T-FLATNESS AND BOCHNER FLATNESS OF THE TANGENT BUNDLES OF LIE GROUPS

MURAT ALTUNBAŞ

Abstract

Let (G, g) be a bi-invariant Lie group and $(T G, \tilde{g})$ be its tangent bundle. In this paper, we compute the \tilde{T}-curvature tensor and a Bochner tensor \tilde{B} on $(T G, \tilde{g})$ and show that their flatnesses are related with flatness of the base manifold (G, g).

1. Introduction

In [2], Asgari and Moghaddam introduced a left invariant metric \tilde{g} on the tangent bundle $T G$ of a Lie group (G, g) by using complete and vertical lifts of left invariant vector fields from G. They also presented the Levi-Civita connection, sectional curvature and Ricci tensor formulas of $(T G, \tilde{g})$. In [10], Seifipour and Peyghan studied Cotton, Schouten, Weyl and Bach tensors, and they computed projective, concircular and M-projective curvatures on $T G$ when the Lie group G is bi-invariant.

In this paper, we obtain two theorems. In the first theorem, we investigate \tilde{T}-flatness of the tangent Lie group $T G . T$-curvature tensor was introduced in [11] by Tripati and Gupta. A lot of well-known curvature tensors including projective, concircular and M-projective curvature tensors are special cases of this tensor. In the second theorem, we construct an almost Hermitian structure \tilde{J} on $(T G, \tilde{g})$, compute a Bochner tensor with respect to this structure and study its flatness. More precisely, we will prove the following theorems:

Theorem 1.1. Let (G, g) be an m-dimensional bi-invariant Lie group ($m>$ 3). $(T G, \tilde{g})$ is \tilde{T}-flat if and only if (G, g) is flat.

Theorem 1.2. Let (G, g) be an m-dimensional bi-invariant Lie group ($m>$ 3). The almost Hermitian manifold $(T G, \tilde{g}, \tilde{J})$ is Bochner flat if and only if (G, g) is flat.

2. Preliminaries

2.1. Tangent bundle of a Lie group. Let (M, g) be an m-dimensional Riemannian manifold and $T M$ be its tangent bundle. If $\left(x^{i}\right)$ and $\left(x^{i}, y^{i}\right)$ are local

[^0]charts on M and $T M$, respectively, then the complete lift and vertical lift of a vector field $X=X^{i} \partial_{i}$ on M are expressed as
$$
X^{C}=X^{i} \partial_{i}+y^{a}\left(\partial_{a} X^{i}\right) \dot{\partial}_{i}, X^{V}=X^{i} \dot{\partial}_{i}
$$
where $\partial_{i}=\frac{\partial}{\partial x^{i}}, \dot{\partial}_{i}=\frac{\partial}{\partial y^{2}}$. Moreover, the complete lift f^{C} of a smooth function f on M is defined by $f^{C}=y^{i} \frac{\partial f}{\partial x^{i}}$.

Let $T G$ be the tangent bundle of a Lie group G. A Lie group structure on $T G$ obtained by the Lie group structure of G is constructed as follows:

$$
\left(x, v_{x}\right) \cdot\left(y, w_{y}\right)=\left(x y,\left(d l_{x}\right)\left(w_{y}\right)+\left(d r_{y}\right)\left(v_{x}\right)\right)
$$

for every $x, y \in G, v_{x} \in T_{x} G$ and $w_{y} \in T_{y} G$, where l_{x} and r_{y} are the left and right translations of G by x and y, respectively. Notice that ($T G,$.) is a Lie group.

For the Lie brackets, we have

$$
\left[X^{V}, Y^{V}\right]=0,\left[X^{C}, Y^{C}\right]=[X, Y]^{C},\left[X^{V}, Y^{C}\right]=[X, Y]^{V} .
$$

Remark that the complete and vertical lifts of any left invariant vector fields of G are left invariant vector fields on the Lie group $T G$. Moreover, one can decompose a left invariant vector field \tilde{X} into two left invariant vector fields X_{1}^{C} and X_{2}^{V} as $\tilde{X}=X_{1}^{C}+X_{2}^{V}$. Also, if $\left\{X_{1}, \ldots, X_{m}\right\}$ is a basis for the Lie algebra \mathfrak{g} of G then $\left\{X_{1}^{V}, \ldots, X_{m}^{V}, X_{1}^{C}, \ldots, X_{m}^{C}\right\}$ is a basis for the Lie algebra $\tilde{\mathfrak{g}}$ of $T G$.

A metric g on a Lie group G is said to be left invariant (right invariant) if

$$
\begin{aligned}
& \text { (l.i.) } g_{b}(u, v)=g_{a b}\left(\left(d l_{a}\right)_{b} u,\left(d l_{a}\right)_{b} v\right), \\
& \text { (r.i.) } g_{b}(u, v)=g_{b a}\left(\left(d r_{a}\right)_{b} u,\left(d r_{a}\right)_{b} v\right),
\end{aligned}
$$

for every $a, b \in G$ and all $u, v \in T_{b} G$. For shortness, (G, g) is called a left invariant (right invariant) Lie group. A Riemannian metric that is both left and right invariant is called a bi-invariant metric. In this case, (G, g) is called a bi-invariant Lie group.

If g is a left invariant Riemannian metric on a Lie group G, then a left invariant Riemannian metric \tilde{g} on $T G$ is defined by

$$
\begin{equation*}
\tilde{g}\left(X^{C}, Y^{C}\right)=g(X, Y), \tilde{g}\left(X^{V}, Y^{V}\right)=g(X, Y), g\left(X^{C}, Y^{V}\right)=0 \tag{2.1}
\end{equation*}
$$

where X and Y are two left invariant vector fields on G [2].
In the following propositions, we give the Levi-Civita connection and the Riemannian curvature tensor of the metric \tilde{g} which is defined in (2.1).
Proposition 2.1. [2] Let (G, g) be a left invariant Lie group with the Levi-Civita connection ∇ and $(T G, \tilde{g})$ be its tangent bundle with the Levi-Civita connection $\tilde{\nabla}$. Then the following relations are satisfied:

$$
\left\{\begin{array}{l}
\tilde{\nabla}_{X^{C}} Y^{C}=\left(\nabla_{X} Y\right)^{C} \\
\tilde{\nabla}_{X^{C}} Y^{V}=\left(\nabla_{X} Y+\frac{1}{2} a d_{Y}^{*} X\right)^{V} \\
\tilde{\nabla}_{X^{V}} Y^{C}=\left(\nabla_{X} Y+\frac{1}{2} a d_{X}^{*} Y\right)^{V} \\
\tilde{\nabla}_{X^{V}} Y^{V}=\left(\nabla_{X} Y-\frac{1}{2}[X, Y]\right)^{C}
\end{array}\right.
$$

where $a d_{X}^{*} Y$ is the transpose of $a d_{X}$ with respect to the inner product induced by g on \mathfrak{g}.

Proposition 2.2. [10] Let (G, g) be a left invariant Lie group with the Riemannian curvature tensor R and $(T G, \tilde{g})$ be its tangent bundle with the Riemannian curvature tensor \tilde{R}. Then the following relations are satisfied:

$$
\begin{aligned}
& \tilde{R}\left(X^{C}, Y^{C}\right) Z^{V}=(R(X, Y) Z)^{V}+\left\{\frac{1}{2} \nabla_{X}\left(a d_{Z}^{*} Y\right)+\frac{1}{2} a d_{\nabla_{Y} Z+\frac{1}{2} a d_{Z}^{*} Y^{*} X}\right. \\
&\left.-\frac{1}{2} \nabla_{Y}\left(a d_{Z}^{*} X\right)-\frac{1}{2} a d_{\nabla_{X} Z+\frac{1}{2} a d_{Z}^{*} X}^{*} Y-\frac{1}{2} a d_{Z}^{*}[X, Y]\right\}^{V}, \\
& \tilde{R}\left(X^{C}, Y^{C}\right) Z^{C}=(R(X, Y) Z)^{C}, \\
& \tilde{R}\left(X^{C}, Y^{V}\right) Z^{V}=(R(X, Y) Z)^{C}+\left\{-\frac{1}{2} \nabla_{X}([Y, Z])-\frac{1}{2} \nabla_{Y}\left(a d_{Z}^{*}\right)+\frac{1}{2}\left[Y, \nabla_{X} Z\right]\right. \\
&\left.+\frac{1}{4}\left[Y, a d_{Z}^{*} X\right]-\frac{1}{2}[[X, Y], Z]\right\}^{C}, \\
& \tilde{R}\left(X^{V}, Y^{C}\right) Z^{C}=(R(X, Y) Z)^{V}+\left\{\frac{1}{2} a d_{X}^{*}\left(\nabla_{Y} Z\right)-\frac{1}{2} \nabla_{Y}\left(a d_{Z}^{*} X\right)\right. \\
&\left.-\frac{1}{2} a d_{\nabla_{X} Z+\frac{1}{2} a d_{Z}^{*} X}^{*} Y-\frac{1}{2} a d_{[X, Y]}^{*} Z\right\}^{V}, \\
& \tilde{R}\left(X^{V}, Y^{V}\right) Z^{C}=\left\{\nabla_{X}\left(\nabla_{Y} Z\right)+\frac{1}{2} \nabla_{X}\left(a d_{Y}^{*} Z\right)-\frac{1}{2}\left[X, \nabla_{Y} Z\right]-\frac{1}{4}\left[X, a d_{Y}^{*} Z\right]\right. \\
&\left.-\nabla_{Y}\left(\nabla_{X} Z\right)-\frac{1}{2} \nabla_{Y}\left(a d_{X}^{*} Z\right)+\frac{1}{2}\left[Y, \nabla_{X} Z\right]+\frac{1}{4}\left[Y, a d_{X}^{*} Z\right]\right\}^{C}, \\
& \tilde{R}\left(X^{V}, Y^{V}\right) Z^{V}=\left\{\nabla_{X}\left(\nabla_{Y} Z\right)-\frac{1}{2} \nabla_{X}([Y, Z])+\frac{1}{2}\left(a d _ { X } ^ { * } \left(\nabla_{Y} Z-\frac{1}{2}[Y, Z]\right.\right.\right. \\
&-\nabla_{Y}\left(\nabla_{X} Z\right)+\frac{1}{2} \nabla_{Y}([X, Z])-\frac{1}{2}\left(a d_{Y}^{*}\left(\nabla_{X} Z-\frac{1}{2}[X, Z]\right)\right\}^{V} .
\end{aligned}
$$

Now, we can give the following corollary from [10].
Corollary 2.1. If (G, g) is a bi-invariant Lie group and \tilde{g} is the left invariant Riemannian metric on $T G$ given in (2.1), then for all left invariant vector fields X, Y, Z on G, we have
(i) $\tilde{\nabla}_{X^{C}} Y^{C}=\frac{1}{2}[X, Y]^{C}, \tilde{\nabla}_{X^{C}} Y^{V}=[X, Y]^{V}, \tilde{\nabla}_{X^{V}} Y^{C}=\tilde{\nabla}_{X^{V}} Y^{V}=0$,
(ii) $\tilde{R}\left(X^{C}, Y^{C}\right) Z^{C}=-\frac{1}{4}[[X, Y], Z]^{C}$,

$$
\begin{aligned}
\tilde{R}\left(X^{C}, Y^{C}\right) Z^{V} & =\tilde{R}\left(X^{C}, Y^{V}\right) Z^{V}=\tilde{R}\left(X^{V}, Y^{C}\right) Z^{C}=\tilde{R}\left(X^{V}, Y^{V}\right) Z^{C} \\
& =\tilde{R}\left(X^{V}, Y^{V}\right) Z^{V}=0,
\end{aligned}
$$

(iii) $\tilde{S}\left(X^{C}, Y^{C}\right)=S(X, Y), \tilde{S}\left(X^{C}, Y^{V}\right)=\tilde{S}\left(X^{V}, Y^{V}\right)=0$,

$$
\text { (iv) } \tilde{r}=r \text {, }
$$

where \tilde{S}, \tilde{r} and S, r denote the Ricci tensor and the scalar curvature of the metrics \tilde{g} and g, respectively.
2.2. T-Curvature and Bochner Curvature. To prove the theorems in the first section, we shall recall the following definitions.

Definition 2.1. [11] Let (M, g) be an m-dimensional (semi-) Riemannian manifold. A $(0,4)$ - type curvature tensor T on M is defined by

$$
\begin{aligned}
T(X, Y, Z, W)= & a_{0} R(X, Y, Z, W) \\
& +a_{1} S(Y, Z) g(X, W)+a_{2} S(X, Z) g(Y, W)+a_{3} S(X, Y) g(Z, W) \\
& +a_{4} g(Y, Z) S(X, W)+a_{5} g(X, Z) S(Y, W)+a_{6} g(X, Y) S(Z, W) \\
& +a_{7} r(g(Y, Z) X-g(X, Z) Y)
\end{aligned}
$$

where a_{0}, \ldots, a_{7} are some smooth functions on M, and R, S and r are the curvature tensor, the Ricci tensor and the scalar curvature, respectively.

Particular cases of the T-curvature tensor are
(1) the quasi-conformal curvature tensor [14] if

$$
a_{1}=-a_{2}=a_{4}=-a_{5}, a_{3}=a_{6}=0, a_{7}=-\frac{1}{m}\left(\frac{a_{0}}{m-1}+2 a_{1}\right),
$$

(2) the conformal curvature tensor [4] if
$a_{0}=1, a_{1}=-a_{2}=a_{4}=-a_{5}=-\frac{1}{m-2}, a_{3}=a_{6}=0, a_{7}=\frac{1}{(m-1)(m-2)}$,
(3) the conharmonic curvature tensor [5] if

$$
a_{0}=1, a_{1}=-a_{2}=a_{4}=-a_{5}=-\frac{1}{m-2}, a_{3}=a_{6}=0, a_{7}=0
$$

(4) the concircular curvature tensor $([12],[13])$ if

$$
a_{0}=1, a_{1}=a_{2}=a_{3}=a_{4}=a_{5}=a_{6}=0, a_{7}=-\frac{1}{m(m-1)},
$$

(5) the pseudo-projective curvature tensor [9] if

$$
a_{0}=1, a_{1}=-a_{2}, a_{3}=a_{4}=a_{5}=a_{6}=0, a_{7}=-\frac{1}{m}\left(\frac{a_{0}}{m-1}+a_{1}\right),
$$

(6) the projective curvature tensor [13] if

$$
a_{0}=1, a_{1}=-a_{2}=-\frac{1}{(m-1)}, a_{3}=a_{4}=a_{5}=a_{6}=a_{7}=0
$$

(7) the M-projective curvature tensor [7] if

$$
a_{0}=1, a_{1}=-a_{2}=a_{4}=-a_{5}=-\frac{1}{2(m-1)}, a_{3}=a_{6}=a_{7}=0,
$$

(8) the W_{0}-curvature tensor [7] if

$$
a_{0}=1, a_{1}=-a_{5}=-\frac{1}{(m-1)}, a_{2}=a_{3}=a_{4}=a_{6}=a_{7}=0
$$

(9) the W_{0}^{*}-curvature tensor [7] if

$$
a_{0}=1, a_{1}=-a_{5}=\frac{1}{(m-1)}, a_{2}=a_{3}=a_{4}=a_{6}=a_{7}=0
$$

(10) the W_{1}-curvature tensor [7] if

$$
a_{0}=1, a_{1}=-a_{2}=\frac{1}{(m-1)}, a_{3}=a_{4}=a_{5}=a_{6}=a_{7}=0
$$

(11) the W_{1}^{*}-curvature tensor [7] if

$$
a_{0}=1, a_{1}=-a_{2}=-\frac{1}{(m-1)}, a_{3}=a_{4}=a_{5}=a_{6}=a_{7}=0
$$

(12) the W_{2}-curvature tensor [6] if

$$
a_{0}=1, a_{4}=-a_{5}=-\frac{1}{(m-1)}, a_{1}=a_{2}=a_{3}=a_{6}=a_{7}=0
$$

(13) the W_{3}-curvature tensor [7] if

$$
a_{0}=1, a_{2}=-a_{4}=-\frac{1}{(m-1)}, a_{1}=a_{3}=a_{5}=a_{6}=a_{7}=0
$$

(14) the W_{4}-curvature tensor [7] if

$$
a_{0}=1, a_{5}=-a_{6}=\frac{1}{(m-1)}, a_{1}=a_{2}=a_{3}=a_{4}=a_{7}=0
$$

(15) the W_{5}-curvature tensor [8] if

$$
a_{0}=1, a_{2}=-a_{5}=-\frac{1}{(m-1)}, a_{1}=a_{3}=a_{4}=a_{6}=a_{7}=0
$$

(16) the W_{6}-curvature tensor [8] if

$$
a_{0}=1, a_{1}=-a_{6}=-\frac{1}{(m-1)}, a_{2}=a_{3}=a_{4}=a_{5}=a_{7}=0
$$

(17) the W_{7}-curvature tensor [8] if

$$
a_{0}=1, a_{1}=-a_{4}=-\frac{1}{(m-1)}, a_{2}=a_{3}=a_{5}=a_{6}=a_{7}=0
$$

(18) the $W_{8}-$ curvature tensor [8] if

$$
a_{0}=1, a_{1}=-a_{3}=-\frac{1}{(m-1)}, a_{2}=a_{4}=a_{5}=a_{6}=a_{7}=0
$$

(19) the W_{9}-curvature tensor [8] if

$$
a_{0}=1, a_{3}=-a_{4}=\frac{1}{(m-1)}, a_{1}=a_{2}=a_{5}=a_{6}=a_{7}=0
$$

(20) the generalized P-curvature tensor [3] if

$$
a_{0}, \ldots, a_{6} \text { are arbitrary constants and } a_{7}=0 .
$$

A (semi-)Riemannian manifold is called T-flat if $T=0$ [11].
Definition 2.2. [1] Let $\left(M_{m}, J, g\right)$ be an even dimensional almost Hermitian manifold (i.e., g is a Riemannian metric and J is a $(1,1)-$ tensor field which
satisfies $J^{2}=-I, g(J X, Y)=-g(X, J Y)$, where $\left.X, Y \in \chi(M)\right)$. Then a Bocher tensor B of $(0,4)$-type on M is defined by

$$
\begin{aligned}
B(X, Y, Z, W)= & R(X, Y, Z, W)+L(X, W) g(Y, Z)-L(X, Z) g(Y, W) \\
& +L(Y, Z) g(X, W)-L(Y, W) g(X, Z) \\
& +L(J X, W) g(J Y, Z)-L(J X, Z) g(J Y, W) \\
& +L(J Y, Z) g(J X, W)-L(J Y, W) g(J X, Z) \\
& -2 L(J X, Y) g(J Z, W)-2 L(J Z, W) g(J X, Y)
\end{aligned}
$$

where

$$
\begin{aligned}
L(X, Y) & =E g(S X, Y)+F g(X, Y), \\
E & =-\frac{1}{m+4}, F=\frac{r}{2(m+2)(m+4)},
\end{aligned}
$$

and, S and r denote the Ricci tensor and the scalar curvature of g, respectively.
A (semi-)Riemannian manifold is called Bochner flat if $B=0$.

3. Proof of Theorems

3.1. Proof of Theorem 1.1. From Corollary 2.1, Definition 2.1 and using (2.1), we obtain the following relations by direct calculations:

$$
\begin{align*}
& \tilde{T}\left(X^{V}, Y^{V}, Z^{V}, W^{V}\right)= a_{7} r((g(Y, Z) g(X, W)-g(X, Z) g(Y, W)), \tag{3.1}\\
& \tilde{T}\left(X^{V}, Y^{C}, Z^{C}, W^{V}\right)=\left.a_{1} S(Y, Z) g(X, W)+a_{7} r g(Y, Z) g(X, W)\right), \tag{3.2}\\
& \tilde{T}\left(X^{C}, Y^{C}, Z^{C}, W^{C}\right)= a_{0} R(X, Y, Z, W) \\
&+a_{1} S(Y, Z) g(X, W)+a_{2} S(X, Z) g(Y, W) \tag{3.3}\\
& \quad+a_{3} S(X, Y) g(Z, W)+a_{4} g(Y, Z) S(X, W) \\
& \quad+a_{5} g(X, Z) S(Y, W)+a_{6}+g(X, Y) S(Z, W) \\
& \quad+a_{7} r(g(Y, Z) X-g(X, Z) Y), \\
& \tilde{T}\left(X^{C}, Y^{V}, Z^{V}, W^{C}\right)=a_{4} g(Y, Z) S(X, W)+a_{7} r g(Y, Z) g(X, W), \tag{3.4}\\
& \tilde{T}\left(X^{C}, Y^{C}, Z^{V}, W^{C}\right)=\tilde{T}\left(X^{V}, Y^{V}, Z^{V}, W^{C}\right)=0, \tag{3.5}\\
& \tilde{T}\left(X^{V}, Y^{V}, Z^{C}, W^{C}\right)=a_{6} g(X, Y) S(Z, W), \tag{3.6}\\
& \tilde{T}\left(X^{V}, Y^{C}, Z^{C}, W^{C}\right)=\tilde{T}\left(X^{V}, Y^{V}, Z^{C}, W^{V}\right)=0, \tag{3.7}\\
& \tilde{T}\left(X^{C}, Y^{C}, Z^{C}, W^{V}\right)=\tilde{T}\left(X^{C}, Y^{V}, Z^{V}, W^{V}\right)=0, \tag{3.8}\\
& \tilde{T}\left(X^{C}, Y^{C}, Z^{V}, W^{V}\right)=a_{3} S(X, Y) g(Z, W), \tag{3.9}
\end{align*}
$$

where r, S and R denote the scalar curvature, Ricci tensor and curvature tensor of (G, g), respectively. It is obvious that if $R=0$, then $\tilde{T}=0$. Conversely, if $\tilde{T}=0$, then from (3.1) we see that $r=0$. From (3.2), we occur that $S=0$. And finally, using (3.3), we get $R=0$.
Corollary 3.1. Let (G, g) be an m-dimensional bi-invariant Lie group $(m>3)$ and $(T G, \tilde{g})$ be its tangent bundle. Then we have
(TG, $\tilde{g})$ is quasi-conformally flat $\Leftrightarrow(G, g)$ is flat.
(TG, $\tilde{g})$ is conformally flat $\Leftrightarrow(G, g)$ is flat.
(TG, $\tilde{g})$ is conharmonically flat $\Leftrightarrow(G, g)$ is flat.
($T G, \tilde{g}$) is concircularly flat $\Leftrightarrow(G, g)$ is flat.
($T G, \tilde{g})$ is pseudo-projectively flat $\Leftrightarrow(G, g)$ is flat.
$(T G, \tilde{g})$ is projectively flat $\Leftrightarrow(G, g)$ is flat.
($T G, \tilde{g}$) is M-projectively flat $\Leftrightarrow(G, g)$ is flat.
$(T G, \tilde{g})$ is $W_{i}^{*}(i=0,1)$ flat $\Leftrightarrow(G, g)$ is flat.
$(T G, \tilde{g})$ is $W_{i}(i=0, \ldots, 9)$ flat $\Leftrightarrow(G, g)$ is flat.
($T G, \tilde{g}$) is generalized P flat $\Leftrightarrow(G, g)$ is flat.
3.2. Proof of Theorem 1.2. Define a $(1,1)$-tensor field \tilde{J} on $(T G, \tilde{g})$ as

$$
\tilde{J}\left(X^{C}\right)=-X^{V}, \tilde{J}\left(X^{V}\right)=X^{C}
$$

One can easily show that $\tilde{J}^{2}=-I$ and $\tilde{g}(\tilde{J} \widetilde{X}, \tilde{Y})=-g(\tilde{X}, \tilde{J} \widetilde{Y})$ for all $\tilde{X}=$ X^{V}, X^{C} and $\tilde{Y}=Y^{V}, Y^{C}$. Therefore, $(T G, \tilde{g}, \tilde{J})$ is an almost Hermitian manifold. Using this structure, Corollary 2.1 and Definition 2.2, we get

$$
\left.\begin{array}{rl}
\tilde{B}\left(X^{V}, Y^{V}, Z^{V}, W^{V}\right)= & F(g(X, W) g(Y, Z)-g(X, Z) g(Y, W)), \\
\tilde{B}\left(X^{V}, Y^{C}, Z^{C}, W^{V}\right)= & F g(X, W) g(Y, Z)+[E S(Y, Z)+F g(Y, Z)] g(X, W) \\
& +[E S(X, Z)+F g(X, Z)] g(Y, W) \\
& +[E S(Y, W)+F g(Y, W)] g(X, Z) \\
& 2[E S(X, Y)+F g(X, Y)] g(Z, W) \\
& +2 F g(Z, W) g(X, Y), \\
\tilde{B}\left(X^{C}, Y^{C}, Z^{C}, W^{C}\right)= & R(X, Y, Z, W)+[E S(X, W)+F g(X, W)] g(Y, Z) \\
& -[E S(X, Z)+F g(X, Z)] g(Y, W) \\
& +[E S(Y, Z)+F g(Y, Z)] g(X, W) \\
& \quad-[E S(Y, W)+F g(Y, W)] g(X, Z), \\
\tilde{B}\left(X^{C}, Y^{V}, Z^{V}, W^{C}\right)= & {[E S(X, W)+F g(X, W)] g(Y, Z)+F g(Y, Z) g(X, W)} \\
& +F g(X, Z) g(Y, W) \\
& +[E S(Y, W)+F g(Y, W)] g(X, Z) \\
& +2 F g(X, Y) g(Z, W) \\
& +2[E S(Z, W)+F g(Z, W)] g(X, Y), \\
\tilde{B}\left(X^{C}, Y^{C},\right. & \left.Z^{V}, W^{C}\right)=\tilde{B}\left(X^{V}, Y \text { Y }, Z^{V}, W^{C}\right),
\end{array}\right\}
$$

$$
\begin{gather*}
\tilde{B}\left(X^{V}, Y^{V}, Z^{C}, W^{V}\right)=\tilde{B}\left(X^{C}, Y^{C}, Z^{C}, W^{V}\right)=\tilde{B}\left(X^{C}, Y^{V}, Z^{V}, W^{V}\right)=0, \\
\tilde{B}\left(X^{C}, Y^{C}, Z^{V}, W^{V}\right)=2 F g(X, W) g(Y, Z)-2 F g(X, Z) g(Y, W), \tag{3.17}
\end{gather*}
$$

where $E=-\frac{1}{2 m+4}$ and $F=\frac{\tilde{r}}{2(2 m+2)(2 m+4)}=\frac{r}{2(2 m+2)(2 m+4)}$, and r, S, R denote the scalar curvature, Ricci tensor and curvature tensor of (G, g), respectively. Clearly, if $R=0$, then $\tilde{B}=0$. Conversely, if $\tilde{B}=0$, then from (3.10) we occur that $r=0$. From (3.11), we conclude $S=0$. Using (3.12), we obtain $R=0$.

Acknowledgements. The author would like to thank referees for their valuable suggestions.

References

[1] H. Abood, Almost Hermitian manifold with flat Bochner tensor, Eur. J. Pure App. Math. 3 (2010), 730-736.
[2] F. Asgari and HR. Moghaddam Salimi, On the Riemannian geometry of tangent Lie groups, Rend. Circ. Mat. Palermo Ser. 267 (2018), 185-195.
[3] U. C. De, H. M. Abu-Donia, S. Shenawy and A. A. Syied, On generalized projective P-curvature tensor, J. Geo. Phys. 159 (2021), Article ID 103952.
[4] L.P. Eisenhart, Riemannian Geometry, Princeton Uni. Press, New Jersey, 1949.
[5] Y. Ishii, On conharmonic transformations, Tensor N.S. 7 (1957), 73-80.
[6] G.P. Pokhariyal and R.S. Mishra, Curvature tensors and their relativistic significance, Yokohama Math. J. 18 (1970), 105-108.
[7] G.P. Pokhariyal and R.S. Mishra, Curvature tensors and their relativistic significance II, Yokohama Math. J. 19 (1971), 97-103.
[8] G.P. Pokhariyal, Relativistic significance of curvature tensors, Int. J. Math. Sci. 5 (1982), 133-139.
[9] B. Prasad, A pseudo projective curvature tensor on a Riemannian manifold, Bull. Calcutta Math. Soc. 94 (2002), 163-166.
[10] D. Seifipour and E. Peyghan, Some properties of Riemannian geometry of the tangent bundle of Lie groups, Turk. J. Math. 43 (2019), 2842-2864.
[11] M. M. Tripati and P. Gupta, T-Curvature tensor on a semi-Riemannian manifold, J. Adv. Math. Stud. 1 (2011), 117-129.
[12] K. Yano, Concircular Geometry I. Concircular transformations, Math. Ins. Tokyo Imp. Uni. Proc. 16 (1940), 195-200.
[13] K. Yano and S. Bochner, Curvature and Betti numbers, Annals of Mathematics Studies 32, Princeton University Press, New Jersey, 1953.
[14] K.Yano and S. Sawaki, Riemannian manifolds admitting a conformal transformation group, J. Dif. Geo. 2 (1968), 161-184.

Murat Altunbas
Erzincan Binali Yeldırım University,
Faculty of Arts and Sciences, Erzincan, TR 24100, Turkey
E-mail address: maltunbas@erzincan.edu.tr
Received: March 22, 2022; Revised: May 31, 2022; Accepted: August 17, 2022

[^0]: 2010 Mathematics Subject Classification. 53C21, 53C55.
 Key words and phrases. tangent Lie group, T-tensor, Bochner tensor.

