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JUSTIFICATION OF COLLOCATION METHOD FOR ONE

CLASS OF SYSTEMS OF CURVILINEAR INTEGRAL

EQUATIONS

ELNUR H. KHALILOV AND MATANAT G. SHARBATZADEH

Abstract. This work studies the approximate solution of the system of
integral equations in the problems of shielding electromagnetic fields for
cylindrical bodies.

1. Introduction and problem statement

Consider a cylindrical body Ω1 in a homogeneous isotropic space, with a cross
section D1, bounded by a thin screen SΛ, with a thickness Λ and a generatrix
directed along the z axis. To simplify the system of integral equations, the screen
SΛ is replaced with the perfectly thin surface S, on which special boundary
conditions are imposed (see [10]). Denote by Ω2 the domain beyond the surface
S, and by D2 the corresponding section by the plane z = const. The domain
Ωj

(
j = 1, 2

)
is characterized by the electromagnetic parameters γj = 0, εj , µj ,

and the material of the shield is characterized by the parameters γ, ε, µ. Let the
closed Lyapunov curve Γ be a contour of the orthogonal section of the surface S,
and n⃗(y) be an outer unit normal at the point y ∈ Γ. It was shown in [4] that if the
electromagnetic field propagates orthogonally with respect to the cylinder, then
the boundary value problem of shielding is reduced to the following boundary
value problem:

∆u1 + k21u1 = 0 in D1, ∆u′2 + k22u
′
2 = 0 in D2,

u1|Γ =

(
α1
∂u1
∂n⃗

+ α2
∂u2
∂n⃗

) ∣∣∣∣
Γ

, (1.1)

u2|Γ =

(
β1
∂u1
∂n⃗

+ β2
∂u2
∂n⃗

) ∣∣∣∣
Γ

, u2 = u0 + u′2,

where ∆ is a Laplace operator, kj = ω
√
εjµj

(
j = 1, 2

)
,

α1 =
1

2ωµ1

(
1

Π
−N

)
, α2 = − 1

2ωµ2

(
1

Π
+N

)
,

β1 =
1

2ωµ1

(
1

Π
+N

)
, β2 = − 1

2ωµ2

(
1

Π
−N

)
,
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N =
1

2
ω µΛ, Π =

1

2
ω
(
ε+ i

γ

ω

)
Λ,

ω is a circular field frequency, and u0 is a potential defining a given source field.

Let Gj (x, y) =
πi

2
H

(1)
0 (kj |x− y|) be a fundamental solution of the Helmholtz

equation in Dj

(
j = 1, 2

)
, H

(1)
0 be a zero degree Hankel function of the first kind

defined by the formula H
(1)
0 (w) = J0 (w) + iN0 (w),

J0 (w) =
∞∑

m=0

(−1)m

(m!)2

(w
2

)2m
be a Bessel function of zero degree,

N0 (w) =
2

π

(
ln
w

2
+ C

)
J0 (w) +

∞∑
m=1

(
m∑
l=1

1

l

)
(−1)m+1

(m!)2

(w
2

)2m
be a Neumann function of zero degree, and C = 0.57721... be an Euler’s constant.
It was proved in [4] that the simple-layer potentials

u1 (x) =

∫
Γ
G1 (x, y)φ1 (y) dly, x ∈ D1,

and

u′2 (x) =

∫
Γ
G2 (x, y)φ2 (y) dly, x ∈ D2,

are the solutions of the boundary value problem (1.1), if the functions φ1 and φ2

satisfy the system of integral equations

πφ1 (x) +

∫
Γ
[Q11 (x, y) φ1 (y) +Q12 (x, y) φ2 (y)] dly = θ2u0 (x) ,

πφ2 (x) +

∫
Γ
[Q21 (x, y) φ1 (y) +Q22 (x, y) φ2 (y)] dly = δ2u0 (x)−

∂u0 (x)

∂n⃗ (x)
,

which we rewrite as

φ1 (x) + (B11φ1) (x) + (B12φ2) (x) =
1

π
θ2u0 (x) ,

φ2 (x) + (B21φ1) (x) + (B22φ2) (x) =
1

π

(
δ2u0 (x)−

∂u0 (x)

∂n⃗ (x)

)
,

(1.2)

where

(Bjmf) (x) =
1

π

∫
Γ
Qjm (x, y) f (y) dly, x ∈ Γ, j,m = 1, 2,

Q11 (x, y) =
∂G1 (x, y)

∂n⃗ (x)
− θ1G1 (x, y) , Q12 (x, y) = −θ2G2 (x, y) ,

Q21 (x, y) = δ1G1 (x, y) , Q22 (x, y) = δ2G2 (x, y)−
∂G2 (x, y)

∂n⃗ (x)
,

θ1 = −1

2
ωµ1

(
1

N
−Π

)
, θ2 =

1

2
ωµ1

(
1

N
+Π

)
,

δ1 = −1

2
ωµ2

(
1

N
+Π

)
, δ2 =

1

2
ωµ2

(
1

N
−Π

)
.
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It is known that, in general, it is impossible to find an exact solution to the
system of integral equations (1.2). Therefore, you have to study the approximate
solution of the system of integral equations (1.2) with theoretical justification.
Note that in [2, 3, 5, 6, 13, 14], the approximate solution of some classes of
systems of integral equations has been studied. But the approximate solution
of the system of integral equations (1.2) has not yet been studied. In [8], a
quadrature formula for simple-layer and double-layer logarithmic potentials has
been constructed, while in [11] a quadrature formula for simple-layer and double-
layer potentials has been presented. However, in [11], the asymptotic formula
for the zero degree Hankel functions of the first kind has been used to construct
the quadrature formulas, which does not allow to find the convergence rate of
these quadrature formulas. This work is just dedicated to the justification of
collocation method for the system of integral equations (1.2).

2. Justification of collocation method for the system of
equations (1.2)

Assume that the curve Γ ⊂ R2 is defined by the parametric equation x (t) =
(x1 (t) , x2 (t)) , t ∈ [a, b]. Let’s divide the interval [a, b] into n > 2M0 (b− a) /d

equal parts: tp = a+ (b−a) p
n , p = 0, n, where

M0 = max
t∈[a,b]

√
(x′1 (t))

2 + (x′2 (t))
2 < +∞

(see [12, p. 560]) and d is a standard radius (see [16, p. 400]). As control points,

we consider x (τp), p = 1, n, where τp = a + (b−a) (2p−1)
2n . Then the curve Γ is

divided into elementary parts: Γ =
n⋃

p=1
Γp, where Γp = {x (t) : tp−1 ≤ t ≤ tp}.

It is known ([8]) that
(1) ∀p ∈ {1, 2, ..., n}: rp(n) ∼ Rp(n), where

rp (n) = min {|x (τp)− x (tp−1)| , |x (tp)− x (τp)|} ,

Rp (n) = max {|x (τp)− x (tp−1)| , |x (tp)− x (τp)|} ,
and a (n) ∼ b (n) means that

C1 ≤
a (n)

b (n)
≤ C2,

where C1 and C2 are positive constants independent of n;
(2) ∀p ∈ {1, 2, ..., n} : Rp (n) ≤ d/2;
(3) ∀p, j ∈ {1, 2, ..., n} : rj (n) ∼ rp (n) ;
(4) r (n) ∼ R (n) ∼ 1

n , where R (n) = max
p=1, n

Rp (n), r (n) = min
p=1, n

rp (n).

In the sequel, we will call this kind of division a division of the curve Γ into
“regular” elementary parts.

By C (Γ) we denote the space of all continuous functions on Γ with the norm
∥φ∥∞ = max

x∈Γ
|φ (x)|, and for the function φ ∈ C (Γ) we introduce the modulus
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of continuity of the form

ω (φ, h) = max
|x−y|≤h
x, y∈Γ

|φ(x)− φ(y)| , h > 0.

Let

Qn
11 (x, y) =

∂Gn
1 (x, y)

∂n⃗ (x)
− θ1G

n
1 (x, y) , Qn

12 (x, y) = −θ2Gn
2 (x, y) ,

Qn
21 (x, y) = δ1G

n
1 (x, y) , Qn

22 (x, y) = δ2G
n
2 (x, y)−

∂Gn
2 (x, y)

∂n⃗ (x)
,

where

Gn
j (x, y) =

πi

2
H

(1)
0,n (kj |x− y|) , x, y ∈ Γ, x ̸= y, j = 1, 2,

H
(1)
0,n (w) = J0,n (w) + iN0,n (w) , J0,n (w) =

n∑
m=0

(−1)m

(m!)2

(w
2

)2m
and

N0,n (w) =
2

π

(
ln
w

2
+ C

)
J0,n (w) +

n∑
m=1

(
m∑
l=1

1

l

)
(−1)m+1

(m!)2

(w
2

)2m
.

It is not difficult to calculate that

∂Gn
j (x, y)

∂n⃗ (x)
=
πi

2

(
∂J0,n (kj |x− y|)

∂n⃗ (x)
+ i

∂N0,n (kj |x− y|)
∂n⃗ (x)

)
, j = 1, 2,

where

∂J0,n (kj |x− y|)
∂n⃗ (x)

= (x− y, n⃗ (x))
n∑

m=1

(−1)m k2mj |x− y|2m−2

22m−1 (m− 1)!m!
, j = 1, 2,

and
∂N0,n (kj |x− y|)

∂n⃗ (x)
=

2

π

(
ln
kj |x− y|

2
+ C

)
∂J0,n (kj |x− y|)

∂n⃗ (x)
+

+
2 (x− y, n⃗ (x))

π |x− y|2
J0,n (kj |x− y|)+

+ (x− y, n⃗ (x))

n∑
m=1

(
m∑
l=1

1

l

)
(−1)m+1 k2mj |x− y|2m−2

22m−1 (m− 1)!m!
, j = 1, 2.

Then, using the quadrature formula for simple-layer and double-layer potentials
obtained in [7], it is easy to prove the validity of the following theorem.

Theorem 2.1. Let Γ ⊂ R2 be a simple closed Lyapunov curve with index 0 <
α ≤ 1 and φ1, φ2 ∈ C (Γ). Then the expressions

(Bn
kmφm) (x (τp)) =

=
b− a

πn

n∑
j=1
j ̸=p

Qn
km (x (τp) , x (τj))

√
(x′1 (τj))

2 + (x′2 (τj))
2 φm (x (τj)) , k,m = 1, 2,
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are the quadrature formulas for the integrals (Bkmφm) (x), x ∈ Γ, respectively, at
the control points x (τp) , p = 1, n, with

max
p=1, n

|(Bkmφm) (x (τp))− (Bn
kmφm) (x (τp))| ≤

≤M1

(
ω (φm, 1/n) + ∥φm∥∞

lnn

nα

)
, k,m = 1, 2.

Let C2n be the space of 2n–dimensional vectors z2n =
(
z2n1 , z2n2 , . . . , z2n2n

)T
,

z2nl ∈ C, l = 1, 2n , with the norm
∥∥z2n∥∥ = max

l=1,2n

∣∣z2nl ∣∣, where “aT” means

the transposition of the vector a. Let’s consider the 2n−dimensional matrix
B2n = (bpj)

2n
p,j=1 with the elements

bpj =
|sgn (p− j)| (b− a)

πn
Qn

11 (x (τp) , x (τj))

√
(x′1 (τj))

2 + (x′2 (τj))
2

for p = 1 , n and j = 1 , n;

bpj =
|sgn (p− j + n)| (b− a)

πn
Qn

12 (x (τp) , x (τj−n))

√
(x′1 (τj−n))

2 + (x′2 (τj−n))
2

for p = 1 , n and j = n+ 1 , 2n;

bpj =
|sgn (p− j − n)| (b− a)

πn
Qn

21 (x (τp−n) , x (τj))

√
(x′1 (τj))

2 + (x′2 (τj))
2

for p = n+ 1 , 2n and j = 1 , n;

bpj =
|sgn (p− j)| (b− a)

πn
Qn

22 (x (τp−n) , x (τj−n))

√
(x′1 (τj−n))

2 + (x′2 (τj−n))
2

for p = n+ 1 , 2n and j = n+ 1 , 2n.
If we denote by z2np , p = 1, n, the approximate values of φ1 (x (τp)), and by

z2np+n, p = 1, n, the approximate values of φ2 (x (τp)), then, using the quadrature

formulas constructed for the integrals (Bjmf) (x), x ∈ Γ, j,m = 1, 2, we can
replace the system of integral equations (1.2) by the system of algebraic equations
with respect to z2n ∈ C2n, written as

z2np +
2n∑
j=1

bpjz
2n
j = 1

πθ2u0 (x (τp)) , p = 1, n,

z2np +
2n∑
j=1

bpjz
2n
j = 1

π

(
δ2u0 (x (τp))−

∂u0 (x (τp))

∂n⃗ (x (τp))

)
, p = n+ 1, 2n.

(2.1)

Now let’s state the main result of this work.

Theorem 2.2. Let the function u0 be continuous on the curve Γ. Then, for non
eigenfrequencies, the systems of equations (1.2) and (2.1) have unique solutions

ρ∗ = (φ∗
1, φ

∗
2)

T ∈ C (Γ)× C (Γ) and w2n ∈ C2n (n ≥ n0), respectively, with

max
p=1,n

∣∣w2n
p − φ∗

1 (x (τp))
∣∣ ≤M

(
ω (u0, 1/n) +

lnn

nα

)
,

max
p=1,n

∣∣w2n
p+n − φ∗

2 (x (τp))
∣∣ ≤M

(
ω (u0, 1/n) +

lnn

nα

)
.

1Hereinafter M denotes a positive constant which can be different in different inequalities.
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Proof. To justify the method of collocation, we will use Vainikko’s convergence
theorem for linear operator equations (see [15]). For this aim, let’s first write the
equations (1.2) and (2.1) in the operator form.

Let’s consider the second order matrix operator

B =

(
B11 B12

B21 B22

)
,

defined in the space C (Γ) × C (Γ). Then the system of integral equations (1.2)
can be rewritten as follows:

(I +B) ρ = χ, (2.2)

where I is a unit operator in C (Γ)× C (Γ), ρ = (φ,ψ)T and

χ (x) =
1

π

(
θ2u0 (x) , δ2u0 (x)−

∂u0 (x)

∂n⃗ (x)

)T

.

Note that C (Γ)× C (Γ) is a Banach space with the norm

∥ ρ ∥1 = max {∥φ1∥∞ , ∥φ2∥∞} .
Obviously, the system of algebraic equations (2.1) can be rewritten as follows:(

I2n +B2n
)
z2n = χ2n, (2.3)

where I2n is a unit matrix of order 2n, χ2n = p2nχ, and p2n : C (Γ)×C (Γ) → C2n

is a linear bounded operator defined by the formula

p2nρ =

= (φ1 (x (τ1)) , φ1 (x (τ2)) , ..., φ1 (x (τn)) , φ2 (x (τ1)) , φ2 (x (τ2)) , ..., φ2 (x (τn)))
T .

Now let’s verify the fulfilment of the conditions of Theorem 4.2 from [15], using
the notations and definitions of the same work. It was proved in [4] that the

system of integral equations (1.2) for non eigenfrequencies k2 ̸= k
(s)
2 = ωs

√
ε2µ2

(s = 1, 2, ...) has the only solution in the space C (Γ)× C (Γ) for any continuous

right-hand side, where k
(s)
2 are the eigenvalues of the interior Dirichlet boundary

value problem
∆u2 + k22u2 = 0 in R2\D̄,

u2|Γ = 0.

Consequently, Ker (I +B) = { 0 }. Besides, the operators I2n + B2n are Fred-
holm operators of index zero. Taking into account the way the curve Γ has been
divided into ”regular” elementary parts, we obtain the following equality for every
ρ ∈ C (Γ)× C (Γ):

lim
n→∞

∥∥p2nρ∥∥ = lim
n→∞

max

{
max
l=1,n

|φ1 (x (τl))| , max
l=1,n

|φ2 (x (τl))|
}

=

= max

{
max
x∈Γ

|φ1 (x)| , max
x∈Γ

|φ2 (x)|
}

= ∥ρ∥1 .

Consequently, the system of operators P =
{
p2n
}
is a connecting system for the

spaces C (Γ) × C (Γ) and C2n. Then χ2n P→ χ, and, by Definition 2.1 of [15], it

follows from Theorem 2.1 that I2n +B2n PP→ I +B. Due to Definition 3.2 of [15],
I2n → I stably. Then, by Proposition 3.5 and Definition 3.3 of [15], it remains
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to verify the compactness condition, which, in view of Proposition 1.1 of [15],
is equivalent to the following condition: ∀

{
z2n
}
, z2n ∈ C2n,

∥∥z2n∥∥ ≤ M there

exists a relatively compact sequence
{
B2nz

2n
}
⊂ C (Γ)× C (Γ) such that∥∥B2n z2n − p2n

(
B2nz

2n
)∥∥→ 0 as n→ ∞.

As
{
B2nz

2n
}
we consider the sequence

(
B2nz

2n
)
(x) =

 2n∑
j=1

b
(1)
j (x) z2nj ,

2n∑
j=1

b
(2)
j (x) z2nj

T

,

where

b
(1)
j (x) =

1

π

∫
Γj

Qn
11 (x, y) dly and b

(2)
j (x) =

1

π

∫
Γj

Qn
21 (x, y) dly, if j = 1, n,

b
(1)
j (x) =

1

π

∫
Γj−n

Qn
12 (x, y) dly and b

(2)
j (x) =

1

π

∫
Γj−n

Qn
22 (x, y) dly, if j = n+ 1, 2n.

It is clear that

|J0 (k1 |x− y|)| ≤
∞∑

m=0

(|k1| diamL)2m

4m (m!)2
≤M, ∀x, y ∈ Γ, (2.4)

and ∣∣∣∣∣
∞∑

m=1

(
m∑
l=1

1

l

)
(−1)m+1

(m!)2

(
k1 |x− y|

2

)2m
∣∣∣∣∣ ≤

≤
∞∑

m=1

(
m∑
l=1

1

l

)
(|k1| diamL)2m

4m (m!)2
≤M,∀x, y ∈ Γ, (2.5)

Besides, taking into account the inequality

|(x− y, n⃗ (x))| ≤M |x− y|1+α (2.6)

(see [16, p. 403]), it is not difficult to show that for arbitrary points x, y ∈ Γ,x ̸= y,
and for arbitrary positive integer n the following estimates are true:

|Qn
km (x, y)| ≤M

(
|ln |x− y||+ 1

|x− y|1−α

)
, k,m = 1, 2.

Hence it follows that∣∣∣∣∣∣
2n∑
j=1

b
(m)
j (x) z2nj

∣∣∣∣∣∣ ≤M
∥∥ z2n∥∥ , ∀x ∈ Γ,∀m = 1, 2,

i.e. ∣∣(B2nz
2n
)
(x)
∣∣ ≤M

∥∥z2n∥∥ , ∀x ∈ Γ.

Then, due to the condition
∥∥z2n∥∥ ≤ M , we obtain the uniform boundedness of

the sequence
{
B2nz

2n
}
.
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Now let’s consider two arbitrary points x′, x′′ ∈ Γ such that |x′ − x′′| = h <
d/2. Then, proceeding as in [1], we can show that∣∣∣∣∣∣

2n∑
j=1

b
(1)
j

(
x′
)
z2nj −

2n∑
j=1

b
(1)
j

(
x′′
)
z2nj

∣∣∣∣∣∣ ≤M
∥∥z2n∥∥ h |lnh| , ∀x′, x′′ ∈ Γ,

and ∣∣∣∣∣∣
2n∑
j=1

b
(2)
j

(
x′
)
z2nj −

2n∑
j=1

b
(2)
j

(
x′′
)
z2nj

∣∣∣∣∣∣ ≤M
∥∥z2n∥∥ h |lnh| , ∀x′, x′′ ∈ Γ.

Consequently,∣∣(B2nz
2n
) (
x′
)
−
(
B2nz

2n
) (
x′′
)∣∣ ≤M

∥∥z2n∥∥ ∣∣x′ − x′′
∣∣ ∣∣ln ∣∣x′ − x′′

∣∣∣∣ , ∀x′, x′′ ∈ Γ,

and, therefore,
{
B2nz

2n
}
⊂ C (Γ)×C (Γ). This immediately implies the equicon-

tinuity of the sequence
{
B2nz

2n
}
. Then from the Arzela theorem we obtain the

relative compactness of the sequence
{
B2nz

2n
}
. Besides, proceeding as in [7], we

get ∥∥B2n z2n − p2n
(
B2nz

2n
)∥∥→ 0 as n→ ∞.

Now, applying Theorem 4.2 from [15], we see that the equations (2.2) and (2.3)

have unique solutions ρ∗ = (φ∗
1, φ

∗
2)

T ∈ C (Γ) × C (Γ) and w2n ∈ C2N (n ≥ n0),
respectively, with

c1 δn ≤
∥∥w2n − p2nρ∗

∥∥ ≤ c2 δn,

where

c1 = 1/ sup
n≥n0

∥∥ I2n +B2n
∥∥ > 0, c2 = sup

n≥n0

∥∥∥ (I2n +B2n
)−1
∥∥∥ < +∞,

δn =
∥∥(I2n +B2n

) (
p2nρ∗

)
− χ2n

∥∥ .
Taking into account the equality

χ2n = p2nχ = p2nρ∗ + p2n (Bρ∗)

and the error estimates for the quadrature formulas constructed for the integrals
(Bjmf) (x), x ∈ Γ, j,m = 1, 2, we have

δn =
∥∥B2n

(
p2nρ∗

)
− p2n (Bρ∗)

∥∥ ≤M

(
∥ ρ∗∥1

lnn

nα
+ ω (ρ∗, 1/n)

)
.

The modulus of continuity of the vector function ρ∗ here is defined by the formula

ω (ρ∗, h) = max
|x−y|≤h
x, y∈Γ

√
(φ∗

1 (x)− φ∗
1 (y))

2 + (φ∗
2 (x)− φ∗

2 (y))
2, h > 0.

It is clear from the inequalities (2.4), (2) and (2.6) that for arbitrary points
x, y ∈ Γ,x ̸= y, the relation
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|Qkm (x, y)| ≤M

(
|ln |x− y||+ 1

|x− y|1−α

)
, k,m = 1, 2,

holds. Then, proceeding as in [9], we can show that∣∣(Bjmf)
(
x′
)
− (Bjmf)

(
x′′
)∣∣ ≤

M ∥f∥∞
∣∣x′ − x′′

∣∣ ∣∣ln ∣∣x′ − x′′
∣∣∣∣ , ∀x′, x′′ ∈ Γ, ∀j,m = 1, 2.

Consequently,∣∣(Bρ∗) (x′)− (Bρ∗)
(
x′′
)∣∣ ≤M ∥ρ∗∥1

∣∣x′ − x′′
∣∣ ∣∣ln ∣∣x′ − x′′

∣∣∣∣ , ∀x′, x′′ ∈ Γ,

i.e.

ω (Bρ∗, 1/n) ≤M ∥ρ∗∥1
lnn

n
.

Then, taking into account the inequalities

ω (ρ∗, 1/n) = ω (χ−Bρ∗, 1/n) ≤

≤ ω (χ, 1/n) + ω (Bρ∗, 1/n) ≤ ω (u0, 1/n) +M ∥ρ∗∥1
lnn

n

and

∥ρ∗∥1 ≤
∥∥∥(I +B)−1

∥∥∥ ∥χ∥1 ,

we obtain

δn ≤M

(
ω (u0, 1/n) +

lnn

nα

)
.

The theorem is proved. □

From Theorem 2.2 we obtain the following corollary.

Corollary 2.1. Let the function u0 be continuous on the curve Γ,
w2n =

(
w2n
1 , w2n

2 , ..., w2n
2n

)
be a solution to the system of algebraic equations (2.1),

x1 ∈ D1 and x2 ∈ D2. Then the sequence

un1 (x1) =
b− a

n

n∑
j=1

Gn
1 (x1, x (τj))

√
(x′1 (τj))

2 + (x′2 (τj))
2w2n

j

converges to the value u1 (x1) and the sequence

un2 (x2) =
b− a

n

n∑
j=1

Gn
2 (x2, x (τj))

√
(x′1 (τj))

2 + (x′2 (τj))
2w2n

n+j

converges to the value u′2 (x2), and the following inequalities hold:

|u1 (x1)− un1 (x1)| ≤M

(
ω (u0, 1/n) +

lnn

nα

)
,

∣∣u′2 (x2)− un2 (x2)
∣∣ ≤M

(
ω (u0, 1/n) +

lnn

nα

)
.
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