s1 s2 · · · sN−2 sN−1 sN
rn d 0 · · · 0 0 0
0 rn d · · · 0 0 0
...

. . .
. . .

. . .
...

...
...

0 0 0
. . .

. . . 0 0

0 0 0
. . . rn d 0

0 0 0 · · · 0 rn d


where

vn =
τ

h3
q3,n −

τ

2h4
q4,n, d =

1

τ
, yn =

1

2h
q1,n +

1

h2
q2,n +

1

h3
q3,n,

rn = 1 +
τ

2
− 1

τ
− 2

h2
q2,n −

3τ

h4
q4,n, wn =

τ

2h3
q3,n −

τ

2h4
q4,n,

zn = − 1

2h
q1,n +

1

h2
q2,n −

τ

h3
q3,n +

2τ

h4
q4,n, s0 = −τ

2
µ(
τ

2
),

sN = 1− τ

2
µ(tN −

τ

2
), sj = −τ

2

(
µ(tj− 1

2
) + µ(tj+ 1

2
)
)
, j = 1, ..., N − 1.

A solution of (4.3) is defined by modified Gaus elimination method ([21]):

un = αn+1un+1 + βn+1un+2 + γn+1,
βn+1 = −F−1

n An, αn+1 = −F−1
n (Bn +Dnβn + Enαn−1βn) ,

γn+1 = −F−1
n (IN+1ϕn −Dnγn − Enαn−1γn − Enγn−1) ,

Fn = (Cn +Dnαn + Enβn−1 + Enαn−1αn)

for n = M − 2, · · · , 0, where

γ1 = γ2 = O(N+1)×1, α1 = β1 = O(N+1)×(N+1),

α2 =
4

5
IN+1, β2 = −1

5
IN+1,

uM =
−→
0 , DM = (βM−2 + 5IN+1)− (4IN+1 − αM−2)αM−1,

uM−1 = D−1
M [(4IN+1 − αM−2) γM−1 − γM−2] .

For different values of (N,M) error computed by next formula

EuNM = max
1≤k≤N−1

(
M−1∑
n=1

(u(xn, tk)− ukn)2h

) 1
2

and presented in Table 1. Numerical results which presented in Table 1 shows
good agreement with theoretical stability results for solution of proposed DS to
RP BVP with Dirichlet boundary and integral conditions. We observe that the
scheme (4.2) has the second order convergence as it is expected to be.

Table 1. The errors between the exact solution of BVP (4.1) and the numerical
solutions for different values of τ and h.
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(N,M) EuNM
(10, 10) 5.63× 10−3

(20, 20) 9.65× 10−4

(40, 40) 2.27× 10−4

(80, 80) 5.75× 10−5

(160, 160) 1.46× 10−5

(320, 320) 3.69× 10−6

4.2. 2D example. Now, we consider BVP for two dimensional RP equation
with integral condition



ut(t, x, y) + uxx(t, x, y) + uyy(t, x, y)− u(t, x, y) = f(t, x, y),
0 < x, y < 1, 0 ≤ t ≤ 1,

u(1, x, y) =

1∫
0

µ(γ) u(γ, x, y) dγ + ϕ(x, y), 0 ≤ x, y ≤ 1,

u(t, 0, y) = 0, u(t, 1, y) = 0, 0 ≤ y ≤ 1, , 0 ≤ t ≤ 1
u(t, x, 0) = 0, u(t, x, 1) = 0, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1.

(4.4)

Here

µ(t) =
1

2e2t
, ϕ(x) =

(
e−1 +

e−3

6
− 1

6

)
ξ(x, y),

ξ(x, y) = sinx sin y, f(t, x, y) = −4e−tξ(x, y).

Exact solution of problem (4.4) is u(t, x, y) = e−t ξ(x, y).
Let us take

xm = (m− 1)h, yn = (n− 1)h, tk = (k − 1)τ,

fkm,n = −4e−(tk− τ2 )ξ(xm, yn), k = 0, N, n,m = 0,M.

By using (3.3) and Crank-Nicolson scheme, one can get the second order of ADS
for approximately solution of BVP (4.4)

ukm,n − uk−1
m,n

τ
+

ukm+1,n − 2ukm,n + ukm−1,n

2h2
+

ukm,n+1 − 2ukm,n + ukm,n−1

2h2
− 1

2
ukm,n

+
uk−1
m+1,n − 2uk−1

m,n + uk−1
m−1,n

2h2
+

uk−1
m,n+1 − 2uk−1

m,n + uk−1
m,n−1

2h2
− 1

2
uk−1
m,n = fkm,n,

k = 1, N − 1 , n,m = 1,M − 1,

uk0,n = 0, ukm,0 = 0, n = 1,M − 1,m = 1,M − 1, k = 1, N − 1 ,

uNm,n =
N∑
j=1

τ

2
µ(tj −

τ

2
)
[
ujm,n + uj−1

m,n

]
+ ψm,n, n,m = 1,M − 1.

(4.5)
One can write (4.5) in the matrix form{

Aun+1 +Bun + Cun−1 = IKf
(n), n = 1,M − 1,

u0 =
−→
0 , uM =

−→
0 .

(4.6)
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Here, f (n), un−1, un, un+1 are the K × 1 column matrices such that
K = (N + 1)(M + 1),

f (i) =
[
f0

0,i · · · fN0,i f0
1,i · · · fN1,i · · · f0

M,i · · · fNM,i

]t
,

ui =
[
u0

0,i · · · uN0,i u0
1,i · · · uN1,i · · · u0

M,i · · · uNM,i

]t
,

i = n− 1, n, n+ 1, a =
1

2h2
, b = −1

τ
− 1

2h2
− 1

2
, c =

1

τ
− 1

2h2
− 1

2
,

D =


b c · · · 0 0

0 b
. . . 0 0

...
. . .

. . .
. . .

...
0 0 · · · b c
s0 s1 · · · sN−1 sN

 , E =


a a · · · 0 0

0 a
. . . 0 0

...
. . .

. . .
. . .

...
0 0 · · · a a
0 0 · · · 0 0

 ,

B =



IK O O · · · O O O
E D E · · · O O O

O E D
. . . O O O

...
...

. . .
. . .

. . .
...

...
...

...
. . .

. . .
. . .

. . .
...

O O O · · · E D E
O O O · · · O O IK


, A = C = diag{O,E, ...E,O}.

A solution of (4.6) is defined by modified Gaus elimination method ([21]):

uM =
−→
0 , un = αnun+1 + βn, n = M − 1, · · · , 1,

αn = − (B + Cαn−1)−1A, βn = (B + Cαn−1)−1
(
Inf

(n) − Cβn−1

)
,

β1 = OK×1, α1 = OK×K .

The errors between the exact solution of (4.4) and the numerical solutions are
calculated by

EuNM,M = max
1≤k≤N−1

(
M−1∑
m=1

M−1∑
n=1

(u(xm, yn, tk)− ukm,n)2h2

) 1
2

.

Table 2. The errors between the exact solution of (4.4) and the numerical solu-
tions for different values of τ and h.

(N,M) EuNM,M

(5, 5) 1.90× 10−2

(10, 10) 4.74× 10−3

(20, 20) 1.18× 10−3

(40, 40) 2.96× 10−4

We observe that the scheme (4.5) has the second order convergence as it is
expected to be.
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5. Conclusion

In this paper, we use finite difference method to find approximate solution of
the RP problem with nonlocal integral condition. We give the second order of
ADS for the approximation of RP problem. Proposed DS uses A and A2 and it is
good for smooth input data for BVPs. We prove stability and coercive stability
inequalities for solution of this DS. Later, we describe the second order of ADS for
RP multidimensional problem with Dirichlet boundary condition and establish
stability inequalities for solution. Lastly, by using MATLAB program, we give
numerical illustration for simple 1D and 2D test problems. Notice that 1D test
example is used second order of accuracy DS with A2 term but 2D test example
is carried out by using Crank-Nicolson DS which has the same order accuracy. It
is well-known that Crank-Nicolson DS is good for realization but does not work
with unsmooth data. In future work it could be established well-posedness such
type DSs.
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