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FAST DISCRETE SOLVERS FOR NONLINEAR

HAMMERSTIEN EQUATIONS

MOHAMED ARRAI, CHAFIK ALLOUCH, AND HAMZA BOUDA

Abstract. In this paper, discrete versions of the modified projection-
type methods are studied for solving the Hammerstein integral equa-
tions with a smooth kernel. The approximating operator is either the
orthogonal projection or an interpolatory projection at Gauss points
onto a space of piecewise polynomials of degree ≤ r − 1. The orders
of convergence that one obtains for the proposed methods shows that
the used numerical quadrature for approximating the integrals preserves
the orders of convergence of continuous methods. Numerical results are
presented to validate the theoretical results.

1. Introduction

In this paper, we consider nonlinear Fredholm–Hammerstein integral equations
of the form

x−Kx = f, (1.1)

where K is the integral operator defined on X = L∞[0, 1] by

(Kx)(s) =

∫ 1

0
κ(s, t)ψ(t, x(t))dt, s ∈ [0, 1], x ∈ X, (1.2)

f and ψ are known functions, with ψ(t, u) nonlinear in u and x is the function to
be found. Hammerstein integral equations arise in many applications in science
and technology such as vehicular traffic and chemical reaction including chemical
kinetics, biology, heat conduction, theory of superfluidity, boundary layer and
heat transfer resulting in mathematical models described by nonlinear integral
equations [1, 4, 5, 19]. Since usually these equations can not be solved explic-
itly, it is required to obtain approximate solutions. The Galerkin, collocation
and their discretized versions are the most common used projection methods for
finding numerical solutions of the integral equation of type (1.1). Superconver-
gence results of various projection and iterated projection methods for solving
nonlinear Fredholm integral equations can be found in [10, 11, 12]. Kulkarni and
Nidhin [15] discuss a modified projection method to solve (1.1) with a contin-
uous kernel, as well as a more general type of kernel in [9, 14]. Some authors
proposed discrete methods to solve nonlinear integral equations using orthogonal
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and interpolatory projection operators (see [7, 8, 20]). There have been many
methods to improve the accuracy of numerical solutions of classical methods.
Furthermore, the authors in [13] introduced a discrete version of collocation and
iterated collocation methods to obtain reliable superconvergence results. More-
over, an extrapolation of a discrete version of Kantorovich and degenerate kernel
methods for integral equations of the second kind was presented in [3]. A new
collocation method was disccused by Kumar and Sloan [16], while its supercon-
vergence feature were studied in [18]. A superconvergent version of this method
(so called modified projection-type method) was discussed in [2]. The Kumar
and Sloan method is known in literature as the collocation-type method since it
was defined using an interpolatory operator. This paper will specifically refer to
this method as a discrete modified Galerkin-type method when using an hyperin-
terpolation projection and as a projection-type method when not specifying the
type of projection.

The purpose of this paper is to describe the discrete modified projection-type
method for solving Hammerstein equations (1.1) by using piecewise polynomial
interpolation technique. Note that the continuous method is proposed in [2] for
Hammerstein integral equations. When we replace the integrals by a numerical
quadrature formula, we show that for a sufficiently smooth kernel, the orders
of convergence of the discrete modified projection-type method and its iterated
version are, respectively, 3r and 4r, where r denotes the order of piecewise poly-
nomials employed in the approximation. Accordingly, the iterated discrete mod-
ified projection-type method performs better than the modified projection-type
method.

The paper is divided into four sections. In Section 2, we set up the notations,
discuss the numerical methods and some relevant results are recalled. In Section
3 we give the convergence orders of the proposed method and their iterated
versions. Section 4 is devoted to a presentation of numerical examples, which
illustrate the theoretical estimates obtained in Section 3.

2. Preliminaries and notations

Let x0 be a unique solution of (1.1), a and b be real numbers such that[
min
s∈[0,1]

x0(s), max
s∈[0,1]

x0(s)

]
⊂ [a, b].

For δ0 > 0, let

B(x, δ0) = {x0 ∈ X : ∥x− x0∥∞ < δ0}.
Define Ω = [0, 1] × [a, b] and assume that otherwise, the following conditions on
κ, f and ψ:

(i) f ∈ C[0, 1] and ψ ∈ C(Ω).

(ii) M ≡ sups∈[0,1]
∫ 1
0 |κ(s, t)|dt <∞.

(iii) The function ψ(t, u) and ∂ψ
∂u (t, u) are Lipschitz continuous in u ∈ [a, b],

then for any u1, u2 ∈ [a, b] there exists δ1, δ2 > 0, for which

|ψ(t, u1)− ψ(t, u2)| ≤ δ1|u1 − u2| and

∣∣∣∣∂ψ∂u (t, u1)− ∂ψ

∂u
(t, u2)

∣∣∣∣ ≤ δ2|u1 − u2|.



FAST DISCRETE SOLVERS FOR NONLINEAR HAMMERSTIEN EQUATIONS 195

If the condition (iii) holds, the operator K is Fréchet differentiable and K′(x0) is
Mδ2-Lipschitz . The Fréchet derivative at x0 ∈ C[0, 1] is defined by

(K′(x0)g)(s) =

∫ 1

0
κ(s, t)

∂ψ

∂u
(t, x0(t))g(t)dt, s, g ∈ C[0, 1].

This method involves replacing K by the Nyström operator KN
m, based on the

quadrature formula in order to preserve the orders of convergence. For a positive
integer n, let

(∆n) : 0 = s0 < s1 < s2 < . . . < sn−1 < sn = 1 (2.1)

be the uniform partition of [0, 1], with nodes {si = i
n , i = 0, . . . , n} and mesh-

length h = 1
n . For u, v ∈ C[0, 1], the inner product is defined by

⟨u, v⟩ =
∫ 1

0
u(t)v(t)dt and norm is ∥u∥L2 =

(∫ 1

0
u(t)2dt

) 1
2

.

For a fixed r ≥ 1, we denote by Πr the space of polynomials of degree ≤ r − 1.
Let

Xn =
{
y : [0, 1] −→ R : y|[si−1,si] ∈ Πr, 1 ≤ i ≤ n

}
be the set of functions that are polynomials of degree ≤ r−1, on each subinterval
[si−1, si].

Let m = pn for some p ∈ N∗ and let ∆m be the uniform partition of [0, 1]

giving by (2.1) with meshlength h̃ = 1
m , such that ph̃ = h. To introduce the

discrete methods, we consider a quadrature formula defined by∫ 1

0
f(t)dt ≃

ρ∑
j=1

wjf(σj), (2.2)

with
∑ρ

j=1wj = 1. For 1 ≤ i ≤ m and 1 ≤ j ≤ ρ, let ζij = (i − 1 + σj)h̃, then

(2.2) gives rise to the composite quadrature formula∫ 1

0
f(t)dt ≃ h̃

m∑
i=1

ρ∑
j=1

wjf(ζij). (2.3)

Suppose that the quadrature formula (2.2) is exact for all polynomials of degree
≤ d− 1 where d ≥ 2r. Then, for f ∈ Cd[0, 1] (See Golberg and Chen [7])∣∣∣∣∣∣

∫ 1

0
f(t)dt− h̃

m∑
i=1

ρ∑
j=1

wjf(ζij)

∣∣∣∣∣∣ ≤ c1∥f (d)∥∞h̃d, (2.4)

where c1 is a constant independent of m.
Using the above numerical integration method, we define the discrete inner prod-
uct as

⟨f, g⟩m = h̃

m∑
i=1

ρ∑
j=1

ωjf(ζij)g(ζij), f, g ∈ C[0, 1].
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The Nyström approximation of the integral operator K is defined as

(KN
mx)(s) = h̃

m∑
i=1

ρ∑
j=1

ωjκ(s, ζij)ψ(ζij , x(ζij)), s ∈ [0, 1]. (2.5)

Since wj > 0 and 1 =
∑ρ

i=1 ωi. For p = 0, 1, . . . , r, we have

∥[KN ′
m (x0)g]

(p)∥∞ = max
s∈[0,1]

∣∣∣∣∣∣h̃
m∑
i=1

ρ∑
j=1

wj
∂pκ

∂sp
(s, ζij)

∂ψ

∂u
(ζij , x0(ζij))g(ζij)

∣∣∣∣∣∣ ,
≤ max

s∈[0,1]
h̃

m∑
i=1

ρ∑
j=1

wj

∣∣∣∣∂pκ∂sp (s, ζij)
∣∣∣∣ ∣∣∣∣∂ψ∂u (ζij , x0(ζij))

∣∣∣∣ |g(ζij)| ,
≤ Ψ1∥κ∥p,∞∥g∥∞,

(2.6)

where

∥κ∥r,∞ = max
s,t∈[0,1]

∣∣∣∣∂rκ∂sr (s, t)
∣∣∣∣ , Ψ1 = max

t∈[0,1]

∣∣∣∣∂ψ∂u (t, x0(t))
∣∣∣∣ .

Hence, we deduce that ∥KN ′
m (x0)g∥∞ ≤ Ψ1∥κ∥0,∞∥g∥∞. This implies,

∥KN ′
m (x0)∥∞ ≤ Ψ1∥κ∥0,∞. (2.7)

Then KN ′
m (x0) is a compact operator on C[0, 1]. Assume that κ ∈ Cd[0, 1]2 and

that x0 ∈ Cd[0, 1]. Then

∥K(x0)−KN
m(x0)∥∞ ≤ c1∥κ∥d,∞h̃d. (2.8)

The Fréchet derivative of KN
m is given by

(KN ′
m (x0)g)(s) = h̃

m∑
i=1

ρ∑
j=1

ωjκ(s, x0(ζij))
∂ψ

∂u
(ζij , x0(ζij))g(ζij), s ∈ [0, 1].

If ∂κ∂u ∈ Cd[0, 1]2 and g ∈ Cd[0, 1], then from (2.4)

∥K′(x0)g −KN ′
m (x0)g∥∞ ≤ c1∥κ∥d,∞∥g∥∞h̃d, (2.9)

where c1 is a constant independent of m.
For the rest of paper, we set

κs(t) ≡ κ(s, t), ψp =
∂pψ

∂up
(t, x0(t)) s, t ∈ [0, 1].

Now,we define two types of projections from C[0, 1] to Xn.

• Discrete orthogonal projection operator: Discrete orthogonal projection
operator namely Hyperinterpolation operator QGn x : L2[0, 1] → Xn is defined by

(QGn x)(s) =
nr∑
i=1

⟨x, φi⟩mφi(s), (2.10)

where {φ1, φ2, . . . , φnr} is an orthonormal basis for Xn.
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• Interpolatory projection: Let {τ1, . . . , τr} be the set of r Gauss points
in [0, 1]. For x ∈ C[0, 1], let QCn x : C[0, 1] → Xn be the interpolatory operator
defined by

(QCn x)(s) =

nr∑
i=1

x(ti)ℓi(s), s ∈ [0, 1],

(QCn x)(ti) = x(ti), 1 ≤ i ≤ nr,

(2.11)

where the collocation points are

{ti : i = 1, 2, ..., nr} = {tij = (i− 1 + τj)h, 1 ≤ i ≤ n, 1 ≤ j ≤ r}, (2.12)

and {ℓi : i = 1, 2, ..., nr} is the Lagrange basis of Xn.
For notational convenience from now on we write Qn ≡ QGn or QCn . In both

cases, Qn converge to identity operator pointwise and for x ∈ C[0, 1], (see [6],
page 328, Corollary 7.6):

∥(I− Qn)x∥∞ ≤ c2∥x(r)∥∞hr, (2.13)

on the other hand from Allouch et al.[2], we get

∥(I− Qn)[K(x0)−Kn(x0)]∥∞ ≤ c2h
3r, (2.14)

where c2 is a constant independent of n.Moreover, the projection Qn is uniformly
bounded with respect to n, i.e.

q = sup
n

∥Qn∥X→X <∞. (2.15)

Let p be a positive integer. For x ∈ Cp[0, 1], we set

∥x∥p,∞ =

p∑
i=0

∥x(i)∥∞.

If QCn is the interpolatory projection at r Gauss points, then for x ∈ Cr[0, 1] and
y ∈ C2r[0, 1], (See de-Boor-Swartz [17])∣∣∣∣∫ 1

0
x(t)(I− QCn )y(t)dt

∣∣∣∣ ≤ c3∥x∥r,∞∥y∥2r,∞h2r, (2.16)

where c3 is a constant independent of n.

Lemma 2.1. (Kulkarni-Rakshit [13] ) Let QCn : C[0, 1] → Xn be the interpolatory
projection defined by (2.11). If ∂κ

∂u ∈ Cr(Ω) and g ∈ C2r[0, 1], then

∥KN ′
m (x0)(I− QCn )g∥∞ ≤ c3∥κ∥r,∞∥g∥2r,∞h2r.

Let z(t) = ψ(t, x(t)), and consider the following approximate operator defined
in [16] by

(Knx)(s) =

∫ 1

0
κ(s, t)Qnz(.)dt, s ∈ [0, 1]. (2.17)

Recall that the modified projection-type method introduced in [2] consist of ap-
proximating K by

QnK+Kn − QnKn. (2.18)
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In this framework, we propose to approximate K by the following discrete finite
rank operator

KS
n = QnK

N
m +Kn − QnKn, (2.19)

where Kn is the discrete nonlinear operator given by

(Knx)(s) = ⟨κs,Qnz⟩m = h̃
m∑
i=1

ρ∑
j=1

ωjκs(ζij)(Qnz)(ζij), s ∈ [0, 1].

Then the discrete modified projection-type method for equation (1.1) is seeking
an approximate solution xn to x0 such that

xn −KS
nxn = f, (2.20)

while the discrete iterated solution is defined by

x̃n = KN
mxn + f. (2.21)

In the next section we consider the reduction of (2.20) to a system of nonlinear
equations, and we give some details on the numerical implementation.

Implementation note. Let QGn be the hyperinterpolation operator defined by
(2.10) and κj(s) = ⟨κ(s, .), φj⟩, in order to give more information about the im-
plementation of xn, it is easy to show from (2.19) and (2.20), that xn has the
following form

xn = f +
nr∑
p=1

apφp +
nr∑
q=1

bqκq, (2.22)

where the coefficients {ai, bi i = 0, 1, ..., n} are obtained by substituting xn from
equation (2.22) into equation (2.20) then, we successively have

(QGnK
N
m)xn =

nr∑
i=1

⟨KN
m, φi⟩mφi = h̃

nr∑
i=1

{ m∑
j=1

ρ∑
k=1

ωkz(ζjk)⟨κ(., ζjk), φi⟩m
}
φi,

Knxn =
nr∑
i=1

⟨z, φi⟩mκi,

(QGnKn)xn =

nr∑
i=1

⟨Kn, φi⟩mφi =
nr∑
i=1

{ nr∑
l=1

⟨⟨z, φl⟩mκl, φi⟩m
}
φi,

where

z(t) = ψ

(
t, f(t) +

nr∑
p=1

apφp(t) +

nr∑
q=1

bqκq(t)

)
.

Therefore we can identify the coefficients of φi and κj respectively, and we obtain
the nonlinear system of size 2nr, ai =

nr∑
i=1

{
h̃

m∑
j=1

ρ∑
k=1

ωkz(ζjk)⟨κ(., ζjk), φi⟩m −
nr∑
l=1

⟨⟨z, φl⟩mκl, φi⟩m
}
,

bi = ⟨z, φi⟩m.
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For the interpolatory projection given by (2.11), we apply QCn and (I−QCn ) to
equation (2.20), to obtain

QCn xn − QCnK
N
m = QCn f, (2.23)

(I− QCn )xn − (I− QCn )Knxn = (I− QCn )f. (2.24)

By writing
KN
mxn = KN

m(I − QCn )xn +KN
mQ

C
n xn, (2.25)

and replacing (I− QCn )xn by its expression from equation (2.24), KN
mxn becomes

KN
mxn = KN

m

(
(I− QCn )Knxn + QCn xn + (I− QCn )f

)
. (2.26)

Now, by replacing KN
mxn in equation (2.23), we obtain

QCn xn − QCnK
N
m

(
(I− QCn )Knxn + QCn xn + (I− QCn )f

)
= QCn f, (2.27)

and then for i = 1, ..., nr, we have

xn(ti)−KN
m

(
(I− QCn )Knxn + QCn xn + (I− QCn )f

)
(ti) = f(ti). (2.28)

Now using the expressions of the operators QCn , K
N
m and Kn, we obtain the fol-

lowing nonlinear system of size nr

ai − h̃

m∑
i=1

ρ∑
j=1

ωjκ(ti, ζij)ψ

(
ζij ,

nr∑
i=1

(ai − fi)ℓi +

nr∑
i=1

⟨κ(ti, ζ), ψ(ζ, ai)ℓi⟩m

−
nr∑
l=1

{ nr∑
i=1

⟨κ(tl, ζ), ψ(ζ, ai)ℓi⟩m
}
ℓl + f(t)

)
= fi,

where fi := f(ti), ζ := ζij for any 1 ≤ i ≤ m and 1 ≤ j ≤ ρ with {ai = xn(ti), i =
0, 1, ..., n} are the unknowns. From (2.24), the approximate solution is given by

xn = QCn xn + (I− QCn )Knxn + (I− QCn )f,

= f +

nr∑
i=1

(ai − fi)ℓi +

nr∑
i=1

⟨κ(., ζ), ψ(ζ, ai)ℓi⟩m

−
nr∑
l=1

{ nr∑
i=1

⟨κ(tl, ζ), ψ(ζ, ai)ℓi⟩m
}
ℓl.

(2.29)

3. Convergence rate

In this section, we analyse the existence and uniqueness of the approximate
solutions of (1.1) and we discuss the superconvergence results. The following
theorem can be proved by using Theorem 2 given in [21] .

Theorem 3.1. Let x0 ∈ C[0, 1] be a unique solution of (1.1). Assume that 1
is not an eigenvalue of K′(x0). Then there exists a real number δ0 > 0 such
that the approximate equation (2.20) has a unique solution xn in B(x0, δ0) for a
sufficiently large n. Moreover, there exists a constant 0 < p < 1, independent of
n such that

αn
1 + p

≤ ∥x0 − xn∥∞ ≤ αn
1− p

, (3.1)

where αn =
∥∥(I−KS′

n (x0))
−1(K(x0)−KS

n(x0))
∥∥
∞ −→ 0 as n −→ ∞.
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Lemma 3.1. Assume that 1 is not an eigenvalue of K′(x0). Then, for n large

enough, (I − KS′
n (x0))

−1 exists and it is a bounded linear operator, then, there
exists a constant A > 0 such that

∥(I−KS′
n (x0))

−1∥∞ ≤ A. (3.2)

Proof. Since the operator Qn converge pointwise to the identity operator and
K′(x0),K′

n(x0) are compact, it follows that

max{∥(I− Qn)K
′(x0)∥∞, ∥(I− Qn)K′

n(x0)}∥∞} → 0, n→ ∞.

Choose m ≥ n, then from (2.8), we obtain KN
m(x0) → K(x0) pointwise in C[0, 1]

as n→ ∞. We get

K′(x0)−KS′
n (x0) = Qn(K

′(x0)−KN ′
m (x0)) + (I− Qn)(K

′(x0)−K′
n(x0)).

Thus, since the projection Qn is uniformly bounded, we obtain

∥K′(x0)−KS′
n (x0)∥∞ ≤ q∥K′(x0)−KN ′

m (x0))∥∞+

∥(I− Qn)K
′(x0)∥∞ + ∥(I− Qn)K′

n(x0)}∥∞ → 0, as n→ ∞.

Hence by Lemma 2.6 in [4], the operators (I−KS′
n (x0))

−1 exists and are uniformly
bounded, for some sufficiently large n. This completes the proof. □

Lemma 3.2. Let x0 be the unique solution of (1.1). In case of the hyperinter-
polation projection, we assume that κ ∈ Cr[0, 1]2, ψ ∈ Cr(Ω) and f ∈ Cr[0, 1],
while, in the case of the interpolatory projection, we assume that κ ∈ C2r[0, 1]2,
ψ ∈ C2r(Ω) and f ∈ C2r[0, 1]. Then

∥(I− Qn)[K(x0)−Kn(x0)]∥∞ = O
(
max

{
h3r, h̃d

})
. (3.3)

Proof. We write

K(x0)−Kn(x0) = K(x0)−Kn(x0) +Kn(x0)−Kn(x0) (3.4)

Now, applying (I− Qn) to both sides of equations (3.4), we have that

∥(I− Qn)(K(x0)−Kn(x0))∥∞ ≤ ∥(I− Qn)(K(x0)−Kn(x0))∥∞
+ ∥(I− Qn)Kn(x0)−Kn(x0)∥∞.

(3.5)

Let QCn be the interpolatory operator defined by (2.11). By the formula

[Kn(x0)−Kn(x0)](s) =

nr∑
i=1

z(ti)

[ ∫ 1

0
κs(t)ℓi(t)dt− ⟨κs, ℓi⟩m

]
,

it holds that

[Kn(x0)−Kn(x0)]
(r)(s) =

nr∑
i=1

z(ti)

[ ∫ 1

0
qs(t)ℓi(t)dt− h̃

m∑
j=1

ρ∑
k=1

wkqs(ζjk)ℓi(ζjk)

]
,

where qs(t) =
∂rκ

∂sr
(s, t). Since ℓi is a polynomial of degree r − 1 on each subin-

terval, then qsℓi ∈ Cd[si−1, si]. Hence by (2.4) we have for any s ∈ [0, 1],∣∣[Kn(x0)−Kn(x0)]
(r)(s)

∣∣ ≤ nr∥z∥∞∥(qsℓi)(r)∥∞h̃d,
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Since m = np, it follows that

∥[Kn(x0)−Kn(x0)]
(r)∥∞ ≤

(
r

p

)
∥z∥∞∥(qsℓi)(r)∥∞h̃d−1, (3.6)

which means that

∥(I− QGn )[Kn(x0)−Kn(x0)]∥∞ ≤ c2h
r∥[Kn(x0)−Kn(x0)]

(r)∥∞,

≤ c2r∥z∥∞∥(qsℓi)(r)∥∞h̃d. (3.7)

A similar estimate can be obtained in the case of the hyperinterpolation projec-
tion. Thus, (3.3) follows from (2.14), (3.5) and (3.7). □

Now we are ready to state and prove the main theorem of this subsection.

Theorem 3.2. Let x0, xn be the solution of (1.1) and (2.20) respectively, and
asume that 1 is not an eigenvalue of K′(x0). In case of the projection, we assume
that κ ∈ Cr[0, 1]2, ψ ∈ Cr(Ω) and f ∈ Cr[0, 1], while, in the case of the interpo-
latory projection, we assume that κ ∈ C2r[0, 1]2, ψ ∈ C2r(Ω) and f ∈ C2r[0, 1].
Then

∥x0 − xn∥∞ = O
(
max

{
h3r, h̃d

})
. (3.8)

Proof. We see from Theorem 3.1 that to estimate ∥x0−xn∥∞ we need to estimate
∥K(x0)−KS

n(x0)∥∞. By writing

∥K(x0)−KS
n(x0)∥∞ = ∥Qn[K(x0)−KN

m(x0)] + (I− Qn)[K(x0)−Kn(x0)]∥∞.
From Lemma 3.1, we have

∥x0 − xn∥∞ ≤ Aq∥K(x0)−KN
m(x0)∥∞ +A∥(I− Qn)[K(x0)−Kn(x0)]∥∞. (3.9)

By combining (2.8) and (3.3), the estimate (3.8) follows. □

Now, we prove the following crucial lemma.

Lemma 3.3. Let κ ∈ Cd[0, 1]2 and ∂ψ
∂u ∈ Cr(Ω). Then KN ′

m (x0) is Lipschitz
continuous in B(x, δ0), that is, there exists a constant δ2 > 0 independent of n
such that

∥[(KN ′
m (x0)−KN ′

m (x))g](p)∥∞ ≤ δ2∥κ∥p,∞∥x0−x∥∞∥g∥∞, x ∈ B(x0, δ0). (3.10)

Proof. Using Lipschitz continuity of ∂ψ∂u (t, u) and the estimate (2.6), we have for
p = 0, 1, . . . , r

∥(KN ′
m (x0)−KN ′

m (x))g](p)∥∞ =

max
s∈[0,1]

|h̃
m∑
i=1

ρ∑
j=1

wj
∂pκ

∂sp
(s, ζij)[

∂ψ

∂u
(ζij , x0(ζij))−

∂ψ

∂u
(ζij , x(ζij))]g(ζij)|,

≤ ∥κ∥p,∞h̃
m∑
i=1

ρ∑
j=1

wj

∣∣∣∣∂ψ∂u (ζij , x0(ζij))− ∂ψ

∂u
(ζij , x(ζij))

∣∣∣∣ |g(ζij)| ,
≤ δ2∥κ∥p,∞∥x0 − x∥∞∥g∥∞.

This completes the proof. □
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The following results are needed to obtain the order of convergence of x̃n to
x0.

Lemma 3.4. Assume that κ ∈ Cd[0, 1]2 and ∂ψ
∂u ∈ Cr(Ω). Then, the linear

operator K′
n(x0) is Lipschitz continuous in a neiberhood of x0, that is, there exists

a constant δ3 > 0 independent of n such that

∥KS′
n (x0)−KS′

n (x)∥∞ ≤ δ3∥x0 − x∥∞, x ∈ B(x0, δ0). (3.11)

Proof. From equation (2.19), we have

KS′
n (y) = QnK

N ′
m (y) + (I− Qn)K′

n(y), y ∈ C[0, 1]. (3.12)

Hence, for any g ∈ C[0, 1],

∥[KS′
n (x0)−KS′

n (x)]g∥∞ = ∥Qn(KN ′
m (x0)−KN ′

m (x))g∥∞
+ ∥(I− Qn)(K′

n(x0)−K′
n(x))g∥∞.

Now using the Lipschitz’s continuity of ∂ψ∂u and (3.10), we get

∥Qn(KN ′
m (x0)−KN ′

m (x))g∥∞ ≤ ∥(Qn − I)(KN ′
m (x0)−KN ′

m (x))g∥∞
+ ∥(KN ′

m (x0)−KN ′
m (x))g∥∞,

≤ c2h
r∥[(KN ′

m (x0)−KN ′
m (x))g](r)∥∞ + ∥(KN ′

m (x0)−KN ′
m (x))g∥∞,

≤ c2h
rδ2∥κ∥r,∞∥x0 − x∥∞∥g∥∞ + δ2∥κ∥0,∞∥x0 − x∥∞∥g∥∞.

(3.13)

Similarly, the Cauchy-Schwarz inequality and (2.13), yields

∥(I− Qn)(K′
n(x0)−K′

n(x))g∥∞ ≤ c2h
r∥[(K′

n(x0)−K′
n(x))g]

(r)∥∞,

≤ c2h
r∥κ∥r,∞∥Qn[

∂ψ

∂u
(., x0(.))−

∂ψ

∂u
(., x(.))]∥L2∥g∥L2 ,

≤ c2qδ2h
r∥κ∥r,∞∥x0 − x∥∞∥g∥∞.

(3.14)

The desired result follows from (3.13) and (3.14) with,

δ3 = [∥κ∥0,∞ + (1 + q)c2h
r∥κ∥r,∞]δ2.

This completes the proof. □

In the next theorem we give the approximation error of the iterated discrete
modified projection-type method.

Theorem 3.3. We suppose that κ ∈ Cr[0, 1]2 and ∂ψ
∂u ∈ C(Ω). Let x0 ∈ C[0, 1] be

the unique solution of (1.1). Then, for n sufficiently large, the iterated solution
x̃n given by (2.21), satisfies

∥x0 − x̃n∥∞ ≤ c4∥x0 − xn∥2∞ +A∥KN ′
m (x0)[K(x0)−KS

n(x0)]∥∞
+ ∥K(x0)−KN

m(x0)∥∞,
(3.15)

where c4 is a constant independent of n and A is such that ∥(I−KS′
n (x0))

−1∥∞ ≤
A <∞.

Proof. Note that from (1.1) and (2.21) we have

x0 − x̃n = Kx0 −KN
mxn,

= KN
mx0 −KN

mxn −KN
mx0 +Kx0.

(3.16)
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Therefore, for some 0 < θ < 1, we get

KN
mx0 −KN

mxn = KN ′
m (x0 + θ(x0 − xn))(x0 − xn),

= [KN ′
m (x0 + θ(x0 − xn))−KN ′

m (x0) +KN ′
m (x0)](x0 − xn).

Taking the norm on both sides of the above equation and applying the Lipschitz’s
continuity of KN ′

m and using (3.10) , we can show that

∥x0 − x̃n∥∞ ≤ δ2θ∥κ∥0,∞∥x0 − xn∥2∞ + ∥KN ′
m (x0)(x0 − xn)∥∞

+ ∥K(x0)−KN
m(x0)∥∞.

(3.17)

Let

(I−KS′
n (x0))(x0 − xn) = K(x0)−KS

n(x0)−KS′
n (x0)(x0 − xn)

+KS
n(x0)−KS

n(xn).

Applying KN ′
m (x0) to both sides and using the mean value theorem, we obtain

KN ′
m (x0)(x0 − xn) = KN ′

m (x0)(I−KS′
n (x0))

−1[K(x0)−KS
n(x0)

−KS′
n (x0)(x0 − xn) +KS

n(x0)−KS
n(xn)]

= KN ′
m (x0)(I−KS′

n (x0))
−1[K(x0)−KS

n(x0)] +KN ′
m (x0)×

(I−KS′
n (x0))

−1[KS′
n (x0 + θ(x0 − xn))−KS′

n (x0)](x0 − xn),

where 0 < θ < 1. Now from estimates (2.7), (3.2) and Lemma 3.4 one has

∥KN ′
m (x0)(x0 − xn)∥∞ ≤ A∥KN ′

m (x0)[K(x0)−KS
n(x0)]∥∞

+AθΨ1δ3∥κ∥0,∞∥x0 − xn∥2∞.
By Combining (3.17) with the above estimate, we get

∥x0 − x̃n∥∞ ≤c4∥x0 − xn∥2∞ +A∥KN ′
m (x0)[K(x0)−KS

n(x0)]∥∞
+ ∥K(x0)−KN

m(x0)∥∞,
with c4 = θ∥κ∥0,∞(δ2 +AΨ1δ3). This completes the proof. □

The following Lemma is needed to obtain an error estimate for the term
∥KN ′

m (x0)[K(x0)−KS
n(x0)]∥∞.

Lemma 3.5. Let Qn : C[0, 1] → Xn be the hyperinterpolation or the interpolatory

projection operator defined by (2.10) and (2.11). Assume that κ ∈ Cd[0, 1]2, ∂ψ∂u ∈
Cr(Ω) and that 1 is not an eigenvalue of K′(x0). Then,

∥KN ′
m (x0)Qn[K(x0)−KN

m(x0)]∥∞ = O(h̃d). (3.18)

Proof. From estimates (2.7) and (2.15), we have∣∣∣KN ′
m (x0)Qn[K(x0)−KN

m(x0)](s)
∣∣∣ =∣∣∣∣∣∣h̃

m∑
i=1

ρ∑
j=1

wjκ(s, ζij)
∂ψ

∂u
(ζij , x0(ζij))Qn[K(x0)−KN

m(x0)](ζij)

∣∣∣∣∣∣ ,
≤ ∥KN ′

m (x0)∥∞∥Qn[K(x0)−KN
m(x0)]∥∞,

≤ qΨ1∥κ∥0,∞∥K(x0)−KN
m(x0)∥∞.
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Thus, by using (2.8), we deduce that

∥KN ′
m (x0)Qn[K(x0)−KN

m(x0)]∥∞ ≤ c1qΨ1∥κ∥0,∞∥κ∥d,∞h̃d,

which completes the proof. □

The result below state that the iterated discrete modified Galerkin-type solu-
tion defined by (2.21) can converges to x0 faster than x̃n.

Theorem 3.4. Let QGn : C[0, 1] → Xn be the hyperinterpolation projection defined

by (2.10). Assume that κ ∈ Cd[0, 1]2, ∂ψ∂u ∈ Cr(Ω) and let x0 ∈ C[0, 1] be a unique
solution of (1.1). Then, for n sufficiently large, the iterated discrete solution x̃n
given by (2.21), satisfies

∥x0 − x̃n∥∞ = O
(
max

{
h4r, h̃d

})
. (3.19)

Proof. For the second term of (3.15), we can write

∥KN ′
m (x0)[K(x0)−KS

n(x0)]∥∞ = ∥KN ′
m (x0)(I− QGn )[K(x0)−Kn(x0)]∥∞
+ ∥KN ′

m (x0)Q
G
n [K(x0)−KN

m(x0)]∥∞.
(3.20)

First, using the estimate (2.13), we get∣∣∣KN ′
m (x0)(I− QGn )[K(x0)−Kn(x0)](s)

∣∣∣ =∣∣∣∣∣∣h̃
m∑
i=1

ρ∑
j=1

wjκ(s, ζij)
∂ψ

∂u
(ζij , x0(ζij))(I− QGn )[K(x0)−Kn(x0)](ζij)

∣∣∣∣∣∣
=

〈
κsψ1, (I− QGn )[K(x0)−Kn(x0)]

〉
m

=
〈
(I− QGn )κsψ1, (I− QGn )[K(x0)−Kn(x0)]

〉
m

≤ c2∥(κsψ1)
(r)∥∞∥(I− QGn )[K(x0)−Kn(x0)∥∞hr.

Hence, from (3.3)

∥(I− QGn )[K(x0)−Kn(x0)]∥∞ = O
(
max

{
h3r, h̃d

})
, (3.21)

Then by combining (3.15), (3.18), (3.20) and (3.21), the estimate (3.19) is proved.
□

The following result give the superconvergence of the iterated discrete modified
collocation-type solution x̃n to x0.

Theorem 3.5. Let QCn : C[0, 1] → Xn be the interpolatory projection defined by

(2.11). Assume that κ ∈ Cd[0, 1]2, ∂ψ∂u ∈ Cr(Ω) and let x0 ∈ C[0, 1] be a unique
solution of (1.1). Then, for n sufficiently large, the iterated discrete solution x̃n
given by (2.21), satisfies

∥x0 − x̃n∥∞ = O
(
max

{
h4r, h̃d

})
. (3.22)
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Proof. By (3.15), we consider

∥KN ′
m (x0)[K(x0)−KS

n(x0)]∥∞ = ∥KN ′
m (x0)(I− QCn )[K(x0)−Kn(x0)]∥∞
+ ∥KN ′

m (x0)Q
C
n [K(x0)−KN

m(x0)]∥∞.
(3.23)

Then, by using Lemma 2.1, we write

∥KN ′
m (x0)(I− QCn )[K(x0)−Kn(x0)]∥∞ ≤ c5Ψ2∥κ∥r,∞∥K(x0)−Kn(x0)∥2r,∞h2r,

(3.24)

then for 0 ≤ p ≤ 2r, we have

[K(x0)−Kn(x0)]
(p)(s) = [K(x0)−Kn(x0)]

(p)(s) + [Kn(x0)−Kn(x0)]
(p)(s),

we have

[K(x0)−Kn(x0)]
(p)(s) =

∫ 1

0
qs(t)(I− QCn )z0(t)dt,

where z0(t) ≡ ψ(t, x0(t)). By using (2.16) we obtain,

∥K(x0)−Kn(x0)∥2r,∞ =
2r∑
p=0

∥[K(x0)−Kn(x0)]
(p)∥∞,

≤ c3(2r + 1)∥qs∥r,∞∥ψ∥2r,∞h2r,

(3.25)

Since d ≥ 2r, from (3.6) and (3.25) ,we deduce that

∥K(x0)−Kn(x0)∥2r,∞ = O
(
h2r

)
.

Replacing ∥K(x0)−Kn(x0)∥2r,∞ by its expression in (3.24) and combining (3.15),
(3.18) and (3.23), we obtain the desired result. □

4. Numerical results

In this section, numerical examples are given to illustrate the theory established
in the previous sections. It is noted that the Newton–Raphson method was
used to solve the nonlinear systems. The numerical algorithms are compiled by
using WOLFRAM MATHEMATICA. Let Xn be the space of piecewise constant functions
(r = 1) with respect to the uniform partition of [0, 1]

0 =
1

n
<

2

n
< . . . <

n

n
= 1.

The projection QCn is chosen to be the interpolatory projection at the nr = n
midpoints

t
(n)
i =

2i− 1

2n
, i = 1, . . . , n

or the restriction to L∞[0, 1] of the orthogonal projection from L2[0, 1] to Xn.
Let

∥x0 − xn∥∞ = O(hα) and ∥x0 − x̃n∥∞ = O(hβ).
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Note that, for evaluating the required integrals we use the composite 2 points
Gauss quadrature with respect to the uniform partition of [0, 1] with m = 128
intervals. The computations are done for n = 2, 4, 8, 16 and 32. Thus,

r = 1, d = 4, h̃ = 2−7 and 2−5 ≤ h ≤ 2−1.

Hence

h̃d ≤ h4r ≤ h3r this implies 2−28 ≤ 2−20 ≤ 2−15.

The orders of convergence are computed by using the following formula

α =
log

(
∥x0−xn∥∞
∥x0−x2n∥∞

)
log(2)

and β =
log

(
∥x0−x̃n∥∞
∥x0−x̃2n∥∞

)
log(2)

.

From Theorems 3.8, 3.19 and 3.22, the expected orders of convergence are

α = 3 and β = 4.

We present the errors of the discrete solution and discrete iterated solution
in the infinity norm. In Tables 1 and 3, we present the maximum errors of the
approximation solution obtained by using the discrete modified Galerkin-type
method and its iterated version. The corresponding errors obtained by using the
discrete modified collocation-type method and its iterated version are given in
Table 2 and 4.

Example 1. We consider the following Hammerstein equation

x(s)−
∫ 1

0
es−t cos(x(t))dt = f(s) s ∈ [0, 1],

where f(s) is selected so that x0(t) = t is the exact solution.

Example 2. Now we consider the nonlinear integral equation defined by

x(s)−
∫ 1

0

sin
(π
2
(t− s)

)
1 + x(t)

dt =

(
2

π
− 1

)
cos

(π
2
s
)
+

(
log(4)

π
+ 1

)
sin

(π
2
s
)
,

with s ∈ [0, 1] and the exact solution is unknown. The results are given in Tables
3 and 4.

Table 1. Discrete modified Galerkin-type method.

∥x0 − xn∥∞ α ∥x0 − x̃n∥∞ β
2 2.96× 10−3 – 8.04× 10−5 –
4 3.98× 10−4 2.89 4.81× 10−6 4.06
8 5.19× 10−5 2.94 2.97× 10−7 4.01
16 6.64× 10−6 2.96 1.85× 10−8 4.00
32 8.39× 10−7 2.98 1.15× 10−9 4.00

For the sake of completeness, we illustrate in Figures 1 and 2 the errors in
absolute value obtained by various methods using example 1 (Hyperinterpolation
in red and interpolatory projection in blue) with n = 4.
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Table 2. Discrete modified collocation-type method.

∥x0 − xn∥∞ α ∥x0 − x̃n∥∞ β
2 2.70× 10−4 – 7.43× 10−6 –
4 4.83× 10−5 2.48 6.80× 10−7 3.45
8 6.65× 10−6 2.86 8.58× 10−8 3.89
16 8.60× 10−7 2.95 2.91× 10−9 3.97
32 1.08× 10−7 2.98 1.83× 10−10 3.99

Table 3. Discrete modified Galerkin-type method.

∥x0 − xn∥∞ α ∥x0 − x̃n∥∞ β
2 4.13× 10−3 – 3.81× 10−5 –
4 6.24× 10−4 2.72 2.44× 10−6 3.96
8 8.28× 10−5 2.91 1.51× 10−7 4.01
16 1.05× 10−5 2.96 9.41× 10−9 4.00
32 1.33× 10−7 2.98 5.87× 10−10 4.00

Table 4. Discrete modified collocation-type method.

∥x0 − xn∥∞ α ∥x0 − x̃n∥∞ β
2 6.68× 10−3 – 4.73× 10−4 –
4 8.99× 10−4 2.89 3.07× 10−5 3.94
8 1.16× 10−4 2.95 1.93× 10−6 3.98
16 1.47× 10−5 2.97 1.21× 10−7 3.99
32 1.85× 10−6 2.99 7.60× 10−9 4.00

The results illustrated in the above tables show that the computed orders of
convergence confirm the theoretical ones. From Tables 1 and 2, it can be seen
that to obtain the error ∥x0 − x32∥∞ of order 10−7, a system of size 32 is needed
to be solved in the discrete modified collocation-type method, while as in the
discrete modified Galerkin-type method we need to solve a system of size 64 to
obtain an accuracy of comparable order. Also when computing x̃8 by a discrete
modified Galerkin-type method, which is obtained by solving a system of size
16, we get an error of the order of 10−7. As a result, the discrete modified
collocation-type method has benefits theoretically and computationally over the
discrete modified Galerkin-type method, which require solving an extremely large
nonlinear system that is computationally very expensive. It should be mentioned
that the iterated discrete modified projection-type method converges faster than
the discrete modified projection-type method. There are similar observations to
be made in Tables 3 and 4.

5. Conclusion

The main purpose of this article is to investigate a discrete versions of the
modified projection-type method for approximating the solutions of Hammesrtein
integral equations. Theoretically, the error bound and the convergence rate of
the presented method are obtained. Finally, we have presented some numerical
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Figure 1. Discrete modified projection-type method.
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Figure 2. Iterated discrete modified projection-type method.

examples to show the validity of the method and confirm the theoretical error
estimates. The results in this paper can be extended to weakly singular kernels
Hammerstein integral equations. This study can be a topic for another paper.
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