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NONLOCAL PROBLEM FOR A SECOND ORDER FREDHOLM

INTEGRO-DIFFERENTIAL EQUATION WITH DEGENERATE

KERNEL AND REAL PARAMETERS

TURSUN K. YULDASHEV, ZHYLDYZ A. ARTYKOVA,
AND SHUKHRAT U. ALLADUSTOV

Abstract. The questions of solvability and construction of solutions
of a homogeneous nonlocal boundary value problem for a second-order
homogeneous Fredholm integro-differential equation with a degenerate
kernel and two real parameters are considered. The degenerate kernel
method was developed. The features that have arisen in the construction
of solutions and are associated with the determination of the integration
coefficients are studied. The values of the parameters are calculated for
which the solvability of the boundary value problem is established and
the corresponding solutions are constructed.

1. Introduction. Problem statement

Differential and integro-differential equations are one of the basic equations
of mathematical physics and mechanics. There are a large number of works
devoted to the study of the properties of solutions of nonlocal boundary problems
for differential and integro-differential equations (see, for example, [1, 2, 3, 4, 5,
6, 12, 13, 19, 21, 22, 28, 29]). Spectral problems for differential equations are
considered in [7, 8, 9, 14, 15, 16, 17, 18, 20]. Integro-differential equations with a
degenerate kernel were considered earlier in [10, 11, 23, 24, 25]. In cases, where
the boundary of the region of a physical process is not available for measurements,
nonlocal conditions in integral form can serve as additional information sufficient
for the unambiguous solvability of the problem. The papers [26, 27] considered
nonlocal problems for a second-order integro-differential equation with the real
parameters and an integral condition.

In this paper, we study a nonlocal homogeneous problem for a second-order
ordinary Fredholm integro-differential equation with a degenerate kernel and two
parameters. The regular and irregular values of the parameters are calculated,
under which the existence of only trivial solutions, the existence of a unique
solution, and the existence of an infinite set of solutions of the problem are
established, and the corresponding solutions are constructed. The method used
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in this paper is unique known for us method, which helps us to obtain interesting
results.

Problem. It is required to find a function u(t) on the interval (0, T ), that
satisfies the equation

u′′(t) + λ2u(t) = ν

∫ T

0
K(t, s)

[
s u(s) + (T − s)u′(s)

]
ds (1.1)

with the following homogeneous boundary conditions:

u(T )−
∫ T

0
s u(s) ds = 0, u′(T )−

∫ T

0
(T − s)u′(s) ds = 0, (1.2)

where T >
√
2, λ is positive parameter, ν is nonzero real parameter, K(t, s) =∑k

i=1 ai(t) bi(s) ̸= 0, ai(t), bi(s) ∈ C[0, T ]. It is assumed that the functions ai(t)
and bi(s) are linearly independent.

Since the boundary conditions (1.2) are homogeneous, the homogeneous integro-
differential equation (1.1) always has trivial solutions. Therefore, we investigate
the existence of nontrivial solutions. Let us determine that for what values of
the parameters λ and ν the problem has nontrivial solutions and construct these
solutions. We especially note that due to the homogeneity of the problem (1.1),
(1.2), it is relevant to establish the fact that for some values of the parameters λ
and ν this problem has only a trivial solution.

Present work differs from [27] not only in the research method, but also in the
content of the obtained results.

2. Integration of the boundary value problem (1.1), (1.2)

Taking into account the degeneracy of the kernel, equation (1.1) is written in
the following form

u′′(t) + λ2u(t) = ν
k∑

i=1

ai(t) τi,

where

τi =

∫ T

0
bi(s)

[
s u(s) + (T − s)u′(s)

]
ds. (2.1)

This equation is solved by the method of variation of arbitrary constants

u(t) = A1 cosλ t+A2 sinλ t+
ν

λ

k∑
i=1

τi

∫ t

0
sinλ (t− s) ai(s) ds, (2.2)

where A1 and A2 are arbitrary constants of integration. By differentiation from
(2.2) we obtain

u′(t) = −λA1 sinλ t+ λA2 cosλ t+ ν
k∑

i=1

τi

∫ t

0
cosλ (t− s) ai(s) ds. (2.3)

To find the unknown coefficients A1 and A2 in (2.2), we use the homogeneous
integral conditions (1.2) and arrive at the following transcendental system of
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linear algebraic equations{
A1χ11(λ) +A2χ12(λ) = χ13(λ),
A1χ21(λ) +A2χ22(λ) = χ23(λ),

(2.4)

where

χ11(λ) = cosλT−T

λ
sinλT+

1

λ2
(1−cosλT ), χ12(λ) = sinλT+

T

λ
cosλT− 1

λ2
sinλT,

χ21(λ) = −λ sinλT − T − 1

λ
sinλT, χ22(λ) = λ cosλT − 1

λ
(1− cosλT ),

χ13(λ) = −η(T, λ)+

T∫
0

s ·η(s, λ) ds, χ23(λ) = −η′(T, λ)+

∫ T

0
(T − s) ·η′(s, λ) ds,

η (t, λ) =
ν

λ

k∑
i=1

τihi(t, λ), hi(t, λ) =

∫ t

0
sinλ (t− s) ai(s) ds, i = 1, k.

Compute values of parameter λ in the following two cases:
1) χ11(λ) = χ12(λ) = 0, 2) χ21(λ) = χ22(λ) = 0.
If such values of the parameter λ exist, then for these values of the parameter
we additionally check the correctness of the formulated problem (1.1), (1.2). If
the problem is correct, then we construct all solutions of this problem. If the
problem is not correct, then there are only trivial solutions.

Compute values of parameter λ in the following case:
3) χ11(λ)χ22(λ)− χ12(λ)χ21(λ) = 0,
for which the uniqueness of the solution of the problem posed is violated.

We find out that in the following case

χ11(λ)χ22(λ)− χ12(λ)χ21(λ) ̸= 0

the uniqueness of the solution of the stated problem (1.1), (1.2) is not violated.
In this case, we should find sufficient conditions for the existence of a unique
solution and construct this solution.

First, we analyze the solvability of the following four transcendental equations:
χij(λ) = 0, i, j = 1, 2.

2.1. First equation. The set of solutions of the equation χ11(λ) = 0 coincides
with the solutions of the equation

(x2 − 2) tan2
T

2
x+ 2Tx tan

T

2
x− x2 = 0, x = λ > 0. (2.5)

The solvability of the transcendental equation (2.5) is illustrated in figure 1 below:

2.2. Second equation. The set of solutions of the equations χ12(λ) = 0 coin-
cides with the solutions of the equation

tanTx =
Tx

1− x2
, x = λ > 0. (2.6)

The solvability of the transcendental equation (2.6) is illustrated in figure 2.
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Figure 1. Graph of the function in the left-hand side of (2.5). T=2

Figure 2. Graph of the function in (2.6). T=2

2.3. Third equation. The set of solutions of the equations χ21(λ) = 0 coincides
with the solutions of the equation

sinTx = − Tx

1 + x2
, x = λ > 0. (2.7)

The solvability of the transcendental equation (2.7) is illustrated in figure 3.
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Figure 3. Graph of the function in (2.7). T=2

Figure 4. Graph of the function in (2.8). T=2

2.4. Fourth equation. The set of solutions of the equations χ22(λ) = 0 coin-
cides with the solutions of the equation

cosTx =
1

1 + x2
, x = λ > 0. (2.8)

The solvability of the transcendental equation (2.8) is illustrated in figure 4.



NONLOCAL PROBLEM FOR A SECOND ORDER . . . 233

The sets of solutions of transcendental equations (2.5)–(2.8) will be denoted
by ℑi (i = 1, 2, 3, 4), respectively. So, we introduce some new denotations Λi =
(0,∞) \ ℑi, i = 1, 2, 3, 4.

Case 2.1: χ11(λ) = χ12(λ) = 0. Let us determine at what values of the
parameter λ this case takes place. Indeed, if this case takes place, then the
algebraic equation

χ2
11(λ) + χ2

12(λ) = 0 (2.9)

has a solution. Equation (2.9) is equivalent to the following transcendental equa-
tion

cos(λT + φ) = −
√

(λ2 − 1)2 + λ2T 2

2
− 1

2
√
(λ2 − 1)2 + λ2T 2

, (2.10)

where φ = arccos λ2−1√
(λ2−1)2+λ2T 2

.

Equation (2.10) has a solution, if its right-hand side belongs to the interval
[−1, 1]. We assume the opposite:√

(λ2 − 1)2 + λ2T 2

2
+

1

2
√
(λ2 − 1)2 + λ2T 2

> 1.

Then we obtain
(√

(λ2 − 1)2 + λ2T 2 − 1
)2

> 0 or λ >
√
2− T 2. We have arrived

at an incorrect inequality. Since the parameter λ is positive and T >
√
2, then the

inequality λ >
√
2− T 2 does not make sense and equation (2.10) has a solution.

Indeed, to verify this fact, we construct graphs of the equations χ11(λ) = 0,
χ12(λ) = 0 in one coordinate plane. From figure 5, it can be seen that this case
is possible for small values of the parameter λ.

The problem can have nontrivial solutions, if χ13(λ) = 0 for these values of the
parameter λ. However, this equation has a solution only for large values of the
parameter λ. Hence, in this case, problem (1.1), (1.2) has only trivial solutions.

Case 2.2. We consider the case χ21(λ) = χ22(λ) = 0. Let us determine at
what values of the parameter λ this case takes place. If we suppose that this case
takes place, then the algebraic equation

χ2
21(λ) + χ2

22(λ) = 0 (2.11)

has a solution. Equation (2.11) is equivalent to the following transcendental
equation

cos(λT + φ) =
(λ2 + 1)2 + 1 + λ2T 2

2(λ2 + 1)
√
1 + λ2T 2

, (2.12)

where φ = arccos 1
1+λ2T 2 .

Equation (2.12) has a solution, if its right-hand side belongs to the interval
[−1, 1]. If we assume the opposite

(λ2 + 1)2 + 1 + λ2T 2

2(λ2 + 1)
√
1 + λ2T 2

> 1,

then we obtain that
(
λ2 + 1−

√
1 + λ2T 2

)2
> 0 or λ2 > T 2 − 2. Since T >

√
2,

then we obtain correct inequality. Hence, we deduce that equation (2.12) has
no solution. We build graphs of the equations χ21(λ) = 0, χ22(λ) = 0 in one
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Figure 5. Graph of the function in (2.5) is blue line. Graph of
the function in (2.6) – red. T=2

coordinate plane. From figure 6, it can be seen that these equations have no
common solutions. So, this case is impossible.

Case 2.3. This is the case when the main determinant of the system vanishes:
∆ = χ11(λ) · χ22(λ) − χ12(λ) · χ21(λ) = 0. Let us determine at what values of
the parameter λ this case takes place. Indeed, if this case takes place, then the
algebraic equation

χ11(λ) · χ22(λ)− χ12(λ) · χ21(λ) = 0 (2.13)

has a solution. Equation (2.13) is equivalently reduced to solving the following
transcendental equation

(2 + x2T 2) cosTx+ x3T sinxT + x4 − 2 = 0, x = λ > 0. (2.14)

The solution of this equation (2.14) is illustrated in figure 7.
The set of values of the parameter λ, for which equation (2.14) has solutions will

be denoted by ℑ5. Using this notation, we adopt a new notation Λ5 = ∪4
i=1Λi\ℑ5.

For values of the parameter λ from the set Λ5, we study the influence of the second
parameter ν on the solvability of problem (1.1), (1.2) and, for certain values of
this parameter ν, construct a unique solution to the problem (1.1), (1.2). The
values of the parameter λ from the set Λ5 are called regular.
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Figure 6. Graph of the function in (2.7) is red line. Graph of
the function in (2.8) – blue. T=2

Figure 7. Graph of the function in (2.14). T=2
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3. Regular values of the parameter λ

We consider the case of values of the parameter λ from the set Λ5. In this case
we have D(λ) = χ11(λ)χ22(λ)− χ12(λ)χ21(λ) ̸= 0. Then we solve the system of
equations (2.4) using the standard Cramer method and uniquely determine A1

and A2:

A1 =
1

D(λ)

∣∣∣∣ χ13(λ) χ12(λ)
χ23(λ) χ22(λ)

∣∣∣∣ =
=

1

D(λ)
[χ13(λ)χ22(λ)− χ12(λ)χ23(λ)] = χ01(λ), (3.1)

A2 =
1

D(λ)

∣∣∣∣ χ11(λ) χ13(λ)
χ21(λ) χ23(λ)

∣∣∣∣ =
=

1

D(λ)
[χ11(λ)χ23(λ)− χ13(λ)χ21(λ)] = χ02(λ). (3.2)

Substituting the values A1 and A2 from (3.1) and (3.2) into representations (2.2)
and (2.3), we obtain for λ ∈ Λ5

u(t, λ) = χ01(λ) cosλ t+ χ02(λ) sinλ t+
ν

λ

k∑
i=1

τi

∫ t

0
sinλ (t− s) ai(s) ds, (3.3)

u′(t, λ) = −λχ01(λ) sinλ t+ λχ02(λ) cosλ t+ ν
k∑

i=1

τi

∫ t

0
cosλ (t− s) ai(s)ds.

(3.4)
Substituting representations (3.3), (3.4) into notation (2.1), we arrive at a linear
system of algebraic equations (SAE)

τi −
ν

λ

k∑
j=1

τjΦij = Ψi, i = 1, k, (3.5)

where

Φij =

∫ T

0
bi(s)

[∫ s

0
[s · sinλ (s− θ) + λ(T − s) cosλ (s− θ)] aj(θ) dθ

]
ds,

Ψi =

∫ T

0
bi(s)

[
s (χ01(λ) cosλ s+ χ02(λ) sinλ s)−

−λ(T − s) (χ01(λ) sinλ s− χ02(λ) cosλ s)
]
ds.

SAE (3.5) is uniquely solvable for any finite right-hand side Ψi, if the following
Fredholm condition is satisfied

∆Φ(ν, λ) =

∣∣∣∣∣∣∣∣
1− ν

λΦ11
ν
λΦ12 . . . ν

λΦ1k
ν
λΦ21 1− ν

λΦ22 . . . ν
λΦ2k

. . . . . . . . . . . .
ν
λΦk1

ν
λΦk2 . . . 1− ν

λΦkk

∣∣∣∣∣∣∣∣ ̸= 0. (3.6)

The determinant ∆Φ(ν, λ) in (3.6) is a polynomial with respect to ν
λ of degree

at most k. The equation ∆Φ(ν, λ) = 0 has at most k distinct real roots. We
denote them by µr, 1 ≤ r ≤ k. Then ν = λµr are eigenvalues of kernel of the
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integro-differential equation (1.1). For other values ν ̸= λµr of the parameter,
the condition ∆Φ(ν, λ) ̸= 0 holds.

We consider the following two sets

Ω5(ν, λ) = {λ ∈ Λ5, ν = λµr} , Ω̃5(ν, λ) = {λ ∈ Λ5, ν ̸= λµ r} .

On the set Ω̃5(ν, λ) solution of SAE (3.5) has the form

τi =
∆Ψi(ν, λ)

∆Φ(ν, λ)
, i = 1, k, (3.7)

where

∆Ψi(ν, λ) =

∣∣∣∣∣∣∣∣
1− ν

λΦ11 . . . ν
λΦ1(i−1) Ψ1

ν
λΦ1(i+1) . . . ν

λΦ1k
ν
λΦ21 . . . ν

λΦ2(i−1) Ψ2
ν
λΦ2(i+1) . . . ν

λΦ2k

. . . . . . . . . . . . . . . . . . . . .
ν
λ Φ k 1 . . . ν

λΦk(i−1) Ψk
ν
λΦk(i+1) . . . 1− ν

λΦkk

∣∣∣∣∣∣∣∣ .
Substituting (3.7) into (3.3), we derive

u(t, ν, λ) = χ01(λ) cosλ t+ χ02(λ) sinλ t+

+
ν

λ

k∑
i=1

∆Ψi(ν, λ)

∆Φ(ν, λ)

∫ t

0
sinλ (t− s) ai(s) ds. (3.8)

Function (3.8) is the unique solution to the nonlocal problem (1.1), (1.2) for

parameter values from the set Ω̃5(ν, λ).
On the set Ω5(ν, λ) the solution of problem (1.1), (1.2) is reduced to consider-

ation of the following homogeneous system of algebraic equations (HSAE), if the
orthogonality condition Ψi = 0 is fulfilled:

τi −
ν

λ

k∑
j=1

τjΦij = 0, i = 1, k. (3.9)

Orthogonality condition is reduced to the form∫ T

0

[
(sχ01(λ) + λ(T − s)χ02(λ)) cosλs ds+

+(sχ02(λ)− λ(T − s)χ01(λ)) sinλs
]
ds = 0, λ ∈ Λ5. (3.10)

Let us check the fulfillment of condition (3.10) for the values of the parameter
λ from the sets Λ5. The fulfillment of condition (3.10) is reduced to solving the
following equation:

[χ02 + λ(1 + T )χ01] sinxT+

+ [χ01 − λ(1 + T )] cosxT + xχ02 − (1 + xT )χ01 = 0. (3.11)

However, the set of solutions to equation (3.11) cannot intersect with the set of
solutions to equation (2.14). Recall that the set of solutions to equation (2.14) is
denoted by ℑ5. By the set Λ5 is denoted ∪4

i=1Λi \ℑ5. Equation (3.11) is based on
the assumption that λ /∈ ℑ5. Therefore, the values of the parameter λ, for which
the orthogonality conditions (3.11) are satisfied, lie in the set Λ5. Let us compose
a new set Ω6 = {(ν, λ) : λ ∈ ℑ6, ν = λµr}, where the set ℑ6 denotes the values
of the parameter, for which the orthogonality condition (3.11) is satisfied. We
construct an infinite set of solutions to problem (1.1), (1.2) on the set Ω6.
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HSAE (3.9) has some number p (1 ≤ p < k) of linear independent nonzero

vector-solutions
{
τ
(l)
1 , τ

(l)
2 , . . . , τ

(l)
k

}
, l = 1, p. The following functions

ul(t, λ) =
ν

λ

k∑
i=1

τ
(l)
i ξi(t), l = 1, p

are nontrivial solutions of the corresponding homogeneous equation

u(t, λ) =
ν

λ

k∑
i=1

ξi(t)

∫ T

0
bi(s)u(s, λ) ds, (3.12)

where

ξi(t) =

∫ t

0
[t sinλ (t− s) + λ(T − t) cosλ (t− s)] ai(s) ds.

Therefore, the general solution of the homogeneous integral equation (3.12) can
be written as

u(t, λ) =

p∑
l=1

αlul(t, λ), (3.13)

where αl is arbitrary constants.

On the set Ω7 =
{
(ν, λ) : λ ∈ Λ5 \ ℑ6, ν = λµr

}
, it is obvious that the

orthogonality condition (3.10) is not satisfied and, therefore, problem (1.1), (1.2)
has only a trivial solution.

4. Irregular values of parameter λ

Now consider the case of irregular values of parameter λ from the set ℑ5. In this
case, the main determinant of the transcendental system of algebraic equations
(2.4) vanishes: D(λ) = χ11(λ)χ22(λ) − χ12(λ)χ21(λ) = 0. Then we cannot solve
the system of equations (2.4) using the standard Cramer method and we cannot
uniquely determine the coefficients A1 and A2. Therefore, problem (1.1), (1.2)
can have an infinite set of solutions. We will study sufficient conditions for the
existence of an infinite set of solutions. Substituting representations (2.2) and
(2.3) into notation (2.1), we arrive at a new system of algebraic equations (SAE):

τi −
ν

λ

k∑
j=1

τjΦij = Qi, i = 1, k, (4.1)

where

Φij =

∫ T

0
bi(s)

[∫ s

0
[s · sinλ (s− θ) + λ(T − s) cosλ (s− θ)] aj(θ) dθ

]
ds,

Qi =

∫ T

0
bi(s) [s (A1 cosλ s+A2 sinλ s)− λ(T − s) (A1 sinλ s−A2 cosλ s)] ds,

A1, A2 are arbitrary constants. It is known that SAE (4.1) is uniquely solvable
for any finite right-hand sides Qi, if the Fredholm condition (3.6) is satisfied.

Note that the unique solvability of SAE (4.1) does not guarantee the uniqueness
of the solution to problem (1.1), (1.2). We construct only an infinite set of
solutions to problem (1.1), (1.2) for the values λ ∈ ℑ5. The determinant ∆Φ(ν, λ)
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in (3.6) is a polynomial with respect to ν
λ degree at most k. The equation has

no more than k different real roots. They were denoted above by µr, 1 ≤ r ≤ k.
The values ν = λµr are called above eigenvalues of the kernel of the integro-
differential equation (1.1) or irregular values of the parameter ν. Other values
ν ̸= λµr were called regular values of the parameter ν, and condition (3.6) is
satisfied for them, i.e. ∆Φ(ν, λ) ̸= 0.

We consider the following two sets

Ω8,1 =
{
(ν, λ) : λ ∈ ℑ5, ν ̸= λµr

}
, Ω8,2 =

{
(ν, λ) : λ ∈ ℑ5, ν = λµr

}
.

On the set (ν, λ) ∈ Ω8,1 solution of SAE (4.1) is written as

τi =
∆Qi(ν, λ)

∆Φ(ν, λ)
, i = 1, k,, (4.2)

where

∆Qi(ν, λ) =

∣∣∣∣∣∣∣∣
1− ν

λΦ11 . . . ν
λΦ1(i−1) Q1

ν
λΦ1(i+1) . . . ν

λΦ1k
ν
λΦ21 . . . ν

λΦ2(i−1) Q2
ν
λΦ2(i+1) . . . ν

λΦ2k

. . . . . . . . . . . . . . . . . . . . .
ν
λΦk1 . . . ν

λΦk(i−1) Qk
ν
λΦk(i+1) . . . 1− ν

λΦkk

∣∣∣∣∣∣∣∣ .
Substituting (4.2) into (2.2), we obtain an infinite set of solutions to problem

(1.1), (1.2) on the set (ν, λ) ∈ Ω8,1:

u(t, ν, λ) = A1 cosλ t+A2 sinλ t+
ν

λ

k∑
i=1

∆Qi(ν, λ)

∆Φ(ν, λ)

∫ t

0
sinλ (t− s) ai(s) ds, (4.3)

where A1 and A2 are arbitrary constants.
On the set (ν, λ) ∈ Ω8,2 the process of solving problem (1.1), (1.2) reduces to

considering the following HSAE (3.9), if the orthogonality conditions are satisfied
for λ ∈ ℑ5∫ T

0
[s (A1 cosλ s+A2 sinλ s)− λ(T − s) (A1 sinλ s−A2 cosλ s)] = 0. (4.4)

Fulfillment of the condition (4.4) reduces to solving the equation for λ ∈ ℑ5

(A2 + x(1 + T )A1) sinxT + (A1 − x(1 + T )) cosxT = (1 + xT )A1 − xA2. (4.5)

Equation (4.5) has no solutions for the values of the parameter λ ∈ ℑ5. Therefore,
HSAE (3.9) is meaningless in this case. Consequently, problem (1.1), (1.2) has
only a trivial solution on the set (ν, λ) ∈ Ω8,2.

Remark. By the aid of similar way can be studied the following cases:
1) χ11(λ) = 0, χ12(λ) ̸= 0, χ21(λ) ̸= 0, χ22(λ) ̸= 0;
2) χ11(λ) ̸= 0, χ12(λ) = 0, χ21(λ) ̸= 0, χ22(λ) ̸= 0;
3) χ11(λ) ̸= 0, χ12(λ) ̸= 0, χ21(λ) = 0, χ22(λ) ̸= 0;
4) χ11(λ) ̸= 0, χ12(λ) ̸= 0, χ21(λ) ̸= 0, χ22(λ) = 0.

5. Conclusion

In this paper, we consider the issues of solvability and construction of solutions
for the second order homogeneous Fredholm integro-differential equation (1.1)
with homogeneous nonlocal boundary conditions (1.2). The degenerate kernel
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method was developed. The features that have arisen in the construction of
solutions and are associated with the determination of the integration coefficients
are studied. The values of the parameters are calculated and for which the
solvability of the boundary value problem is established and the corresponding
solutions are constructed.

It has been proved that the following theorem is true.

Theorem 5.1. In the questions of the solvability of problem (1.1), (1.2), the
following propositions take place.
1. For the values of the parameter λ, for which χ11(λ) = χ12(λ) = 0, problem
(1.1), (1.2) has only a trivial solution.
2. On the sets Ω7 and Ω8,2 of parameters (ν, λ), problem (1.1), (1.2) has only a
trivial solution.
3. On the set Ω̃5 of parameters (ν, λ), problem (1.1), (1.2) has a unique solution,
and this solution is represented by formula (3.8).
4. On the sets Ω6 and Ω8,1 of parameters (ν, λ), problem (1.1), (1.2) has an infinite
set of solutions, and these sets of solutions are represented by the formulas (3.13)
and (4.3), respectively.
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