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AN INVERSE PROBLEM FOR THE QUADRATIC PENCIL OF
DIFFERENTIAL OPERATORS WITH ALMOST PERIODIC
COEFFICIENTS

ASHRAF D. ORUJOV

In memory of dear M. G. Gasymov

Abstract. In this paper, the inverse spectral problem for the opera-
tor Ly generated by the differential expression ¢)(y) = y" + p(z)y’ +
[A2 4 iXp(x) + q(x)] y is investigated in the space Ly(R). Here the co-
efficients p(z), ¢(x) are almost periodic functions whose Fourier series
are absolutely convergent and the sequence of Fourier exponents (which
are positive) has a unique limit point at +oco. The set of spectral data

({553)} , {553) }) of the operator L) is defined and the problem of find-

ing the coefficients p(x), ¢(x) from these sequences is considered.

1. Introduction

In this study, the inverse spectral problem is investigated for the maximal
differential operator L) generated by the linear differential expression

O(y) =y +p@)y + (X +ixp(x) + q(z))y

in the space Ly(—00,+00). Here A is a complex parameter,

oo (o]
p) = pne®®, q(z) =) gue*” (1.1)
n=1 n=1

with p,,, ¢, € C such that

00 1)
Zan‘pn‘< 400, Z |Qn‘< 400, (12)
n=1 n=1

{on}, > is an increasing sequence of positive numbers with «,, — 400 and the
set G = {ay, : n € N} is an additive semigroup.

o0 .
Let APT be the class of almost periodic functions ¢(x) = > ppe'®® with
n=1

o
le(@)]] = 3 |on] < +00. APT is a complex Banach space. For every ¢(z),
n=1
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(z) € APT the relations p(x)i(z) € APT and [[p(z)v ()] < [e(@)] - I ()]
hold. In the case a,, = n, Vn € N, we denote this class by Q. Obviously,
conditions (1.1), (1.2) mean that p(z), g(z), p'(z) € APT or {anpn},>; €
l, {Qn}n>1 €.

In [2], the Floquet solutions of equation £)(y) = 0 in the case p(x) = 0,
q(x) € QT have been constructed and using these solutions direct and inverse
spectral problems have been investigated for the operator L = —% + q(z) in
the space La(R). The inverse problem of finding the potential g(x) for the given
spectral data sequence {s,},~; of the operator L has been first considered in that
work. Sufficient condition for the existence of solution of the inverse problem also
obtained in [2]. Later, using some different methods, the inverse problem for the
operator L = —j—; + ¢(x) with periodic potential ¢(x) € L2(0,27) was investi-
gated in [5]. The necessary and sufficient conditions for the sequence {s,},,~; to
be the set of spectral data of the operator L have been found in that work. Then,
the results of [5] have been generalized in [6] for the case of potential ¢(x) which
is an almost periodic function that belongs to Besicovitch class, and has only
positive Fourier exponents. The pencil of the second order differential operators
L) = —% +2Xp(x) 4+ q(x) — A\? with periodic coefficients p(z), q(x) € L2(0,27)
has been investigated in [1], with the results of [5] generalized for operator L(\).

In this article, we prove the validity of another representation for the Floquet
solutions of the equation £, (y) = 0 constructed in [3] and, using these solutions,
we study the inverse problem for the operator Ly. The uniqueness of solution
of the inverse problem is proved and the sufficient condition for the existence of
a solution to the inverse problem is obtained in case p(x) = 0. In contrast to
studies [1, 2, 5, 6], an algebraic method has been used for this purpose.

2. Floquet solutions of the equation /,(y) =0

The system of linearly independent solutions of an equation of type £)(y) =0
with almost periodic coefficient was investigated in [3]. According to Theorem 1
in [3], we can state the following theorem related to the equation

v+ p(x)y + [)\2 +ixp(x) + q(x)]y =0, — o0 < x < 4o00. (2.1)

Theorem 2.1. If p(z), q(z), p'(x) € APY, then for YA # +£9%, ¥n € N the
differential equation (2.1) has the solutions

fi(w, \) =€ (1 + i US)(A)emnx) . fa(x,)) =
n=1

— g~iM® <1 +> U,?)(A)emnl’) , (2.2)

n=1

where the series

n=1
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18 uniformly convergent in each compact set S C C which doesn’t contain the
[0

numbers A = —45, n € N in case s = 1 andAzT,nENincases:Q.Here
(2)

1 1 Ul 2 Ul

75)(/\) ()+Zk 1a,€inz>\: ()()‘) +Zk 1 aax nEN.

The solutions fi(z,A) and fa(x, \) can be used for the investigation of the
structure of the spectrum and the kernel of the resolvent operator, but they

are not sufficient for studying the inverse problem for the operator Ly. For this
reason, it is convenient to use the F loquet solutions of the form

zanx 1 Zanx

1
fg(l',)\) _ e—z)\a: <1 + Z UO )ezanx + Z 2)\ Z Ukn zamc)

=1 O —

(2.3)

o0

with conditions Y o2 Uéfl) < 00, Z E ,m < 400, s =1,2. Tt is
n=1 =1 Ok n=k

clear that these representations of the solutions are a modified form of formulas

(2.2).

The special solutions of type (2.3) are used in [1, 2, 4, 5, 6], under various
conditions on the coefficients of the considered equations. We use the following
theorem about existence of the Floquet solutions of the equation (2.1).

Theorem 2.2. If p(x), q(x), p'(x) € APT, then for each X\ # —%*, Vn € N the
differential equation (2.1) has a solution

00 0o 00
. . 1 .
_ iz 1T 10T
flx,\)=e (1 + ;:1 Upe + g_l o i ng_k Uk € > , (2.4)

where the sequences {uyn} ,{urn} of complex numbers are uniquely defined by the
system of equations

n m
aptin = —0n Y Unty+ Y (famp g )y, + YD > Ukm,
k=1

k=1 astam=an as+am=aon

— Uy +ip,+ Z ipsum=0, n € N, (2.6)

as+am=an

—ap (o — o)y, + Z [i(am — on)py+qs)upm=0, k,n e N, n >k (2.7)

as+am=an

m>k

and the series

oo oo 1 o0

2 2

Zan |up| < 400, Za—kZan |tugn| < +o00 (2.8)

n=1 k=1 n=k
converge.
Remark 2.1. In what follows, we assume that sums of the form > Asbm,

astam=an

n—1

> an, are equal to zero for n = 1. Also we set ug, = 0 if & > n. If {Ulm}n>k is
m=1
the solution of equation (2.7) and a,, —agx ¢ G (in the special case o, —ay < aq),

then ug, = 0. From here it follows that aj |ug,| < (ap—ag) |ukal, 1 < k < n,
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which we will use frequently. The sequences {un}, >, {tkn},>;, ¥ € N will be
treated as the solution of the system of equations (2.5)-(2.7). We will denote this
solution as {un}, {urn}

Remark 2.2. The above theorem was proved in [4] for periodic coefficients p(z),
q(z) € QT. Here we will use the same proof method.

Proof. If we assume the existence of the solution of the equation (2.1) of the form
(2.4), then according to (2.8), we find the derivatives of f(z,\) with respect to
x and substitute these expressions in the equation (2.1) as in [4]. So, we obtain
the system of equations (2.5)-(2.7) to determine the sequences {u,}, {ug,}-

On the contrary, if {u,} and {ug,} satisfy the system of equations (2.5)-(2.7)
and the series (2.8) converges, then the function f(z,\) defined by the formula
(2.4) is a solution of equation (2.1). Therefore to prove the theorem it is sufficient
to show the solvability of the system (2.5)-(2.7) and convergence of the series (2.8).
It is easy to see that the system of equations (2.5)-(2.7) has a unique solution.
Indeed, the sequence {u,} is determined from the equation (2.6) by the recurrent
manner uniquely. Furthermore, by the known sequence {u,}, the sequence {ug,}
is determined from the equations (2.5), (2.7) by the recurrent manner uniquely.

Now let us show that for the solution {uy,}, {uk,} of the system (2.5)- (2.7) the

series Z a? |uy,| and Z Z a2 |ug,| converge, therefore the function f(z, \)

is a solution of equatlon (2 1) for YAeC,\# — 2 , Vn € N. For this reason, from

equation (2.6) we have a2 |u,| < ap [pn| +an > |ps| |um| and by summing
astam=an
with respect to n for 7 > 1 we obtain

J J J
zaz|un|szan\pn\+z( 5 an\psuum\):
n=1

n=1 n=2 \Qs+oam=0on

J J

s + @
§ Qn |pn’+§ ( § Qs |ps| o |t ;a m) <
n=1 n=2

sm
as+am=an

J 9 Jj—1 Jj—1 9 Jj—1
Zan pn| + — Zas [ps| Z O [tim| < Hp,<$)H +— Hp/(x)H Z@n |tn|
n=1 a1 s=1 m=1 al n=1

or
7—1
Zoz lun| <Ag+ A1> an |un|, Vi €N, Ag, Ay >0,
n=1 n=1
where

s A= 2]lp @) /ai.

o0
Then, according to the Lemma* (see [4], page 363), the series Y. a2 |u,| con-
n=1

Ag = ||p'(x

verges.
o0

Now let us show that if the series Y. a2 |uy,| converges, then for the sequence
n=1

{ugn} obtained from the system (2.5)-(2.7) the series Z Z a? |ugy| also

=1 Ok n=k
converges.
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o0 n
Since the series Y o2 |u,| converges, by setting U, = Y ug, from the equa-
n=1 n=1
tion (2.5) we have

anU, = —a%un +qn + Z (iamps + qs)Um + Z 1psUpm
astam=an astam=an
which implies

oy [Un| Sai‘un"“‘qﬂ"' Z (cum [ps| + lgs]) lum| + Z ps| |Unm| <

astam=an as+am=an

as+am=an astam=an

By summing with respect to n, we obtain for any j > 1

J J J

q
Zan\Uns§j<a3\un\+\qny>+§j< 3 (!p5]+|asl‘)am\um|>+
n=1 n=1 n=2

as+am=an

j oo
3 ( S Il \Um|> < (0 fun| + lgn))+
n=2 n=1

astam=an

+Z <|p8|+’q8 > Z e [t +Z!ps! Z U

or
S 0 Ul <302 + )+ (112 ) > an |um|+2 |ps|Z|U B
n=1 n=1 s=1
If we set
Bo:ffl<airunr+rqn\>+<up< I+ la(@)l far) Zamwmr B1 = (@)l

then we obtain

7—1
ZanlU | <Bo+B1 Y |Unl, VjeN
n=1 n=1
Then, according to Lemma*, the series Z an |Uy| = Z an, Z Ugn| converges.
n=1 n=1 =
From the equation Z Uk, = U, we have
k=1
n—1 n—1
k=1 k=1

Considering this, from the equation (2.7), we get for 1 <k <n

calon—an) [uinl € S [(@m — @) [psl + lasl] tsm]

Qas+am=0on
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or by summing with respect to k

Z(an_ak || < Z( Y lam—aw) ps|+lgs] !ukm!> =

k=1 as+am=an

Z (Z_ [(cm — k) [ps| + [gs]] ’Ukm\) + Z |gs| |wmm| <

astam=an k=1 astam=an

m—1
S S lam—an) ool +2 g lumml + 32 lasl [Un

astam=an k=1 astam=an
or
= 2 Iq
SPITSERD S o (T ) I,
k=1 astam=an k=1
> sl Ul
astam=an
n—1
If we set V1 =0, V,, = > (ay, — ai) |ugn|, by summing the last inequality term
k=1

by term, we have

J J
St <y (121422 v, Y (iUl <
n=2

n=2 as+am=an n=2 as+am=an

Z(r sr+2'q8);vm+zrqsrz|v <

s=1

00 00 00 9 |q ‘ 7j—1

§ E E 2 E j > 2.
|| Un| + <‘PSH‘ P ) Vi, Vj 22

s=1 m=1 n=1 m=2

As a result, we prove the inequality

7j—1
ZanV <Co+Clen,Vj>2
n=2 n=2

where Cy = ||g(z)|| >° |Un|, Ci = ||p(z)|| + 2||¢(x)|| /a1. From here, according
m=1

o0
to Lemma*, it follows that the series ) «,V;, converges. Consequently the series
n=2

oo
> o (ay, — ag) |ugy,| also converges. Then, because of the inequalities

aq |ukn’ < (an - Oék;) |ukn|7 Vkan eEN, n> k=

[e's) n—1 oo n—1

ZO&nZ|Ukn’<O}IZZan ap — o ‘ukn|

n=2 k=1 n=2 k=1
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n—1

the series Z an Y |ukn| also converges. On the other hand, taking into account
n=2 k=1
the inequality
n—1
‘unn| < ‘Un‘ + Z ’ukn’ y N E N7
k=1

we have
0 [tnn| <an|Un H—anz || = Zan || < ZanyU |+ Zanz |t | -
n=2 =

o0 o0 n
Consequently, the series Y ay, |unn| and > > oy, Jug,| converge.
n=1 n=1k=1
. s 2 L ‘ukn’ .
Now let’s show that the series > az Y. —— converges. For this reason, we
n=2 k=1 Ok
can write for j > 1

J J n J
Sy el -3, 3 e telal <57, 5 (en sl
n=2

n=1 k=1 n=1 k=1
7 n 1 00 n—1 n
Do)l < =3 and (o =y \um|+ZanZ\uml<+oo
n=1 k=1 M5 = n=1

) ) e’} 9 n ‘ukn’ e’} 9
From here it follows that the series > a7 > Z E 2 |ugn| con-
n=1 k=1 Ok Xk n=k

verges. Therefore, for the solution {uy}, {ug,} of the system (2.5)-(2.7) the
series (2.8) converges. Then the function f(x,\) is a solution of equation (2.1).
The proof is completed.

If by the same method, we search for the second solution of equation (2.1) in
the form

f(CE, )\) — i + i vneianm + io: ; i vkneianr
n=1 k=1 ap = 2) n==k

which is linearly independent with the solution f(z,\), then we obtain v, = 0,
Vn € N and the coefficients vy, are found uniquely from the equations

n

an kan =gn, n €N, (2.9)
k=1

—ap(Qn — ag)Vkn + Z (iomps+qs) vem=0, k,n € N, n > k (2.10)
astam=an

m>k

by the recurrent manner. Thus, the second solution of equation (2.1) has the

form
_ ‘ 9] 1 9] )
—iAT QT
= 1 _ n . 2.11
flx, ) =e ( + kg_l PRSETY nE_k Vgne > (2.11)
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For the solution {vgy,}, of the system of equatlons (2.9)-(2.10), it is necessary
1
to show the convergence of the series Z Z a2 |vgn|. Since this cannot be

Ok n=k
proven with the method we used above, we will use another method.

If we put = —\, then the equation (2.1) is written as
y' +p()y + [1* —ipp(x) + q()ly = 0, — o0 <z < +oo. (2.12)

The substitution y(z) = e~/ P®4 (1) (where [ p(z)dz € APT) in the equa-
tion (2.12) after some simplifications gives

2" —p(x)2 + [ — iup(z) + q(x) — p(x)]z =0, —00 < x < +oo. (2.13)

According to the above proved, the equation (2.13) for each u # ——, Vn € N

has a solution z(zx, 1) in the form

z(x, 1) <1 + Z 2 €T 4 Z P 2# Z anelo‘"x) )

Therefore, for each A 7& , Vn € N, the function

y(x, A) = 2(, Ao~ TPl

S S 1 )
—ide— [ p(z)dzx ioanT T
e (1+Zzne +Z_:ak_2/\nz_:kz;me ),

where the series Z |zn| @2 and Z z a? |zn| converge, is the second solu-
n= =1«

1
tion of equat1on (2. 1) For each go( ) 6 AP+, using the convergence of the series
S [p(@)]”

e?@) 1 = with respect to the norm of the space AP, one can easily

=1 n!

prove that e‘P(””) — 1€ AP™. Since Z LI gion® — [p(z)dx, p(z), p'(x) € APT,

there exists a function go(z) € AP+ such that e /P4 = 1 4 go(x) and g} (z),
g0 (z) € APT. Consequently, we have the representation

%) ) %)
. . 1 .
A\) = —i\T 1 1T T
y(z,\) =e ( =+ 321 Up e + 321 Y nE:k Ven € ) ,

for which the series Z |vn| 02 and Z Z a? |vpp| converge. The condition
n=1 k=1 Ok n=Fk
=0, Vn € N and the uniqueness of the solution in the form (2.11) imply the

representation

~ . ° 1 0 A
—iAx 10T
flx,A) =y(z,\) =e ( + 321 o nE:k V€ )

In what follows, we will denote the solutions f(z, ), f(z,\) with representa-
tions of type (2.3) by ei(x, ), ea(z, A), respectively.
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Corollary 2.1. If p(x),p'(z),q(x) € AP, then for YA # %, Vn € N, the
equation (2.1) has the Flouget solutions

e1(z,\) = <1 + Z Up T 4 Z ak+2/\ Z uknemnx> ,

n= 1

ea(z,\) = e (1 + Z m Z Vpp €'On®
k=1 " =k

in R for which the series of type (2.8) converge.

Corollary 2.2. ForVz € R the functions ej(x,\), j = 1,2, and their derivatives
ej(x, A), €j(x, \) with respect to x are meromorphic functions with respect to \.

Moreover they may have only simple poles A = (—1)7 v, /2, Vn € N and they are
continuous functions of (x,\) for allz € R, A € C, A\ # (1), /2, n € N. (see
3], page 199)

Note that if p(x) and ¢(x) are distinct from zero, then the functions e;(z, A),
j = 1,2 have at most one pole. Namely, if uyy, # 0, then A = —F¢ is the pole of
the function ej(x, A). Similarly, if vg, # 0, then A = ¢ is the pole of the function
ea(x, \).

Wronskian of the functions e (z, \) and ea(z, A) is obtained as Wey, ea](z, A) =

—2iXe” JP@® for cach A £ T4, Vk € N, where [p(a)de = > £e'n® (sce
n=1

[3], page 200). Therefore, for each A\ # 0, :t , Vk € N, the functions e;(x, \)

and eg(x, \) are linearly independent in R.
Obviously that function

eim(z) = Lim  e1(x,A\)(am +2)) = e~ 27 Zumnemnz (2.14)

A—— 2
is a solution of equation (2.1) for A = =%, m € N. If upy, = 0, then ey, () =
0 and e;(z,—%") is a solution of (2.1). Moreover, the functions e;(z, —%"),
ea(x, —%2) are linearly independent. If wy,,, # 0, then e, (x) is not zero and

2
solutions ey, (), e2(z, —%*) are linearly dependent because of

Wleim(z), e2(xz, —%=)] = 0. Then there exists s such that
e1m(z) = sWey(z Z U =
1+ et | 2.15
S ( ; = —|— Qm > ( )

If we compare the analytical expressions at both sides of this identity, we get

s%) = Umm, M € N. Similarly, the function

eam () = Al_i)xgm ea (2, \)(m — 2) vanemnz (2.16)

2
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is a solution to equation (2.1) for A = %=, m € N and solutions e (z, %), €2 ()

are linearly dependent. Hence there exists sg) such that

o0
eam () = sPe (x, o) & vanem"z =
n=m

o S
5P (1 +) <u3+ > m:f()) el’fki) : (2.17)
m

s=1 k=1
Moreover, sg) = Umm, M € N . Thus, we get sequences {37(11)} o and {s,(f)} .
n> n>
of complex numbers, which we will call the sequences of the spectral data of the
operator L.

Definition 2.1. A pair {s%l)} ,{3;2)} constructed on the basis of a
n>1 n>1

solution ej(x, \), ea(x, A) with the help of (2.1_4)-(2.17) is called a set of spectral
data of the operator Ly with coefficients p(x), q(x) € AP™.

3. The inverse problem for the operator L),

In this section, we consider the inverse problem of determining the coefficients
p(x),q(z) € AP of operator Ly for the given sequences of spectral data. This
type of inverse problem in case p(z) = 0, q(z) € QT, was considered in [2], where
the inverse problem of determining the potential ¢(x) from the set of spectral data
{sn},>; has been analyzed for the operator L = —% + q(z) with ¢(z) € QT
defined in the space La(R). Later this problem has been investigated for periodic
potential g(z) € L2(0,27) in [5] and for almost periodic potential ¢(x) in [6].

One sequence of spectral data is not enough to determine the coefficients
p(x), q(x) of the operator Ly, when p(z), ¢(z) is not zero. Therefore we will study
the problem of finding the coefficients p(z), q(z) € AP of the operator Ly by a

(1) (2) :
set of spectral data <{sn }n21 , {sn }n>1>. An analogous inverse problem for

the quadratic pencil of differential operators with periodic coefficients has been
investigated in [1]. Unlike [1, 2, 5, 6], we will apply here the algebraic method
that does not involve integral equations.

We will analyze the uniqueness of the solution. In particular, in case p(x) =0
we obtain the sufficient condition for the existence of solution of the inverse
problem. For this purpose, we will use the system of equations

( umm:s%), Umn = 01if oy —ay € G

(1) & Uks

= _ 'f =
Umn Sm kgl ap + Olm7 I oy + O (079
vmm:sg), Vn = 0if oy — v, ¢ G (3.1)

(% .
Umnzsg’?z) <u8+ Z k8>7 if ag + apy = ap

ianT

obtained from identities (2.15) and (2.17) by equating the coefficients of e
on both sides. The system of equations (3.1) expresses the relationship between
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the sequences {5,(11)} oy {sg)} . and the trinity of sequences {u,}, {ux,} and
n> n>

{vkn} which define the solutions e;(x, \) and es(x, \) of equation £ (y) = 0.
First let us show that, there is a one-to-one correspondence between the set
of spectral data ({sg)} , {3512)} > and the pair of coefficients (p(x), q(z))
n>1 n>1

of operator Ly with p(z), q(x), p'(z) € APT. Since the sequences {u,}, {ur,}
and {vg,} which define the solutions ej(z,A) and ez(x, \) of equation (2.1) are
the unique solution of the systems (2.5)-(2.7) and (2.9)-(2.10), respectively, the

sequences {up,} = {57(11)}, {vpn} = {57(11)} are also defined uniquely. Thus, for

any operator Ly, there is the only set of spectral data ({sg)} , {3%2)} )
n>1 n>1

On the other hand, it can be shown that any pair <{57(11)} o1’ {sg)} >1) can

be the set of spectral data of only one operator Ly. Let the operators Ly and E,\
with their coefficients being the pairs (p(z),q(z)) and (p(x), q(x)), respectively,

have the same set of spectral data {57(11)} ,{5512)} . Then, according
n>1 n>1

to Corollary 2.1, apart from sequences {uy}, {ur,} and {vg,} that define the
solutions ej(x, \) and ey(x, ) of equation £)(y) = 0, there are also sequences
{un}, {ukn} and {Vg, } which define the solutions € (z, A) and ex(x, \) of equation
U(y) = " +9(2)y + (A2 +iAp(x) +4(z))y = 0 and satisfy the system of equations

n
a%an = —Qp Z akn + (/]\n + Z (iamﬁs + Z]\s)am“‘

k=1 as+am=an

m
k=1

astam=an

—0mlin +iPn+ Y iPstim =0, n €N, (3.3)

as+am=an

—on(om — o)lkn + Y [i(om — )Ps + Galkm =0, k,n €N, n >k

as+am=an
m>k

and

n

ap, Zf}kn =qn, n €N (3.4)
k=1

_an(an - O‘k)akn + Z (iamﬁs+(/]\s) i}\km =0, k,neN, n >k,

as+am=an
m>k
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respectively. Also, the following relations are satisfied:

(. )~ )
ummzs,(n), Umn =01if oy —ay ¢ G

Umn Sm kgl ap + Olm7 I apm, + Qs Qp
B = 52, T = 03 @ — ¢ G (3.5)

~ 2) [ ~ 5 Uy, .
Umnzsgn) <us+ Z S>7 if ag + ap, = ap
n,me N, n>m.

. N ~ 2 2
In this case, considering q1 = a1v11 = alsg) and q1 = av11 = alsg) for

n = 1, from equations (3.4) and (2.9), respectively, we have ¢ = ¢;. Then,
taking into account the values u1; = u1; and @3 = ¢ in equations (3.2) and
(2.5), we get u; = w;. Subsequently, from equations (3.3) and (2.6) we obtain
P11 = —iouy = —iaug = p.

If the equations

\

ﬁn = Pn, a\n =dqn, n=12,...]
and
an = Un, akn = Ukn, i}\kn = Ukn, k= ]-a 25 My o= 1727 7]
are satisfied for any j > 1, then from equations (3.1) and (3.5) we obtain
Ukn = Ukn, Ukn = Vkn, k=1,2,..,n; n=1,2,...,5+ 1.

Further for n = j+1 from equations (3.4), (2.9) and (3.2), (2.5) we get Gj+1 = ¢j+1
and Uj41 = w41, respectively. Then from equations (3.3) and (2.6) we obtain
ﬁj—i—l = Pj+1- Thus, ﬁn = Dn, /q\n = q, and u, = ana Upn = Ukn, Ukn = Vkn
(k=1,2,..,n)forn =1,2,...,j+1 are also satisfied. Then, by induction principle
the equalities Dy, = Pny Gn = Qny Un = Un, Ukn = Ukp, Vkn = Vkn (K =1,2,...,n) are
true for Vn € N. Consequently, p(z) = p(x), g(x) = q(z). Hence, the one-to-one

correspondence between (p(zx),q(x)) and <{sg)}n>1 , {57(12)}n>1> is proven.

Theorem 3.1. Any pair <{sg)} , {553)} ) of sequences of complex num-
n>1 n>1

bers can be a set of spectral data of only one og)emtor Ly, with coefficients p(x),
q(x) € APT.

If the pair {57(11)} , {39} is the set of spectral data of operator L)
n>1 n>1

then the coefficients p(z), ¢(x) can be determined by the following algorithm:
(

1. If n = 1 then ¢; = als?) is determined by the value vi; = 812) from
equations (2.9). Consequently, u; = <s§2) - sgl)) /aq is found by taking n = 1
(1) (2 (1) (2))

and u1; = sy, 1 = 18 ) from the equation (2.5). Similarly, p; =i (31 -5

is found by taking u; = <s§2) - sgl)) /aq from the equation (2.6).

2. If the numbers p,, q¢n, up and ugy,, vk, (kK = 1,2,...,n) are known for
n = 1,2,...,j, where j € N is arbitrary, then the numbers u j11, vpj+1 (K =
1,2,...,7 + 1) are uniquely determined from equations (3.1).
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3. Further, according to the known values p,, ¢, u, (n = 1,2,...,j) and
Ukn, Vkn (B = 1,2,..,n; n = 1,2,...,j + 1), the numbers ¢j41, ujy1 and pjiq
are uniquely determined from equations (2.9), (2.5) and (2.6), respectively, in a
recurrent manner.

Thus, the sequences {py},~; and {gn},~;, hence the coefficients p(z) and
q(z), can be determined uniquely. N

The equations (2.5), (2.6), (2.9) and (3.1) express a complex relationship be-

: (1) (2) :
tween pairs <{sn }nZI , {sn }n21> and (p(z),q(x)). Proving the convergence

o0 o0
of series Y ay, [pn| and > |gn| by using these equations is not an easy task. But
n=1 n=1
in the particular case p(z) = 0 this is possible and it is also possible to obtain
a sufficient condition for the given numerical sequence {Sn}n21 to be a set of
spectral data of the operator L.

When p(z) = 0, the operator L) turns into the maximal operator L())\ generated
by the linear expression I3 (y) = 3"+ Ay +¢q(x)y in L2(R). Since s = 5@ = s,
Vn € N, for the operator Lg we will examine the inverse problem of finding the
potential g(z) € APT by the set of spectral data {sn},,. An analogous inverse
problem for the case ¢(z) € QT was first investigated in [2].

To solve the inverse problem, we will make use of the Floguet solutions

[e.e] 1 o
_ idx 10T
6]_(33,)\)—6 <1+ZWZU]€”€ )7
k=1 n=k
o0 1 [e.e]
)\ — —iAT 1 - 1T
ea(z,A) = e ( +;ak_2)\;€ulme >

of the equation £9(y) =y’ + Ny + g(z)y = 0 (since {Prtys1 = {0} & {unt,>; =
{0}). It is obvious that ex(z,\) = ei(x, =), up = 0, Vg = Ukn, Unn = s =
s%l) = sp, Vn € N, 1 < k < n. The sequence {uy,} defining the solution e;(z, A)

is a unique solution of the system of equations

an Z Ukn=(qn, N € N, (3.6)
k=1

o (o —ag ) ugn= Z qstpm=0,n,k €N, n >k

ast+am=an
m>k

o0 1 o
which satisfies the condition > — > a2 Jug,| < +oo for {gn},~; € €1. Ac-
k=1 @k n=k -
cording to the set of spectral data {sp},>,, the sequence {uy,} is found from
equations

Umm = Sm, Umn = 0 if ap —apy ¢ G

s u )
Umn = Sm. D M o 4 s = an, (3.7)

k=1 Ok T Qup
n,me N, n>m,

while {g,},; and the potential g(z) are defined from the equation (3.6).
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Theorem 3.2. For the given sequence of the complex numbers {sn}n21t0 be a set
of spectral data of the operator LY with the coefficient q(z) € AP™, it is sufficient
that thog conditions

1) Zan]sn\:5<+oo

)z sl g

—101 +ap
hold and it is necessary that the condition 1) above holds.

Proof. For the given sequence {s,},~, the sequence {uyy,} is defined by recur-
rence method from the system of equations (3.7). Further, by the found sequence
o0

{ugn} the sequence {q,},~; and the potential g(x) = Y g,e'®"® are defined from
- n=1

the formula (3.6). We will show the convergence of the series ||g(x)]| = > oo ; |l

for the found sequence {gy},~;. For this purpose, first let us show the conver-

o0 n
gence of the series Y > oy, |uk,| based on the conditions 1) and 2).
For every m > 1 we have

m n m n—1
DD luknl = ZIUnn!+ZZIUkn\<Z!8nI+
n=1k=1 n=2 k=1
m p m m |5 |
k
X sl <D I+, D Zlufp\ <
n=2 apt+ap=an r=1 Qr +ak =1 n=2 apt+ap=an a1 +ak
m m— ’3k| m—1 p ’3k| p
Z!8n|+Z i D> lunl < *ZanISnHZ -~ >3l =
n—1 e T TS L e e

HITHEFEE HIMES HIMEr e
n=1k

n=1 k=1 n=1 k=1

hence Ry = E E |ugn| < 400 is obtained. Similarly, for Vm > 1
n=1k=1

n

m
Zanz |Ukn’ < Zan |Unn’ + Zanz |Ul~m| < Zan |5n| +
n=1 k=1 n=2

< Zan]3n|+

n=1

m p
SO (ntap) s

Z —
[e7% «
n=2 apt+ap=an + k

m
DD O IO DD D S

n=2 apt+ap=an n=2 apt+ap=an

Zan‘sn’"i_z Z |$k|z‘urp|+z Z O|48k_l_02) Z‘urp| <

n=2 ait+ap=an n=2 ait+ap=an
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m—1 m—1 p m—1 |S ’ m—1 P
k
S+ skl DD fumpl + > ot on D ap Y
k=1 =1 =1 P Lt I R —
or
D on ) fukn| < S+lemzzwmr +Za o 2 on ) k] =
n=1 k=1 p=1r=1 n= k=1

Zan2|ukn\<<5’+> (1-0) :>Zan2|u;m|<—|—oo
n=1 n=1

is obtained. Consequently we have
o
>l = e Zwm
n=1 n=1

S .
that is g(z) = > que'*"* € APT.
n=1

o0 n

< Zan2|ukn| < 400
n=1

oo 1 oo
To complete the proof, let us show that the series . — > a2 |ug,| converges
=1 Ok pn=f
and the function

o0 1 oo
— A ian
e1(xz, ) =" <1 +Zw\guknem I)

is a solution of the equation y” + Ay + q(x )y =0 . We will use Corollary 2.1.

For the reconstructed function ¢(z) = Z ¢ne'®n® according to the Corollary
n=1

2.1, the equation y” 4+ A%y + q(x)y = 0 has the Floquet solution

o 1 oo
~ _ iX\T ~ 10T
ez, ) =e <1+;ak+2/\;ukne ),

where the sequence {uy, } satisfies the equations

Qn Zﬁkn:qn, neN (3.8)
k=1
and
Uman = Sms ﬂmn:0ifozn—am¢G
Uks .
Umn = S —, ifa oy =« :
mn mzlak_'_am?l m + Qs n (39)
m,n € N, n >m.
Moreover, the series Z Z 2 |tgyp| is convergent.

Ok n—k
Let’s show that . umn = Umn, VMm,n € N, m < n. When m =n = 1, we get
u11 = uy1 or §1 = s1 from the equation ajui;1=¢1 =aju1;. For m = 1, n = 2,
from the equations (3.9) and (3.7) we have ujs = w2 = 0if g — a1 ¢ G or
U2 = S1u11/201 = s1u11/201 = ujg if e — a3 = a3. On the other hand, the
equations (3.8) and (3.6) imply s (w12 + U22) =q2 =2 (u12 + ug2). From here
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we obtain Usg = U Or So = 8o . If Uy = U, 1 <m < n < j for j > 1 1is true
then from equations (3.9) and (3.7)
S
Uks Uks
U = — %8
m,j+1 = Sm Z ak n am Sm kz:l Ok + m,j+1
if am + as = ajp1 O Uy jt1 = U1 = 0 if j41 — ay ¢ G is obtained for
all m where 1 < m < j. On other hand, for n = j + 1 from equations (3.8),
(3.6), Uj41,4j41 = Ujg1,j4+1 OF Sj+1 = Sj+1, hence Upp = Ump, 1 <m <n < j+1
is obtained. Then, according to the induction principle, Uy = Ump, 1 < m <
oo

x 1
n, Vn € Nis valid. Consequently, the series . — > a2 |ug,| is convergent and
n=1 Xk n=k

_ iAx nT | _
61(33', A) =e (1 + g_l ap + 2\ nE_k Ukn€ > = 61(.77, )‘)

is the solution of the differential equation y” + A%y + ¢(z)y = 0 and the sequence
0 .

{sn}n21 is the set of spectral data of the operator LY. Hence, g(z) = Y ge'*n®
n=

is the unique solution of the inverse problem. The proof is completed. O

Remark 3.1. Note that Theorem 3.2. is a generalization of Theorem 2 of [2].
Condition 2) of the theorem is not necessary. But the example of {s,},~ defined
as s1 =8> 2,5, =0 for n > 1, given in [2], for q(z) € QT, shows that condition
2) is important. Then the condition 2) of Theorem 3.2. is also important (see
2], page 14-15).
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