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ON STRONG SOLVABILITY OF THE DIRICHLET PROBLEM

FOR A CLASS OF SEMILINEAR ELLIPTIC EQUATIONS

WITH DISCONTINUOUS COEFFICIENTS

FARMAN I. MAMEDOV AND SHAHLA YU. SALMANOVA

Abstract. We study a strong solvability of the Dirichlet problem
n∑

i,j=1

aij(x)uxixj + g(x, u) = f(x), x ∈ Ω, u|∂Ω = 0

for a class of semilinear elliptic equations with discontinuous coefficients
satisfying the Cordes condition. For this problem we get the existence
results in Ẇ 2

2 (Ω) Sobolev space whenever the norm ‖f‖L2(Ω) is suffi-

ciently small. We also have proved the strong solvability of the Dirichlet
problem in space Ẇ 2

p (Ω) with 1 < p < ∞ for the equation considered
above with continuous leading coefficients and a small ‖f‖Lp(Ω) norm.

1. Introduction and the main results

Let En be n-dimensional Euclidean space of the points x = (x1, x2, ..., xn) and
Ω be a bounded domain in En with boundary ∂Ω of the class C2. We consider
in Ω the following Dirichlet problem:

n∑
i,j=1

aij(x)uxixj + g(x, u) = f(x), x ∈ Ω, (1.1)

u|∂Ω = 0. (1.2)

It is assumed that the coefficients aij(x), i, j = 1, 2, .., n of the operator

L =
n∑

i,j=1
aij

∂2

∂xi∂xj
are bounded measurable functions satisfying the conditions

γ|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ γ−1|ξ|2, ∀x ∈ Ω, ∀ξ ∈ En, γ ∈ (0, 1), (1.3)

ess sup
x∈Ω

n∑
i,j=1

a2
ij(x)[

n∑
i=1

aii(x)

]2 ≤
1

n− 1
− δ, (1.4)
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where δ ∈
(
0, 1

n

)
is some number and g(x, u) : Ω × E1 → E1 is a Caratheodory

function, measurable with respect to x ∈ Ω and, for almost all x ∈ Ω continuous
with respect to u ∈ E1 and, in addition to this, satisfying the following growth
condition:

|g(x, u)| ≤ b0 |u|q , b0 > 0. (1.5)

Condition (1.4) is called the Cordes condition. We understand it in the fol-
lowing sense: the domain Ω can be covered by a finite number of domains Ωi so
that in every Ωi there is a non-degenerate linear transformation of space, under
which the equation coefficients satisfy the condition (1.4).

We denote by Ẇ 2
p (Ω) (p ≥ 1) the closure of the class of functions u ∈ C∞(Ω)∩

C(Ω), u|∂Ω = 0 with respect to the norm

‖u‖W 2
p (Ω) =

∫
Ω

|u|p +
n∑
i=1

|ui|p +
n∑

i,j=1

|uij |p
 dx

1/p

.

Let ui and uij denote the derivatives uxi and uxixj respectively i; j = 1, ..., n.

The conjugate number is denoted by p′ i.e., 1 < p <∞, 1
p′ + 1

p = 1.

The notation Ci(...) means that the positive constant Ci depends on the pa-
rameters indicated in parentheses.

A function u(x) ∈ Ẇ 2
p (Ω) is called a strong solution of problem (1.1)-(1.2) if

it satisfies equation (1.1) a.e. in Ω.
Let us recall some known results directly related to the subject. In the case

of linear equations the questions of strong solvability of elliptic and parabolic
equations with discontinuous leading coefficients satisfying the Cordes condition
were considered in [3, 11, 15], where the problem of deriving the estimate∫

Ω

(∆u)2dx ≤ C1(n, γ, δ)

∫
Ω

Lu ·∆udx (1.6)

is the essential point of the investigation. From the examples in [8, p. 48], it
follows that if the coefficients of operator L are discontinuous and the Cordes
condition is not fulfilled, then the equation Lu = f is unsolvable in Ẇ 2

p (Ω) for
any p > 1. For the further results on strong solvability of linear elliptic equations
with discontinuous coefficients in Ẇ 2

p (Ω) (p > 1) we refer to the monographs

[5, 8]. For such equations with VMO class coefficients the questions of Ẇ 2
p (Ω)

strong solvability for p > 1 were considered in [12]. Studies of nonlinear parabolic
equation with discontinuous coefficients were considered in [3, 13, 14].

Note that, in the study of semilinear equations (1.1) with small nonlinearity
(0 < q < 1), the condition in the norm of a function of type (2.1) on the right-
hand side is not required (see, [4]).

Different from semilinear equations with regular coefficients, the case of discon-
tinuous coefficients was not considered before on the subject of strong solvability.
The aim of this paper is to prove a strong solvability of Dirichlet problem for
a class of semilinear elliptic equations (1.1) in Sobolev’s space Ẇ 2

2 (Ω) when the
leading coefficients are discontinuous and satisfy the Cordes condition and the
function f(x) has a sufficiently small L2(Ω) (Cf.[10]) norm. We also consider the

results on strong solvability of Dirichlet problem in space Ẇ 2
p (Ω) with 1 < p <∞
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for a class of elliptic equations with continuous leading coefficients and function
f(x) having a sufficiently small Lp(Ω) norm.

2. Equations with Discontinuous Coefficients

Theorem 2.1. Let n > 4, 1 ≤ q < n
n−4 and conditions (1.3)-(1.5) be satisfied,

∂Ω ∈ C2. Then there exists a sufficiently small positive constant
C2 = C2(n, γ, δ, q, b0) such that problem (1.1)- (1.2) has at least one solution

from Ẇ 2
2 (Ω) for any f(x) ∈ L2(Ω) satisfying

‖f‖L2(Ω) ≤ C2(mesnΩ)
−n+(n−4)q

2n(q−1) . (2.1)

Proof. We apply Schauder’s theorem on continuous mappings of a convex and
the compact set into itself in a Banach space (see, e.g. [5, p. 257]).

Take L2q(Ω) as a Banach space. In this space we define the set of functions

V2 =
{
u ∈ Ẇ 2

2 (Ω) : ‖u‖W 2
2 (Ω) ≤ K

}
,

where the number K will be chosen later. For every u(x) ∈ L2q(Ω), f(x) ∈ L2(Ω)

we denote by v(x) ∈ Ẇ 2
2 (Ω) the solution of the problem:

Lv + g(x, u) = f(x), x ∈ Ω, (2.2)

v|∂Ω = 0. (2.3)

For any u(x) ∈ V2, f(x) ∈ L2(Ω) problem (2.2)-(2.3) is uniquely solvable in the

space Ẇ 2
2 (Ω), since under our assumptions we come to the Dirichlet problem for

the equation

Lv = F (x), x ∈ Ω, (2.4)

where F = f(x)− g(x, u) ∈ L2(Ω) (see [7]).
Indeed,

‖F‖L2(Ω) ≤ ‖f‖L2(Ω) + ‖g‖L2(Ω) ≤ ‖f‖L2(Ω) + b0‖u‖qL2q(Ω).

‖u‖qL2q(Ω) is finite since the space Ẇ 2
2 (Ω) is continuously embedded into L2q(Ω)

for 1 ≤ q < n
n−4 , therefore F ∈ L2(Ω) [5, see p. 154].

Denote by A the operator which transforms u to v in the problem (2.2), (2.3):

Au = v.

Let us show that the operator A is continuous in L2q(Ω).
Let un → u0 in L2q(Ω) as n → ∞, where un, u0 ∈ L2q(Ω) and vn = Aun;

v0 = Au0. Then

Lvn = −g(x, un) + f,

Lv0 = −g(x, u0) + f.
(2.5)

We show that vn → v0 in the norm of the space L2q(Ω). We have

L(vn − v0) = −(g(x, un)− g(x, u0)). (2.6)

Having multiplied both parts of equality (2.5) by ∆(vn − v0), we obtain:

L(vn − v0)∆(vn − v0) = −(g(x, un)− g(x, u0))∆(vn − v0).
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Hence, using estimate (1.6) and Holder inequality, we obtain

‖∆(vn − v0)‖L2(Ω) ≤ C3(n, γ, δ) ‖gn − g‖L2(Ω) , (2.7)

where gn = g(x, un), g = g(x, u0).
Let us show that

‖gn − g‖L2(Ω) → 0 for n→∞. (2.8)

From um → u in L2q(Ω) it follows that umk
− u → 0 almost everywhere

in Ω for some subsequence {umk
} . Since umk

→ u is convergent in L2q(Ω), the

sequence
{
|umk

|2q
}

is equi integrable. Therefore the Caratheodory condition and

the growth condition (1.5) imply the equicontinuity of the sequence
{
|gmk

− g|2
}

and the convergence of gmk
− g → 0 almost everywhere in Ω as mk →∞. Then,

applying Vitali’s theorem, we obtain

‖gmk
− g‖L2(Ω) → 0 for mk →∞. (2.9)

The same reasoning also holds for the sequence {gm − g} . Indeed, let
lim

ms→∞
‖gms − g‖L2(Ω) = δ, δ 6= 0 for some subsequence {gms − g} . Repeating

the above arguments for this subsequence, we find that it has a subsequence for
which (2.9) is fulfilled.

The obtained contradiction proves the convergence of ‖gm − g‖L2(Ω) → 0 as
m→∞.

Now taking (2.8) into account, from (2.7) we have

‖∆(vn − v0)‖L2(Ω) → 0, (n→∞).

Applying the estimate

‖vn − v0‖W 2
2 (Ω) ≤ C3 ‖∆(vn − v0)‖L2(Ω) ,

we obtain

‖vn − v0‖W 2
2 (Ω) → 0 (n→∞).

By virtue of the embedding theorem W 2
2 (Ω) ↪→ L2q(Ω), we have

‖vn − v0‖L2q(Ω) → 0 as n→∞.

The continuity of the operator A has been proved.
Let us prove that the set V2 is convex and compact in L2q(Ω) and that the

operator A transforms it to itself.
For u1, u2 ∈ V2 and v = tu1 + (1− t)u2, t ∈ [0, 1], we have

‖v‖W 2
2 (Ω) = ‖tu1 + (1− t)u2‖W 2

2 (Ω) ≤ t ‖u1‖W 2
2 (Ω) +

+ (1− t) ‖u2‖W 2
2 (Ω) ≤ tK + (1− t)K = K,

which means the convexity of V2.
The set V2 ⊂ L2q(Ω) is compact by virtue of the theorem on compact embed-

ding W 2
2 ↪→ L2q(Ω) whenever

1 ≤ q < n

n− 4
. (2.10)

Let us show that for a certain choice of K the operator A transforms V2 to
itself.
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For the solution of the Dirichlet problem for equation (2.4) we have

‖v‖W 2
2 (Ω) ≤ C4(n, γ, δ) ‖F‖L2(Ω) ≤ C4

[
‖f‖L2(Ω) + ‖g‖L2(Ω)

]
. (2.11)

Furthermore,

‖g‖L2(Ω) ≤

∫
Ω

b20 |u|
2q dx

1/2

≤ b0(mesnΩ)
1
2
−n−4

n
q

∫
Ω

u
2n
n−4dx

n−4
2n

q

≤

≤ b0(mesnΩ)
1
2(1−n−4

n
q)C5(n, q) ‖u‖q

W 2
2 (Ω)

. (2.12)

Here we have used the above-mentioned embedding theorem for (2.10).
Using the estimate (2.12) in (2.11), we obtain

‖v‖W 2
2 (Ω) ≤ C6

[
b0(mesnΩ)

1
2(1−n−4

n
q) ‖u‖q

W 2
2 (Ω)

+ ‖f‖L2(Ω)

]
≤

≤ C6

[
Kqb0(mesnΩ)

1
2(1−n−4

n
q) + ‖f‖L2(Ω)

]
,

where C6 = C6(n, δ, γ, q).
Let us assume that K satisfies the following estimate[

Kqb0(mesnΩ)
1
2(1−n−4

n
q) + ‖f‖L2(Ω)

]
≤ K. (2.13)

For such a number K to exist it is sufficient that

‖f‖L2(Ω) ≤ C7(mesnΩ)
−
(

n−(n−4)q
2n(q−1)

)
,

where C7 = C7(n, δ, γ, q).
Indeed, if we introduce the notation

a = b0(mesnΩ)
1
2(1−n−4

n
q), b = ‖f‖L2(Ω) ,

then inequality (2.13) reads

aKq + b ≤ K, aKq −K + b ≤ 0, K > 0. (2.14)

The function Ψ(K) = aKq − K, K ≥ 0, takes a minimal value for K0 =(
1
qa

) 1
q−1

. Indeed, Ψ′(K) = aqKq−1− 1, then for Kq−1
0 = 1

qa we have Ψ′(K0) = 0,

Ψ′′(K0) > 0. Therefore, for b ≤ Ψ(K0) inequality (2.13) is solvable with respect
to K. Theorem 2.1 is proved.

In the case 1 ≤ n ≤ 4 the following statement is true.

Theorem 2.2. Let conditions (1.3)-(1.5) be fulfilled and 1 ≤ n < 4 (n = 4), 1 <
q < ∞, ∂Ω ∈ C2. Then there exists a sufficiently small positive constant C8 =
C8(n, γ, δ, q, b0) (C9 = C9(n, γ, δ, q, b0)) such that problem (1.1), (1.2) has at least

one solution from Ẇ 2
2 (Ω) for any f(x) ∈ L2(Ω) satisfying the condition

‖f‖L2(Ω) ≤ C8(mesnΩ)
−n+q(n−4)

2n(q−1)

(
‖f‖L2(Ω) ≤ C9(mesnΩ)

− 1
2(q−1)

)
.

In proving this theorem, as a Banach space we take the space C(Ω)(L2q(Ω))

and argue as above applying the theorem of compact embedding W 2
2 (Ω) ↪→ C(Ω)

(W 2
2 (Ω) ↪→ L2q(Ω)).



20 FARMAN I. MAMEDOV AND SHAHLA YU. SALMANOVA

3. Equations with Continuous Coefficients

In this section, we will consider the Dirichlet problem for semilinear elliptic
equations (1.1) with continuous leading coefficients. In other words, we will
consider, in Ω, the Dirichlet problem

n∑
i,j=1

aij(x)uij + g(x, u) = f(x), x ∈ Ω, (3.1)

u|∂Ω = 0, (3.2)

when the coefficients aij(x), i, j = 1, 2, ..., n of the operator L =
n∑

i,j=1
aij(x) ∂2

∂xi∂xj

are functions satisfying conditions (1.3) such that

aij(x) ∈ C(Ω), i, j = 1, 2..., n. (3.3)

Note that in the preceding section our consideration was confined to the case
1 ≤ q < n

n−4 , n > 4 . This was caused by the application of existing a priori

estimate (1.6) to an equation with discontinuous coefficients.
In the case of equations with continuous coefficients we will apply a priori

estimate in W 2
p (Ω) ( see, e.g. [5, Lemma 9.17]).

The following statement is true.

Theorem 3.1. Let conditions (1.3), (1.5) and (3.3) be fulfilled, 1 < q < ∞,
p > n

2q′ , p ≥ 1, ∂Ω ∈ C2.Then there exists a sufficiently small positive constant

C10 = C10(n, γ, δ, q, b0) such that problem (3.1), (3.2) has at least one solution

from Ẇ 2
p (Ω) for any f(x) ∈ Lp(Ω) satisfying

‖f‖Lp(Ω) ≤ C10(mesnΩ)
−n+(n−2p)q

pn(q−1) . (3.4)

Proof. In this case, as a Banach space take: Lpq(Ω) if n
2q′ < p < n

2 ,

p ≥ 1; Cα(Ω)
(

0 < α < 2− n
p

)
if n

2 < p ≤ n; C1,α(Ω)
(

0 < α < 1− n
p

)
if

p > n.

Assume Vp =

{
u ∈

·
Ẇ 2
p (Ω) : ‖u‖W 2

p (Ω) ≤ K
}
.

Denote by v(x) ∈ Ẇ 2
p (Ω) the solution of the problem

Lv + g(x, u) = f(x), x ∈ Ω, (3.5)

v|∂Ω = 0, (3.6)

where u(x) is an arbitrary function from Lpq if n
2q′ < p < n

2 , p ≥ 1;Cα(Ω)(
0 < α < 2− n

p

)
if n

2 < p ≤ n; C1,α(Ω)
(

0 < α < 1− n
p

)
if p > n.

For any u(x) ∈ Vp, f ∈ Lp(Ω) problem (3.5)-(3.6) is solvable in the spaces

Ẇ 2
p (Ω) since under these assumptions we deal with the solvability of the Dirichlet

problem for equation (2.4), where F = f(x)− g(x, u) ∈ Lp(Ω) (for the solvability
of the Dirichlet problem [5, Theorem 9.15 ]).

By virtue of the embedding W 2
p (Ω) ↪→ Lpq(Ω) we have

‖F‖Lp(Ω) ≤ ‖f‖Lp(Ω) + ‖g‖Lp(Ω) ≤ ‖f‖Lp(Ω) + b0 ‖u‖qLpq(Ω) ,
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therefore F ∈ Lp(Ω).
Denote by A the operator transforming u to v and show that the operator A

is continuous. For that, let un → u0 in Lpq(Ω) as n → ∞, un, u0 ∈ Lpq(Ω) and

vn, v0 be solutions of (2.4) in
·
W 2
p (Ω). Then vn − v0 satisfies (2.5). By virtue of

the priori estimate

‖v‖W 2
p (Ω) ≤ C11(n, γ, p) ‖Lv‖Lp(Ω) , v ∈

·
W 2
p (Ω),

it follows
‖vn − v0‖W 2

p (Ω) ≤ C11 ‖gn − g‖Lp(Ω) .

Repeating the reasoning of the proof of Theorem 2.1 we get

‖vn − v0‖W 2
p (Ω) → 0(n→∞).

This implies
‖vn − v0‖Lpq(Ω) → 0 as n→∞.

The compactness of Vp follows from the compact embedding W 2
p (Ω) into

Lpq(Ω), while the convexity is obvious.
Let us show that for a certain choice of K the operator A transforms Vp to

itself. For the solution of the Dirichlet problem (3.1) we have the estimate

‖v‖W 2
p (Ω) ≤ C12(γ, n) ‖Lv‖Lp(Ω) ≤ C12

[
‖g‖Lp(Ω) + ‖f‖Lp(Ω)

]
≤

≤ C13

[
(mesnΩ)

1
p(1−n−2p

n
q)b0 ‖u‖qW 2

p (Ω)
+ ‖f‖Lp(Ω)

]
≤

≤ C13

[
(mesnΩ)

1
p(1−n−2p

n
q)b0K

q + ‖f‖Lp(Ω)

]
,

where C13 = C13(n, γ, δ, q, b0) .
From (3.4) it follows that, the inequality

C13

[
Kqb0(mesnΩ)

1
2(1−n−2p

n
q) + ‖f‖Lp(Ω)

]
≤ K

is solvable with respect to K > 0, i.e., the operator A transforms Vp to itself.
Theorem 3.1 has been proved.
Remark 3.1. The assertion of Theorem 3.1 remains valid in the case of

nonlinear equation
n∑

i,j=1

aij(x)(x, u, ux)uxixj + g(x, u) = f(x)

with the Cordes type condition

esssup
x∈Ω

n∑
i,j=1

a2
ij(x, ξ, η)(

n∑
i=1

a2
ii(x, ξ, η)

)2 ≤
1

n− 1
− δ; ξ ∈ E1, η ∈ En.

As to the existence of positive solutions of problem (3.1), (3.2) we make the
following

Remark 3.2. Let all the conditions of Theorem 3.1 be fulfilled for the operator
L, domain Ω and positive functions g(x, u) and f(x). Let further p ≥ n. Then
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there exists a sufficiently small positive constant C14 = C14(γ, n, p, q, b0) such

that problem (3.1), (3.2) has at least one positive solution from Ẇ 2
p (Ω) for any

f(x) ∈ Lp(Ω) satisfying the condition

‖f‖Lp(Ω) ≤ C14(mesnΩ)
−n+(n−2p)q

pn(q−1) .

The proof of this statement is based on that of Theorem 3.1. In this case the
class Vp is defined in the form

Vp =
{
u ∈ Ẇ 2

p (Ω) : ‖v‖W 2
p (Ω) ≤ K, u(x) > 0, x ∈ Ω

}
.

The class Vp is preserved by the operator A if we use the reasoning of Theorem
3.1 and the maximum principle [2] for solutions of elliptic equations in the space
W 2
p (Ω) for p ≤ n.
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