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THE NEW ASYMPTOTICS FOR SOLUTIONS OF THE

STURM–LIOUVILLE EQUATION

ELVIRA A. NAZIROVA, YAUDAT T. SULTANAEV, AND NUR F. VALEEV

Abstract. In this paper, we show the development of a method that
allows one to construct asymptotics for solutions to ordinary differential
equations of arbitrary order with oscillating coefficients on the semiaxis.
The idea of the method is presented on the example of studying the
asymptotics of the Sturm-Liouville equation solutions.

1. Introduction

A significant number of papers are devoted to the study of the asymptotic prop-
erties of solutions of singular Sturm-Liouville equations and differential equations
of arbitrary order (see [1, 2, 3, 14] and references to them). However, as a rule,
when studying the asymptotic behavior of solutions of linear ordinary differential
equations, it was essentially used that their coefficients have the correct growth at
infinity and the possibility of applying Levinson’s classical result for L-diagonal
systems of linear differential equations.

Recently, a number of papers [4, 5, 8, 9, 10, 11, 12, 13] have been published,
in which the asymptotic properties of solutions to ordinary differential equations
were studied for equations with coefficients from wider classes, in particular, those
that do not satisfy the Titchmarsh-Levitan conditions.

In this paper, we develop methods and approaches for studying linear differ-
ential equations with “regularly oscillating” coefficients, described in [9]-[12]. In
these studies, classes of coefficients of linear differential equations are described
for which it is algorithmically possible to construct asymptotic formulas for large
values of the independent variable. Of special interest are the cases of nontrivial
asymptotics (see Example 2 in [11]).

In [9]-[12] the cases of rapidly oscillating coefficients were considered. In [13],
an approach was proposed to study the asymptotics of solutions of the Sturm-
Liouville equation with coefficients of the form: µ2+ q(x)/xα, α > 0, where q(x)
is an almost periodic function, but the main result is formulated for the case when
the perturbation q(x)/xα does not affect the leading term of the asymptotics.
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In this article, we apply the main ideas of [11, 12] to construct asymptotic
formulas for solving the equation

y′′ +

(
µ2 +

sinx

xα

)
y = 0, x0 < x < ∞, µ ∈ C,

for the case when the main part of the asymptotics is affected by the oscillating
potential sinx/xα.

Note that in R. Bellman’s monograph [1] the problem of studying the asymp-
totic behavior of the solution of this equation for x → ∞ , when α < 1 was
posed. The case when α > 1 is of no interest, since the perturbation is a summa-
ble function on the interval [x0,∞). The result obtained in this article answers
the question for 1/3 < α < 1/2, and the method of constructing asymptotic
formulas is also suitable for coefficients of a more general form from classes of
regularly oscillating functions.

We also note that the approaches developed by us can be used to study linear
differential equations of arbitrary orders with regularly oscillating coefficients.

2. Construction of asymptotic formulas

Consider the model Sturm-Liouville equation

y′′ +

(
µ2 +

sinx

xα

)
y = 0, x0 ≤ x < ∞, µ ∈ R\{0}, α > 0. (2.1)

The main result of the article is the following assertion

Theorem 2.1. Let 1/3 < α < 1/2 and the parameter µ be such that µ ̸=
±1,±1/2.
Then for the fundamental system of solutions of equation (2.1) for x → +∞ the
following asymptotic relations are true:(

y1(x) y2(x)
y′1(x) y′2(x)

)
=

(
ie−ip(x) + o(1) −ieip(x) + o(1)

e−ip(x) + o(1) eip(x) + o(1)

)
,

p(x) =
x1−2α

4(1− 2α)(4µ3 − µ)
+ µx. (2.2)

Proof. Let us give a sketch of the proof of the theorem. We reduce equation
(2.1) to an equivalent system of equations.

Let us introduce the vector function z⃗(x, µ) = colon(z1, z2) : z1 = y, z2 = y′.
Then equation (2.1) can be written in the form

z⃗′ =

(
0 1

−µ2 − sinx/xα 0

)
z⃗.

By replacing

z⃗(x) = T u⃗, T =

(
i −i
1 1

)
(2.3)

let’s go to the system:

u⃗′ = iµL0u⃗+
1

xα
D(x)u⃗,
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L0 =

(
−1 0
0 1

)
, D(x) =

i sinx

2µ

(
−1 1
−1 1

)
.

Let’s make another substitution:

u⃗ = B(x)v⃗, B(x) = B0(x) +
1

xα
B1(x). (2.4)

Replacement (2.4) leads to the system:

B′(x)v⃗ +B(x)v⃗′ = iµL0B(x)v⃗ +
1

xα
D(x)B(x)v⃗. (2.5)

Considering x−α as a small parameter for x → ∞, we will look for the matrices
B0(x), B1(x) from the following system of matrix equations:{

B′
0 = iµL0B0,

B′
1 = iµL0B1 +DB0.

(2.6)

From the first equation of this system

B0 = eiµL0x =

(
e−iµx 0
0 eiµx

)
.

Here is the formula for the B1 matrix:

B1 = B0 −B0 ·D1, D′
1 = D0 = B−1

0 DB0,

D0(x) =
i sinx

2µ

(
−1 e2iµx

−e−2iµx 1

)
.

Now for B(x) we get the following representation:

B(x) = B0 · (E − 1

xα
D1) = (E − 1

xα
B−1

0 D1) ·B0,

which, among other things, implies the nondegeneracy of the matrix B(x). By
virtue of the condition of the matrix B0, B1 are limited.

To calculate the matrix D1, it is required to integrate the elements of the
matrix D0:

D1(x) =
i

4µ

(
2 cosx − 1

1−2µe
−ix(1−2µ) − 1

1+2µe
ix(1+2µ)

1
1+2µe

−ix(1+2µ) + 1
1−2µe

ix(1−2µ) −2 cosx

)
.

The condition 2µ ̸= ±1 provides a non-zero imaginary part for all elements of the
matrix D0, i.e. the absence of parametric resonance of resonance (for the effect
of parametric resonance, see, for example, in [6]).

The boundedness of the matrix B−1DB1 and the condition 1/3 < α < 1/2
imply summability of the elements of the matrix 1

xα+1B
−1DB1.

Taking into account relations (2.6), we write system (2.5) in the form:

v⃗′ =
1

x2α
B−1DB1v⃗ +

1

xα+1
B−1DB1v⃗ =

=
1

x2α
B−1

0 (E − 1

xα
D1)

−1DB1v⃗ +
1

xα+1
B−1DB1v⃗.

Since 2α < 1, the asymptotic relation xα+1 = o(x3α), x → ∞. Then imagine
the last system like this:

v⃗′ =
1

x2α
B−1

0 DB1v⃗ +
1

x3α
F v⃗, (2.7)
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where F is a matrix bounded on [x0,∞).
The matrix B−1

0 DB1 can be represented as the sum of two matrices, the first
of which is constant, and the second consists of oscillating elements:

B−1
0 DB1 =

i

4µ(4µ2 − 1)
L0 + C(x, µ),

where the matrix C(x, µ) has the following structure:

C(x, µ) =
∑
γ∈Ω

Cγe
iγx, Ω = {±1,±2,±1± 2µ,±2± 2µ},

here Cγ are certain constant matrices.
Thus, system (2.7) takes the form:

v⃗′ =
i

ax2α
L0v⃗ +

1

x2α
Cv⃗ +

1

x3α
F v⃗, a = 4µ(4µ2 − 1). (2.8)

Then the first and second terms on the right side of this system are not summable
matrices, and the third term is a summable matrix. Let’s make a substitution
change of the independent variable:

ξ = ϕ(x), ϕ′(x) =
1

x2α
, v⃗(x) = w⃗(ξ), C̃(ξ, µ) = C(x, µ), F̃ (ξ, µ) = F (x, µ),

whence

ξ =
x1−2α

1− 2α
, x = ((1− 2α)ξ)

1
1−2α =

(
ξ

1 + β

)1+β

, β =
1

1− 2α
− 1 =

2α

1− 2α
.

Note that the condition 1/3 < α < 1/2 implies that 2 < β. Taking into account
the introduced notation, we write system (2.8):

d

dξ
w⃗(ξ) =

i

a
L0w⃗(ξ) + C̃(ξ, µ)w⃗(ξ) + ξ−β/2F̃ (ξ, µ)w⃗(ξ). (2.9)

Note that system (2.9) is a system with rapidly oscillating coefficients. Indeed,

the elements of the matrix C̃(ξ, µ) have the form

c̃ij(ξ, µ) =
∑
γ∈Ω

(Cγ)ij exp

{
iγ

(
ξ

1 + β

)1+β
}
, β > 2.

Whence it follows that ∥∥∥∥∥∥∥
∞∫
ξ

C̃(τ, µ)dτ

∥∥∥∥∥∥∥ ∈ L[ξ0,∞).

The term ξ−β/2F̃ (ξ, µ) is obviously a matrix with coefficients summable on [ξ0,∞).
Applying the ideas and approaches to the study of such systems presented in

[7], [11], we pass to an equivalent system of integral equations and apply the
method of successive approximations to the resulting system. Whence, in view
of the rapid oscillation of the elements of the matrix C̃, it follows that the main
term of the asymptotics of system (2.9) can be written in terms of the matrix
i
aL0.
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Omitting a number of cumbersome standard calculations, we write down the
final result for the fundamental system of solutions of the system (2.9):(

w1
1(ξ) w2

1(ξ)
w1
2(ξ) w2

2(ξ)

)
=

(
e−i/aξ + o(1) o(1)

o(1) ei/aξ + o(1)

)
, x → ∞.

Making the reverse substitutions (2.3) and (2.4), we finally obtain the required
asymptotic formulas (2.2) for the fundamental system of solutions of equation
(2.1):

z⃗(x) = T (B0(x) +
1

xα
B1(x))v⃗(x) = T (B0(x) + o(1)B1(x))v⃗(x) =

= T (B0(x) + o(1)B1(x))w⃗(ξ), ξ = ϕ(x),

whence for the leading term of the asymptotics we obtain:(
y1(x) y2(x)
y′1(x) y′2(x)

)
=

(
i −i
1 1

)(
e−iµx 0
0 eiµx

)(
e−i/aξ + o(1) o(1)

o(1) ei/aξ + o(1)

)
.

Given that

ξ =
x1−2α

1− 2α
, p(x) =

x1−2α

4(1− 2α)(4µ3 − µ)
+ µx,

we obtain the asymptotic formulas (2.2).
The theorem is proved.
Remark. The studies carried out in the articles [11, 12] and in this work can

be applied to the study of the asymptotic behavior for the fundamental system
of solutions of arbitrary order equations with regularly oscillating coefficients.
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