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EXPLORING NEW FEATURES FOR THE PERTURBED

CHEN-LEE-LIU MODEL VIA (m+ 1
G′ )-EXPANSION METHOD

HASAN BULUT AND HAJAR F. ISMAEL

Abstract. In this work, the perturbed Chen-Lee-Liu equation, which
describes the propagation of an optical pulse in plasma and optical fiber
is studied. The (m + 1

G′ )-expansion method is used for this purpose.
As a result, bright-singular, dark-singular, dark and periodic optical
soliton waves are constructed. Specific values for the parameters under
conditions are also provided to display the pulse propagation of the found
solutions.

1. Introduction

Nonlinear partial differential equations are used to investigate the properties
of several physics models. The Schrödinger equations are one kind of these equa-
tions. Because such equations play an important role in areas such as mathematic
physics, optic, plasma, and fiber-optic telecommunications engineering, it is es-
sential to evaluate and study their wave solutions.

Exact solutions to nonlinear Schrödinger’s equation are essential in applied
mathematics. Several approaches for obtaining exact solutions to nonlinear par-
tial differential equations have been proposed, including the simplified Hirota
method [23, 12], the modified Kudryashov method [9, 1], the extended sinh-
Gordon expansion method [5, 20], an extended F-expansion method [21], the sym-
bolic computational method [11, 6], the Jacobi elliptic function method [4, 14],
the generalized exponential rational function method [13], the sine–Gordon ex-
pansion method [2], the Bernoulli sub-ODE method [3] and so on.

In this manuscript, we consider the perturbed Chen-Lee-Liu (CLL) model [24]

iψt + αψxx + iβ|ψ|2ψx = i[γψx + µ(|ψ|2nψ)x + δ(|ψ|2n)xψ], (1.1)

here γ is the inter-modal dispersion coefficient, µ is a coefficient of self-steepening
for short pulses and δ characterizes the coefficient of nonlinear dispersion. Also, α
represents a coefficient of the group velocity dispersion, and finally β symbolizes
a coefficient of nonlinearity.

In this study, we investigate Eq. (1.1) at positive integers with n = 1

iψt + αψxx + iβ|ψ|2ψx = i[γψx + µ(|ψ|2ψ)x + δ(|ψ|2)xψ]. (1.2)
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We established solutions with the help of the Jacobi elliptic functions method
to the perturbed Chen-Lee-Liu equation that represents the propagation of an
optical pulse in plasma and optical fiber. Recently, some authors tried to apply
some methods to investigate the CLL model such as the modified extended tanh
expansion method was used to find solitary wave solutions [24]. Yokus et al.
used the modified Kudryashov and ( 1

G′ )-expansion methods [8]. In [15], the
Riccati method has been employed. Zhang et al. [10] have investigated qualitative
analysis and the bifurcation method. Optical solutions of the studied equation via
the trial equation approach have been constructed [22]. Apart from these, many
studies have been made and continue to be done for the Chen-Lee-Liu equation
[7, 19, 17]. Akbar and others studied the CLL model via using different solutions
functions with help of the Jacobi elliptic functions [16]. Kudryashov found general
solutions by using different methods with the elliptic function approach [18].

In this article, we use (m + 1
G′ )-expansion method to reveal some new novel

solutions for the perturbed Chen-Lee-Liu equation that characterize the propa-
gation of an optical pulse in plasma and optical fiber.

This research is arranged as follows, with an introduction in Section 1. In
Section 2, we focused on introducing the (m+ 1

G′ )-expansion method. In Section
3, we used the provided approach to investigate the new precise solutions to the
perturbed Chen-Lee-Liu model. Section 4 presents the study’s result.

2. The (m+ 1
G′ )-expansion method

Consider the following PDE in two variables in order to describe the
(
m+ 1/G′

)
-

expansion method as follows:

O (ψ,ψx, ψt, ψxt, . . .) = 0. (2.1)

Here O is a polynomial function of its inputs in general, and the subscripts signify
partial derivatives. The key steps of the

(
m+ 1/G′

)
-expansion approach will now

be described.
Step 1: Assume that equation (2.1) has a traveling solution of the following

form:

ψ (x, t) = u(ξ)eiθ(x,t), ξ = x− ρt θ (x, t) = −kx+ wt+ η. (2.2)

Substituting Eq. (2.2) into Eq. (2.1), a result is a nonlinear ordinary differential
equation (NLODE) as follows:

P
(
u, u′, u′′, . . .

)
= 0, (2.3)

where P is a polynomial of u(ξ) and u′, u′′, · · · are total derivatives, as well as
the prime ′ signifies d

dζ .

Step 2: We assume that equation (2.3) has the following form:

u (ξ) =

n∑
i=−n

ai(m+ F )i = a−n(m+ F )−n + · · ·+ a−1(m+ F )−1

+ma0 + a1 (m+ F ) + · · ·+ an(m+ F )n,

(2.4)

where an (n = 0, ±1, ... ,±n) and m are nonzero constants, which will be evalu-
ated later. The value of n will be evaluated according to the principles of balance
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and

Q =
1

G′ where G (ξ) verify G′′ + (λ+ 2mµ)G′ + µ = 0. (2.5)

Step 3: Putting Eq. (2.4) into Eq. (2.3) then collecting all terms that have
the same order of the

(
m+ 1/G′

)n
, then making these terms equal to zero, gives

us a set of algebraic equations, which can be solved by using the computational
software to evaluate the values ofan, n = 0, 1, ... , n, α and w. Step 4: Inserting
the obtained values into Eq. (2.4) gives us solutions of the Eq. (2.1).

3. Application to the (m+ 1
G′ )-expansion method

In this section, we apply the m + 1
G′ -expansion method to Eq. (1.2). Firstly,

by inserting Eq. (2.2) into Eq. (1.2), we get

− iρu
′ − wu+ αu

′′ − 2kαiu
′ − αk2U + iβu2u

′

+ βku3 − iγu
′ − γku− 3iµu2u

′ − µku3 − 2iδu2u
′
= 0.

(3.1)

by expressing the following parts of Eq.(3.1) as follows: The reel part becomes

(−w − αk2 − γk)u+ αu
′′
+ k(β − µ)u3 = 0, (3.2)

and the imaginary part is

(−ρ− 2kα− γ)u
′
+ (β − 3µ− 2δ)u2u

′
= 0. (3.3)

Then, by setting the coefficients of the components of the imaginary part equal
to zero, we obtain ρ = −2kα−γ and β = 3µ+2δ. Plugging these values into the
real part yields

(−w − αk2 − γk)u+ αu
′′
+ 2k(β + µ)u3 = 0. (3.4)

By utilizing the balance principle, one can get n = 1. Plugging Eq. (2.4), one
can get the solution of Eq. (3.4) like:

u (ξ) = a−1(m+ F )−1 +ma0 + a1 (m+ F ) . (3.5)

when we substituting Eq. (3.5) into Eq. (3.4), we find the solutions by taking into
account the equation system obtained for the following conditions by performing
the necessary operations.

Case 1. When we have a−1 = 0, a0 =
√
m
√
αλ

2
√

k(−mδ+λ)
, a1 = −

√
αλ

√
m
√

k(−mδ+λ)
, w =

−k (kα+ γ) − αλ2

2 , µ = − λ
m , and putting this case into Eq. (3.5) then into Eq.

(2.2) we get

ψ(x, t) = −
e−

1
2
i(2k(x+t(kα+γ))−2η+tαλ2)√mαλ

(
1 +A1e

(x+t(2kα+γ))λm
)

2
(
mA1e(x+t(2kα+γ))λ − 1

)√
k (λ−mδ)

. (3.6)

This is bright-singular optical solution as presented in Fig. 1.
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(a) 3D figure
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(b) Corresponding contour plot

Figure 1. Bright-singular solution drawn when λ = 1,m =
1, η = 1, k = 5, A1 = 3, a0 = 2, δ = −1/2, λ] = 1/2, α = 1/3, γ =
1/4, t = 2.

Case 2: When a−1 = −m
√
α(λ+mµ)√
−k(δ+µ)

, a0 =
√
αλ

2
√

−k(δ+µ)
, a1 = 0, w = −k2α −

kγ − 1
2α(λ+ 2mµ)2 and plugging this case into Eq. (3.5) then into Eq. (2.2) we

obtain

ψ(x, t) =

√
α (λ+ 2mµ)

(
e(x+t(2kα+γ))(λ+2mµ) (λ+mµ)−A1m (λ+ 2mµ)

)
2
√

−k (δ + µ)
(
e(x+t(2kα+γ))(λ+2mµ) (λ+mµ) +A1m (λ+ 2mµ)

)
e−

1
2
i(2k2tα+2k(x+tγ)−2η+tα(λ+2mµ)2).

(3.7)

This is dark-singular optical solution as presented in Fig. 2.
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(b) Corresponding contour plot

Figure 2. dark-Singular solution plotted when λ = 1,m = 1, η =
1, k = 5, A1 = 3, a0 = 2, δ = −1/2, λ = 1/2, α = 1/3, γ = 1/4, t =
2, µ = 1/8.
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Case 3: When a−1 = 0, a0 = −
√

w+k(kα+γ)
√
2
√

k(δ+µ)
, a1 =

√
α(−w−k(kα+γ))µ√

w+k(kα+γ)
√

k(δ+µ)
, λ =

√
2(−w−k(kα+γ))√

α
, m = −

√
2(−w−k(kα+γ))√

αµ
and inserting this case into Eq. (3.5)

then into Eq. (2.2) we obtain

ψ(x, t) =

(
A1e

√
2(−w−k(kα+γ))(x+t(2kα+γ))√

α
√

2 (−w − k (kα+ γ))−
√
αµ

)
√
k (δ + µ)

(
2A1e

√
2(−w−k(kα+γ))(x+t(2kα+γ))√

α
√
−w − k (kα+ γ) +

√
2αµ

)
ei(tw−kx+η)

√
w + k (kα+ γ).

(3.8)

This is dark optical solution as presented in Fig. 3.

(a) 3D figure
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(b) Corresponding contour plot

Figure 3. Dark solution plotted when λ = 1,m = 1, η = 1, k =
−1/5, A1 = 3, a0 = 2, δ = 1/2, λ = 1/2, α = 1/3, γ = 4, t = 2, µ =
1/8, w = −1.

Case 4: When m = −
√

−2α(w+k(kα+γ))µ2+2µ
√

α(−k(δ+µ))a0
2αµ2 , a−1 = 0, a1 =

√
αµ√

−k(δ+µ)
, λ =

2
√

−k(δ+µ)a0√
α

, and substituting this case into Eq. (3.5) then into

Eq. (2.2) we obtain

ψ(x, t) =

ei(tw−kx+η)√αµ
(
2A1e

√
2(x+t(2kα+γ))

√
ρ

αµ (w + k (kα+ γ)) +
√
2ρ

)
2
√

−k (δ + µ)

(
αµ2 +

√
2A1e

√
2(x+t(2kα+γ))

√
ρ

αµ
√
ρ

) , (3.9)

where ρ = −α (w + k (kα+ γ))µ2. As shown in Fig. 4, Eq. (3.9) is a periodic
optical solution.
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(a) 3D figure
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(b) Corresponding contour plot

Figure 4. Periodic solution plotted when λ = 1,m = 1, η =
1, k = −1/5, A1 = 3, a0 = 2, δ = 1/2, λ = 1/2, α = 1/3, γ = 4, t =
2, µ = 1/8, w = 1.

Case 5: When a−1 = −2m(λ+mµ)a0
λ , a1 = 0, γ = −w

k +
2(δ+µ)(2k2+(λ+2mµ)2)a20

λ2 ,

α = −4k(δ+µ)a20
λ2 , and taking into account this case into Eq. (3.5) then into Eq.

(2.2) we have

ψ(x, t) = a0e
i(tw−kx+η)− 2a0m (λ+mµ) ei(tw−kx+η)

λ

m+ 1

A1e
(λ+2mµ)

(
tw
k

−x−
2t(δ+µ)((λ+2mµ)2−2k2)a20

λ2

)
− µ

λ+2mµ


.

(3.10)
As shown in Fig. 5, Eq. (3.10) is a dark optical solution.
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Figure 5. Dark solution plotted when λ = 1,m = 1, η = 1, k =
1/5, A1 = 3, a0 = 2, δ = 1/2, λ = 1/2, α = 1/3, γ = 4, t = 2, µ =
−1/8, w = 1.
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Case 6: When a−1 = 0, a1 = 2µa0
λ , γ = −w

k +
2(δ+µ)(2k2+(λ+2mµ)2)a20

λ2 , α =

−4k(δ+µ)a20
λ2 , and putting this case into Eq. (3.5) then into Eq. (2.2) we have

ψ(x, t) = a0e
i(tw−kx+η) +

2mµa0
λ

ei(tw−kx+η)+

2µa0e
i(tw−kx+η)

λA1e
(λ+2mµ)

(
tw
k
−x−

2t(δ+µ)((λ+2mµ)2−2k2)a20
λ2

)
− λµ

λ+2mµ

.
(3.11)

Eq. (3.11) is a bright-singular optical solution as seen in fig. 6.

(a) 3D figure
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(b) Corresponding contour plot

Figure 6. bright-singular solution plotted when λ = 1,m =
1, η = 1, k = 1/5, A1 = 3, a0 = 1, δ = 1/2, λ = 1/2, α = 1/3, γ =
4, t = 2, µ = −1/2, w = 1.

Case 7: When a−1 = 0, a1 = −2a0
m , w = −k (kα+ γ) − αλ2

2 , µ = − λ
m ,

δ = λ
m − αλ2

4ka20
, and inserting this case into Eq. (3.5) then into Eq. (2.2) yields

ψ(x, t) = −
e−

1
2
i(2k(x+t(kα+γ))−2η+tαλ2) (1 +A1e

(x+t(2kα+γ))λm
)
a0

A1me(x+t(2kα+γ))λ − 1
. (3.12)

Eq. (3.12) is a dark optical solution as seen in fig. 7.
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(a) 3D figure
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Figure 7. Dark solution plotted when λ = 1,m = −1/2, η =
1, k = 5, A1 = 3, a0 = 2, δ = −1/2, λ = 1/2, α = 1/3, γ = 1/4, t =
2.

Case 8: when a−1 = −2m(λ+mµ)a0
λ , a1 = 0, w = −k2α − kγ − 1

2α(λ+ 2mµ)2,

δ = −µ − αλ2

4ka20
and taking into account this case into Eq. (3.5) then into Eq.

(2.2) we can get

ψ(x, t) =

a0 − 2m (λ+mµ) a0

λ

(
m+ 1

A1e−((x+2ktα+tγ)(λ+2mµ))− µ
λ+2mµ

)


e−
1
2
i(2k2tα+2k(x+tγ)−2η+tα(λ+2mµ)2).

(3.13)

Eq. (3.12) is a dark-singular optical solution as seen in fig. 8.
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Figure 8. Dark-singular solution plotted when λ = 1,m = 1, η =
, k = 5, A1 = 3, a0 = −2, δ = 2, λ = −1/2, α = 1/3, γ = 1/4, t =
2, µ = 1.
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4. Conclusions

In this article, we have found several novel solutions to the perturbed Chen-
Lee-Liu equation by using the (m + 1

G′ )-expansion method. These solutions are
bright-singular, dark-singular, dark and periodic optical waves. These solutions
characterize the plasma propagation experienced with electron density in the
electromagnetic environment. The existence of gained solutions is verified and
constraint conditions are utilized.
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