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T-FLATNESS AND BOCHNER FLATNESS OF THE TANGENT

BUNDLES OF LIE GROUPS

MURAT ALTUNBAŞ

Abstract. Let (G, g) be a bi-invariant Lie group and (TG, g̃) be its

tangent bundle. In this paper, we compute the T̃−curvature tensor and
a Bochner tensor B̃ on (TG, g̃) and show that their flatnesses are related
with flatness of the base manifold (G, g).

1. Introduction

In [2], Asgari and Moghaddam introduced a left invariant metric g̃ on the
tangent bundle TG of a Lie group (G, g) by using complete and vertical lifts of
left invariant vector fields fromG. They also presented the Levi-Civita connection,
sectional curvature and Ricci tensor formulas of (TG, g̃). In [10], Seifipour and
Peyghan studied Cotton, Schouten, Weyl and Bach tensors, and they computed
projective, concircular and M−projective curvatures on TG when the Lie group
G is bi-invariant.

In this paper, we obtain two theorems. In the first theorem, we investigate
T̃−flatness of the tangent Lie group TG. T−curvature tensor was introduced
in [11] by Tripati and Gupta. A lot of well-known curvature tensors including
projective, concircular and M−projective curvature tensors are special cases of
this tensor. In the second theorem, we construct an almost Hermitian structure
J̃ on (TG, g̃), compute a Bochner tensor with respect to this structure and study
its flatness. More precisely, we will prove the following theorems:

Theorem 1.1. Let (G, g) be an m−dimensional bi-invariant Lie group (m >

3). (TG, g̃) is T̃−flat if and only if (G, g) is flat.

Theorem 1.2. Let (G, g) be an m−dimensional bi-invariant Lie group (m >

3). The almost Hermitian manifold (TG, g̃, J̃) is Bochner flat if and only if (G, g)
is flat.

2. Preliminaries

2.1. Tangent bundle of a Lie group. Let (M, g) be an m−dimensional Rie-
mannian manifold and TM be its tangent bundle. If (xi) and (xi, yi) are local
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charts on M and TM, respectively, then the complete lift and vertical lift of a
vector field X = Xi∂i on M are expressed as

XC = Xi∂i + ya(∂aX
i)∂̇i, XV = Xi∂̇i,

where ∂i =
∂
∂xi , ∂̇i =

∂
∂yi

. Moreover, the complete lift fC of a smooth function f

on M is defined by fC = yi ∂f
∂xi .

Let TG be the tangent bundle of a Lie group G. A Lie group structure on TG
obtained by the Lie group structure of G is constructed as follows:

(x, vx).(y, wy) = (xy, (dlx)(wy) + (dry)(vx)),

for every x, y ∈ G, vx ∈ TxG and wy ∈ TyG, where lx and ry are the left and right
translations of G by x and y, respectively. Notice that (TG, .) is a Lie group.

For the Lie brackets, we have

[XV , Y V ] = 0, [XC , Y C ] = [X,Y ]C , [XV , Y C ] = [X,Y ]V .

Remark that the complete and vertical lifts of any left invariant vector fields of G
are left invariant vector fields on the Lie group TG. Moreover, one can decompose
a left invariant vector field X̃ into two left invariant vector fields XC

1 and XV
2 as

X̃ = XC
1 +XV

2 . Also, if {X1, ..., Xm} is a basis for the Lie algebra g of G then
{XV

1 , ..., XV
m, XC

1 , ..., XC
m} is a basis for the Lie algebra g̃ of TG.

A metric g on a Lie group G is said to be left invariant (right invariant) if

(l.i.) gb(u, v) = gab((dla)bu, (dla)bv),

(r.i.) gb(u, v) = gba((dra)bu, (dra)bv),

for every a, b ∈ G and all u, v ∈ TbG. For shortness, (G, g) is called a left invariant
(right invariant) Lie group. A Riemannian metric that is both left and right
invariant is called a bi-invariant metric. In this case, (G, g) is called a bi-invariant
Lie group.

If g is a left invariant Riemannian metric on a Lie group G, then a left invariant
Riemannian metric g̃ on TG is defined by

g̃(XC , Y C) = g(X,Y ), g̃(XV , Y V ) = g(X,Y ), g(XC , Y V ) = 0, (2.1)

where X and Y are two left invariant vector fields on G [2].
In the following propositions, we give the Levi-Civita connection and the Rie-

mannian curvature tensor of the metric g̃ which is defined in (2.1).

Proposition 2.1. [2] Let (G, g) be a left invariant Lie group with the Levi-Civita
connection ∇ and (TG, g̃) be its tangent bundle with the Levi-Civita connection

∇̃. Then the following relations are satisfied:
∇̃XCY C = (∇XY )C ,

∇̃XCY V = (∇XY + 1
2ad

∗
Y X)V ,

∇̃XV Y C = (∇XY + 1
2ad

∗
XY )V ,

∇̃XV Y V = (∇XY − 1
2 [X,Y ])C ,

where ad∗XY is the transpose of adX with respect to the inner product induced by
g on g.
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Proposition 2.2. [10] Let (G, g) be a left invariant Lie group with the Riemann-
ian curvature tensor R and (TG, g̃) be its tangent bundle with the Riemannian

curvature tensor R̃. Then the following relations are satisfied:

R̃(XC , Y C)ZV = (R(X,Y )Z)V + {1
2
∇X(ad∗ZY ) +

1

2
ad∗∇Y Z+ 1

2
ad∗ZY

X

−1

2
∇Y (ad

∗
ZX)− 1

2
ad∗∇XZ+ 1

2
ad∗ZX

Y − 1

2
ad∗Z [X,Y ]}V ,

R̃(XC , Y C)ZC = (R(X,Y )Z)C ,

R̃(XC , Y V )ZV = (R(X,Y )Z)C + {−1

2
∇X([Y, Z])− 1

2
∇Y (ad

∗
Z) +

1

2
[Y,∇XZ]

+
1

4
[Y, ad∗ZX]− 1

2
[[X,Y ], Z]}C ,

R̃(XV , Y C)ZC = (R(X,Y )Z)V + {1
2
ad∗X(∇Y Z)− 1

2
∇Y (ad

∗
ZX)

−1

2
ad∗∇XZ+ 1

2
ad∗ZX

Y − 1

2
ad∗[X,Y ]Z}V ,

R̃(XV , Y V )ZC = {∇X(∇Y Z) +
1

2
∇X(ad∗Y Z)− 1

2
[X,∇Y Z]− 1

4
[X, ad∗Y Z]

−∇Y (∇XZ)− 1

2
∇Y (ad

∗
XZ) +

1

2
[Y,∇XZ] +

1

4
[Y, ad∗XZ]}C ,

R̃(XV , Y V )ZV = {∇X(∇Y Z)− 1

2
∇X([Y, Z]) +

1

2
(ad∗X(∇Y Z − 1

2
[Y,Z]

−∇Y (∇XZ) +
1

2
∇Y ([X,Z])− 1

2
(ad∗Y (∇XZ − 1

2
[X,Z])}V .

Now, we can give the following corollary from [10].

Corollary 2.1. If (G, g) is a bi-invariant Lie group and g̃ is the left invariant
Riemannian metric on TG given in (2.1), then for all left invariant vector fields
X,Y, Z on G, we have

(i) ∇̃XCY C =
1

2
[X,Y ]C , ∇̃XCY V = [X,Y ]V , ∇̃XV Y C = ∇̃XV Y V = 0,

(ii) R̃(XC , Y C)ZC = −1

4
[[X,Y ], Z]C ,

R̃(XC , Y C)ZV = R̃(XC , Y V )ZV = R̃(XV , Y C)ZC = R̃(XV , Y V )ZC

= R̃(XV , Y V )ZV = 0,

(iii) S̃(XC , Y C) = S(X,Y ), S̃(XC , Y V ) = S̃(XV , Y V ) = 0,

(iv) r̃ = r,

where S̃, r̃ and S, r denote the Ricci tensor and the scalar curvature of the metrics
g̃ and g, respectively.
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2.2. T-Curvature and Bochner Curvature. To prove the theorems in the
first section, we shall recall the following definitions.

Definition 2.1. [11] Let (M, g) be an m−dimensional (semi-) Riemannian man-
ifold. A (0, 4)− type curvature tensor T on M is defined by

T (X,Y, Z,W ) = a0R(X,Y, Z,W )

+a1S(Y, Z)g(X,W ) + a2S(X,Z)g(Y,W ) + a3S(X,Y )g(Z,W )

+a4g(Y,Z)S(X,W ) + a5g(X,Z)S(Y,W ) + a6g(X,Y )S(Z,W )

+a7r(g(Y,Z)X − g(X,Z)Y ),

where a0, ..., a7 are some smooth functions onM , and R,S and r are the curvature
tensor, the Ricci tensor and the scalar curvature, respectively.

Particular cases of the T−curvature tensor are
(1) the quasi-conformal curvature tensor [14] if

a1 = −a2 = a4 = −a5, a3 = a6 = 0, a7 = − 1

m
(

a0
m− 1

+ 2a1),

(2) the conformal curvature tensor [4] if

a0 = 1, a1 = −a2 = a4 = −a5 = − 1

m− 2
, a3 = a6 = 0, a7 =

1

(m− 1)(m− 2)
,

(3) the conharmonic curvature tensor [5] if

a0 = 1, a1 = −a2 = a4 = −a5 = − 1

m− 2
, a3 = a6 = 0, a7 = 0,

(4) the concircular curvature tensor ([12],[13]) if

a0 = 1, a1 = a2 = a3 = a4 = a5 = a6 = 0, a7 = − 1

m(m− 1)
,

(5) the pseudo-projective curvature tensor [9] if

a0 = 1, a1 = −a2, a3 = a4 = a5 = a6 = 0, a7 = − 1

m
(

a0
m− 1

+ a1),

(6) the projective curvature tensor [13] if

a0 = 1, a1 = −a2 = − 1

(m− 1)
, a3 = a4 = a5 = a6 = a7 = 0,

(7) the M−projective curvature tensor [7] if

a0 = 1, a1 = −a2 = a4 = −a5 = − 1

2(m− 1)
, a3 = a6 = a7 = 0,

(8) the W0−curvature tensor [7] if

a0 = 1, a1 = −a5 = − 1

(m− 1)
, a2 = a3 = a4 = a6 = a7 = 0,

(9) the W ∗
0−curvature tensor [7] if

a0 = 1, a1 = −a5 =
1

(m− 1)
, a2 = a3 = a4 = a6 = a7 = 0,
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(10) the W1−curvature tensor [7] if

a0 = 1, a1 = −a2 =
1

(m− 1)
, a3 = a4 = a5 = a6 = a7 = 0,

(11) the W ∗
1−curvature tensor [7] if

a0 = 1, a1 = −a2 = − 1

(m− 1)
, a3 = a4 = a5 = a6 = a7 = 0,

(12) the W2−curvature tensor [6] if

a0 = 1, a4 = −a5 = − 1

(m− 1)
, a1 = a2 = a3 = a6 = a7 = 0,

(13) the W3−curvature tensor [7] if

a0 = 1, a2 = −a4 = − 1

(m− 1)
, a1 = a3 = a5 = a6 = a7 = 0,

(14) the W4−curvature tensor [7] if

a0 = 1, a5 = −a6 =
1

(m− 1)
, a1 = a2 = a3 = a4 = a7 = 0,

(15) the W5−curvature tensor [8] if

a0 = 1, a2 = −a5 = − 1

(m− 1)
, a1 = a3 = a4 = a6 = a7 = 0,

(16) the W6−curvature tensor [8] if

a0 = 1, a1 = −a6 = − 1

(m− 1)
, a2 = a3 = a4 = a5 = a7 = 0,

(17) the W7−curvature tensor [8] if

a0 = 1, a1 = −a4 = − 1

(m− 1)
, a2 = a3 = a5 = a6 = a7 = 0,

(18) the W8− curvature tensor [8] if

a0 = 1, a1 = −a3 = − 1

(m− 1)
, a2 = a4 = a5 = a6 = a7 = 0,

(19) the W9−curvature tensor [8] if

a0 = 1, a3 = −a4 =
1

(m− 1)
, a1 = a2 = a5 = a6 = a7 = 0,

(20) the generalized P−curvature tensor [3] if

a0, ..., a6 are arbitrary constants and a7 = 0.

A (semi-)Riemannian manifold is called T−flat if T = 0 [11].

Definition 2.2. [1] Let (Mm, J, g) be an even dimensional almost Hermitian
manifold (i.e., g is a Riemannian metric and J is a (1, 1)− tensor field which
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satisfies J2 = −I, g(JX, Y ) = −g(X, JY ), where X,Y ∈ χ(M)). Then a Bocher
tensor B of (0, 4)−type on M is defined by

B(X,Y, Z,W ) = R(X,Y, Z,W ) + L(X,W )g(Y, Z)− L(X,Z)g(Y,W )

+L(Y,Z)g(X,W )− L(Y,W )g(X,Z)

+L(JX,W )g(JY, Z)− L(JX,Z)g(JY,W )

+L(JY, Z)g(JX,W )− L(JY,W )g(JX,Z)

−2L(JX, Y )g(JZ,W )− 2L(JZ,W )g(JX, Y ),

where

L(X,Y ) = Eg(SX, Y ) + Fg(X,Y ),

E = − 1

m+ 4
, F =

r

2(m+ 2)(m+ 4)
,

and, S and r denote the Ricci tensor and the scalar curvature of g, respectively.

A (semi-)Riemannian manifold is called Bochner flat if B = 0.

3. Proof of Theorems

3.1. Proof of Theorem 1.1. From Corollary 2.1, Definition 2.1 and using
(2.1), we obtain the following relations by direct calculations:

T̃ (XV , Y V , ZV ,W V ) = a7r((g(Y, Z)g(X,W )− g(X,Z)g(Y,W )), (3.1)

T̃ (XV , Y C , ZC ,W V ) = a1S(Y,Z)g(X,W ) + a7rg(Y,Z)g(X,W )), (3.2)

T̃ (XC , Y C , ZC ,WC) = a0R(X,Y, Z,W )

+a1S(Y,Z)g(X,W ) + a2S(X,Z)g(Y,W ) (3.3)

+a3S(X,Y )g(Z,W ) + a4g(Y,Z)S(X,W )

+a5g(X,Z)S(Y,W ) + a6 + g(X,Y )S(Z,W )

+a7r(g(Y,Z)X − g(X,Z)Y ),

T̃ (XC , Y V , ZV ,WC) = a4g(Y,Z)S(X,W ) + a7rg(Y,Z)g(X,W ), (3.4)

T̃ (XC , Y C , ZV ,WC) = T̃ (XV , Y V , ZV ,WC) = 0, (3.5)

T̃ (XV , Y V , ZC ,WC) = a6g(X,Y )S(Z,W ), (3.6)

T̃ (XV , Y C , ZC ,WC) = T̃ (XV , Y V , ZC ,W V ) = 0, (3.7)

T̃ (XC , Y C , ZC ,W V ) = T̃ (XC , Y V , ZV ,W V ) = 0, (3.8)

T̃ (XC , Y C , ZV ,W V ) = a3S(X,Y )g(Z,W ), (3.9)

where r, S and R denote the scalar curvature, Ricci tensor and curvature tensor
of (G, g), respectively. It is obvious that if R = 0, then T̃ = 0. Conversely, if

T̃ = 0, then from (3.1) we see that r = 0. From (3.2), we occur that S = 0. And
finally, using (3.3), we get R = 0.

Corollary 3.1. Let (G, g) be an m−dimensional bi-invariant Lie group (m > 3)
and (TG, g̃) be its tangent bundle. Then we have
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(TG, g̃) is quasi-conformally flat ⇔ (G, g) is flat.
(TG, g̃) is conformally flat ⇔ (G, g) is flat.
(TG, g̃) is conharmonically flat ⇔ (G, g) is flat.
(TG, g̃) is concircularly flat ⇔ (G, g) is flat.
(TG, g̃) is pseudo-projectively flat ⇔ (G, g) is flat.
(TG, g̃) is projectively flat ⇔ (G, g) is flat.
(TG, g̃) is M−projectively flat ⇔ (G, g) is flat.
(TG, g̃) is W ∗

i (i = 0, 1) flat ⇔ (G, g) is flat.
(TG, g̃) is Wi (i = 0, ..., 9) flat ⇔ (G, g) is flat.
(TG, g̃) is generalized P flat ⇔ (G, g) is flat.

3.2. Proof of Theorem 1.2. Define a (1, 1)−tensor field J̃ on (TG, g̃) as

J̃(XC) = −XV , J̃(XV ) = XC .

One can easily show that J̃2 = −I and g̃(J̃X̃, Ỹ ) = −g(X̃, J̃ Ỹ ) for all X̃ =

XV , XC and Ỹ = Y V , Y C . Therefore, (TG, g̃, J̃) is an almost Hermitian manifold.
Using this structure, Corollary 2.1 and Definition 2.2, we get

B̃(XV , Y V , ZV ,W V ) = F (g(X,W )g(Y,Z)− g(X,Z)g(Y,W )), (3.10)

B̃(XV , Y C , ZC ,W V ) = Fg(X,W )g(Y,Z) + [ES(Y, Z) + Fg(Y,Z)]g(X,W )

+[ES(X,Z) + Fg(X,Z)]g(Y,W ) (3.11)

+[ES(Y,W ) + Fg(Y,W )]g(X,Z)

2[ES(X,Y ) + Fg(X,Y )]g(Z,W )

+2Fg(Z,W )g(X,Y ),

B̃(XC , Y C , ZC ,WC) = R(X,Y, Z,W ) + [ES(X,W ) + Fg(X,W )]g(Y,Z)

−[ES(X,Z) + Fg(X,Z)]g(Y,W ) (3.12)

+[ES(Y,Z) + Fg(Y,Z)]g(X,W )

−[ES(Y,W ) + Fg(Y,W )]g(X,Z),

B̃(XC , Y V , ZV ,WC) = [ES(X,W ) + Fg(X,W )]g(Y, Z) + Fg(Y, Z)g(X,W )

+Fg(X,Z)g(Y,W ) (3.13)

+[ES(Y,W ) + Fg(Y,W )]g(X,Z)

+2Fg(X,Y )g(Z,W )

+2[ES(Z,W ) + Fg(Z,W )]g(X,Y ),

B̃(XC , Y C , ZV ,WC) = B̃(XV , Y V , ZV ,WC), (3.14)

B̃(XV , Y V , ZC ,WC) = −[ES(X,W ) + Fg(X,W )]g(Y,Z) (3.15)

−[ES(X,Z) + Fg(X,Z)]g(Y,W )

+[ES(Y,Z) + Fg(Y,Z)]g(X,W )

−[ES(Y,W ) + Fg(Y,W )]g(X,Z),

B̃(XV , Y C , ZC ,WC) = 0, (3.16)
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B̃(XV , Y V , ZC ,W V ) = B̃(XC , Y C , ZC ,W V ) = B̃(XC , Y V , ZV ,W V ) = 0,
(3.17)

B̃(XC , Y C , ZV ,W V ) = 2Fg(X,W )g(Y, Z)− 2Fg(X,Z)g(Y,W ), (3.18)

where E = − 1
2m+4 and F = r̃

2(2m+2)(2m+4) = r
2(2m+2)(2m+4) , and r, S, R denote

the scalar curvature, Ricci tensor and curvature tensor of (G, g), respectively.

Clearly, if R = 0, then B̃ = 0. Conversely, if B̃ = 0, then from (3.10) we occur
that r = 0. From (3.11), we conclude S = 0. Using (3.12), we obtain R = 0.
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