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NON-WEYL RESONANCE ASYMPTOTICS FOR QUANTUM

GRAPH WITH THE DIRAC OPERATOR ON EDGES

ANNA G. BELOLIPETSKAIA AND IGOR Y. POPOV

Abstract. We investigate quantum graph consisting of a compact in-
terior with a finite number of semi-infinite edges attached. The Dirac
operator acts on the edges of the graph. At vertices, matching condi-
tions of a general form are considered. For this model, the non-Weyl
asymptotics of resonances (quasi-eigenvalues) is studied. The results
were obtained by constructing an effective coupling matrix.

1. Introduction

Quantum graph models have been used since the 1930s, but it is only in the last
few decades that quantum graphs have attracted increased interest. Currently
there is a huge amount of literature on quantum graphs, a detailed description of
the history of the development of the theory of quantum graphs and an extensive
bibliography can be found in the works [2], [13]. In this article we study the Weyl
asymptotics of the resonances of the Dirac operator on quantum graph edges with
general coupling conditions.

Resonances attract great attention last time due to its physical importance
(see, e.g., [1, 17, 11, 12, 14, 8, 21, 22, 20, 5, 7]). Many results have been obtained
in the last 10 years on the Weyl asymptotics of the resonances of the Schrödinger
operator on quantum graphs. For example, E.B.Davies and A.Pushnitski [10]
proved a criterion for the non-Weyl asymptotics of resonances of the Schrödinger
operator on quantum graphs with Kirchhoff coupling conditions. It was shown
that the main factor in the form of asymptotics is the topological structure of
the quantum graph, namely, the presence of the so-called balanced vertices. In
a similar problem with general boundary conditions, the form of the asymp-
totics is affected by the so-called effective coupling matrix. It was first described
by P.Exner and J.Lipovsky in [15]. Later E.B.Davies, P.Exner and J.Lipovsky
in [9] obtained a criterion for the non-Weyl asymptotics of the resonances of
the Schrödinger operator on quantum graphs with general coupling conditions
through the study of the eigenvalues of the effective coupling matrix. Also in the
paper [16] the influence of the magnetic field on the non-Weyl asymptotics of the
resonances for the Schrödinger operator on quantum graph with general coupling
conditions was studied.
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Similar results for the non-Weyl asymptotics of resonances for the Dirac oper-
ator on quantum graph with general coupling conditions have not been obtained
previously. This article is devoted to this topic, namely, the construction of an
effective coupling matrix and the study of the asymptotic behavior of resonances
for the Dirac operator on a quantum graph with general coupling conditions.

In this paper, we study quantum graphs consisting of a compact interior with
a finite number of infinite edges attached. At each edge e (isomorphic to segment

or to a hal-line), we consider the space L2(e)⊗C2 of 2-vector-functions

(
ψ
(1)
e

ψ
(2)
e

)
.

The Dirac operator D at edge e has the domainW 1
2 (e)⊗C2,W 1

2 (e) is the Sobolev
space. It acts as follows:

D = −i d
dx

⊗ σ1 + 1⊗ σ3, (1.1)

where σ1 =

(
0 1
1 0

)
, σ3 =

(
1 0
0 −1

)
are the Pauli matrices. One can consider the

orthogonal sum of such operators over all graph edges. As for the coupling con-
ditions at the vertices which ensure self-adjointness of the operator on the whole
quantum graph, we use the general coupling conditions obtained by W.Bulla and
T.Trenkler in [6]:

(U − iI)(
1 + i√

2
ψ(1)) + i(U + I)ψ(2) = 0. (1.2)

where I is the identical matrix, U is a unitary matrix which size is determined by

the number of the graph edges, ψ(1) (ψ(2)) are vectors, composed of ψ
(1)
e (ψ

(2)
e ).

While studying resonances, one can deal with the operator resolvent or with
the scattering matrix. In this work, resonances are found as the poles of the
scattering matrix. Correspondingly, the resonances are determined as roots of
the following determinant (analogously to [15]):

F (k) = det((U − iI)(
1 + i√

2
c1(k)) + ik(U + I)c2(k)) = 0, (1.3)

where lj is the length of the inner edge ej , IM is identity matrix of size M ×M
and c1(k), c2(k) are equal to the following matrices:

c1(k) = diag(c11(k), ..., c1N (k), 0 · IM ),
c2(k) = diag(c21(k), ..., c2N (k), i · IM ),

c1j(k) =

(
0 1

sin(klj) cos(klj)

)
, c2j(k) =

(
1 0

cos(klj) − sin(klj)

)
.

(1.4)

Let us introduce the function N(R,F ), which calculates the number of roots
of the function F (k), counting their multiplicities, not exceeding the parameter
R:

N(R,F ) = {#k : F (k) = 0 and |k| < R}. (1.5)

The main result of this article will be provided for the N(R,F ) function.
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2. Effective coupling matrix for the Dirac operator

In order to simplify the problem of studying resonances, we introduce an ef-
fective coupling matrix. This matrix is obtained by reducing the problem to a
compact interior of a quantum graph.

Definition 2.1. Effective coupling matrix for the operator with coupling condi-
tions (1.2) is such matrix Ũ that the resonance equation (1.3) has the form

det((Ũ − iI)(
1 + i√

2
c̃1(k)) + ik(Ũ + I)c̃2(k)) = 0, (2.1)

where c̃i(k), i = 1, 2, contains only the parts of ci(k) corresponding to the internal
edges.

Theorem 2.1. The effective coupling matrix of the Dirac operator on a quantum
graph with coupling conditions (1.2) is as follows:

Ũ(k) = U1 − (
1 + i√
2− k

)U2((
1 + i√

2
− k)U4 − (

−1 + i√
2

+ k)I)−1U3, (2.2)

where I is the identity matrix M ×M , the matrices Ui are defined as follows:

U =

(
U1 U2

U3 U4

)
, (2.3)

where U1 is the 2N × 2N matrix characterizing the inner part of the graph (N
is the number of internal edges), U4 is the M × M matrix characterizing the
outer part of the graph (M is the number of outer edges), matrices U2, U3 of size
M × 2N, 2N ×M , respectively, correspond to both the inner and outer parts of
the graph.

Proof. Consider a quantum graph with N interior edges and M exterior edges.
Due to the relation between the Dirac equation and the exactly solvable Schrödinger
equation, the vectors ψ(1), ψ(2) can be written as follows:{

ψ(1) = (f1, ..., f2N , g1, ..., gM )T ,

ψ(2) = (f ′1, ..., f
′
2N , ikg1, ..., ikgM )T .

(2.4)

where f2j−1, f2j , f
′
2j−1, f

′
2j are the values of the function and the derivative of

the function at the ends of the inner edge ej , gj is vertex value for outer edges
ej . Substituting (2.4) into the general coupling conditions (1.2), one obtains the
following equation:

1+i√
2
(U − iI)(f1, ..., f2N , g1, ..., gM )T+

+(U + I) · diag(i · I2N ,−k · IM ) · (f ′1, ..., f ′2N , g1, ..., gM )T = 0,
(2.5)

where IM is the identity matrix of size M ×M , I2N is the identity matrix of size
2N × 2N . Let’s rewrite the equation 2.5 in the form:

V (f1, ..., f2N , f
′
1, ..., f

′
2N , g1, ..., gM )T = 0. (2.6)
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It is not difficult to calculate the matrix V :

V =

(
1+i√

2
(U1 − iI) i(U1 + I) 1+i√

2
U2 − kU2

1+i√
2
U3 iU3

1+i√
2
(U4 − iI)− k(U4 + i)

)
=(

1+i√
2
(U1 − iI) i(U1 + I) (1+i√

2
− k)U2

1+i√
2
U3 iU3 (1+i√

2
− k)U4 − (−1+i√

2
+ k)I

)
.

(2.7)

If the matrix (1+i√
2
−k)U4− (−1+i√

2
+k)I is invertible, then the vector (g1, ..., gM )T

can be expressed from the last M lines of the equation (2.7):

(g1, ..., gM )T = A(
1 + i√

2
f1 + if ′1, ...,

1 + i√
2
f2N + if ′2N )T , (2.8)

where

A = −((
1 + i√

2
− k)U4 − (

−1 + i√
2

+ k)I)−1U3. (2.9)

Let us substitute the resulting expression (2.8) into the formula (2.7) and write
the first 2N lines:

1+i√
2
(U1 − iI)(f1, ..., f2N )T + 1+i√

2
U2A(

1+i√
2
(f1, ..., f2N )T+

i(f ′1, ..., f
′
2N )T ) + i(U1 + I)(f ′1, ..., f

′
2N )T−

kU2A(
1+i√

2
(f1, ..., f2N )T + i(f ′1, ..., f

′
2N )T ) = 0.

(2.10)

Let’s calculate the coefficient in front of the vector (f1, ..., f2N )T in the expres-
sion (2.10):

1 + i√
2
(U1 − iI) + iU2A− k

1 + i√
2
U2A =

1 + i√
2
(U1 + (

1 + i√
2

− k)U2A− iI). (2.11)

Similarly, one calculates the coefficient in front of the vector (f ′1, ..., f
′
2N )T in the

expression (2.10):

1 + i√
2

· iU2A+ i(U1 + I)− ikU2A = i(U1 + (
1 + i√

2
− k)U2A+ I). (2.12)

Using the obtained coefficients in front of vectors (f1, ..., f2N )T ,
(f ′1, ..., f

′
2N )T ( (2.11), (2.12)), one obtains that the effective coupling matrix has

the following form:

Ũ(k) = U1 + (
1 + i√
2− k

)U2A. (2.13)

Substituting the expression for the matrix A (2.9), we get the final answer:

Ũ(k) = U1 − (
1 + i√
2− k

)U2((
1 + i√

2
− k)U4 − (

−1 + i√
2

+ k)I)−1U3. (2.14)

Thus, the theorem is proved. □

3. Non-Weyl resonance asymptotics for the Dirac operator

In this section we investigate the asymptotic behavior of resonances at infinity.
For this purpose, it is more convenient to replace sin(klj), cos(klj) by exponentials
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e−iklj , eiklj . Then, functions c1j(k), c2j(k) from formula (1.4) have the following
form:

c1j(k) =
1
2E1j +

1
2E2j + E4j ,

c2j(k) = −i(12E1j − 1
2E2j + E3j),

(3.1)

where the matrices E1j , E2j , E3j , E4j are as follows:

E1j =

(
0 0

−ieiklj eiklj

)
, E3j =

(
i 0
0 0

)
,

E2j =

(
0 0

ie−iklj eiklj

)
, E4j =

(
0 1
0 0

)
.

(3.2)

Respectively, function F (k) (1.3) in the new notations (3.1), (3.2) takes the fol-
lowing form:

F (k) = det(( 1+i
2
√
2
(U − iI) + 1

2k(U + I))E1(k)+

+( 1+i
2
√
2
(U − iI)− 1

2k(U + I))E2(k)+

+k(U + I)E3(k) +
1+i√

2
(U − iI)E4(k)− k(U + I)diag(0 · I2N , IM )),

(3.3)

where Ei = diag(Ei1, ..., EiN , 0 · IM ). For further simplification of the obtained

results, we pass to the effective coupling matrix Ũ(k) (2.2). Then, function F (k)
(3.3) takes the following form:

F (k) = det(( 1+i
2
√
2
(Ũ(k)− iI) + 1

2k(Ũ(k) + I))E1(k)

+( 1+i
2
√
2
(Ũ(k)− iI)− 1

2k(Ũ(k) + I))E2(k)

+k(Ũ(k) + I)E3(k) +
1+i√

2
(Ũ(k)− iI)E4(k)).

(3.4)

To obtain the main result of the article, it is necessary to calculate the coefficient

before e± = e
±

∑
j
iklj

.

Lemma 3.1. The coefficient before e± in the expression (3.4) function F (k) is
as follows:

iN

2N
· det(1 + i√

2
(U − iI)± k(U + I)). (3.5)

Proof. For convenience, we introduce auxiliary matrices B = (bxy)2N×2N , C =
(cxy)2N×2N :

B = 1+i
2
√
2
(U − iI) + 1

2k(U + I),

C = 1+i
2
√
2
(U − iI)− 1

2k(U + I).
(3.6)

Then, F (k) can be expressed in terms of matrices B,C:

F (k) = det(B · E1 + C · E2 + (B − C) · E3 + (B + C) · E4). (3.7)

We introduce the matrix F0 = (fxy)2N×2N , which is obtained by removing the
factor i from the columns of the matrix F (k):

F (k) = iN det(F0). (3.8)

Then, entries fxy of the matrix F0 are presented by the following expressions:{
fxy = bxye

iklz + cxye
−iklz + bxy−1 + cxy−1, y = 2z, z = {1, ..., N},

fxy = −bxyeiklz + cxye
−iklz + bxy−1 − cxy−1, y = 2z − 1, z = {1, ..., N}.

(3.9)
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Note that the coefficient before e+ of the determinant of the matrix F0 is the same
as the coefficient before e+ of the determinant of the matrix F+ = (f+xy)2N×2N ,

where the entries of the matrix F+ are as follows:{
f+xy = bxye

iklz + bxy−1 + cxy−1, y = 2z, z = {1, ..., N},
f+xy = −bxyeiklz + bxy−1 − cxy−1, y = 2z − 1, z = {1, ..., N}. (3.10)

Similarly, it is possible to introduce the matrix F− = (f−xy)2N×2N for calculation

of the coefficient before e− in the determinant of the matrix F0:{
f−xy = cxye

−iklz + bxy−1 + cxy−1, y = 2z, z = {1, ..., N},
f−xy = cxye

−iklz + bxy−1 − cxy−1, y = 2z − 1, z = {1, ..., N}. (3.11)

Since the determinant does not change when a linear combination of other
columns is added to any column, when calculating the determinant of the matrix
F+, we add the column number 2i − 1 to the column number 2i. The new
coefficients of the determinant are as follows:{

f̃+xy = 2bxy−1, y = 2z, z = {1, ..., N},
f̃+xy = −bxyeiklz + bxy−1 − cxy−1, y = 2z − 1, z = {1, ..., N}. (3.12)

Similarly, when calculating the determinant of the matrix F−, one subtracts from
the column with the number 2i the column with the number 2i− 1:{

f̃−xy = 2cxy−1, y = 2z, z = {1, ..., N},
f̃−xy = cxye

−iklz + bxy−1 − cxy−1, y = 2z − 1, z = {1, ..., N}. (3.13)

It is easy to see that the coefficient c+0 before e+ of the determinant F+ is equal
to the following expression:

c+0 = 2N detB. (3.14)

Returning to the original notation, one determines the coefficient c+ before e+ in
the expression for the function F (k):

c+ =
iN

2N
det(

1 + i√
2
(U − iI) + k(U + I)). (3.15)

Analogously, one obtains the coefficient c− before e− for the function F (k):

c− =
iN

2N
det(

1 + i√
2
(U − iI)− k(U + I)). (3.16)

This completes the proof. □

Remark 3.1. Note that the coefficients before e+ ·eik
∑

ej , e− ·e−ik
∑

ej , where the
sum over j passes over a non-empty subset of the sets of interior edges are equal
to 0. Really, formula (3.9) shows that the coefficients before e±2iklj annihilates
due to symmetry.

Below we will use the following theorem.

Theorem 3.1. [9] Let F (k) =
n∑

r=0
kvrar(k)e

ikσr , where vr ∈ R, ar(k) are rational

functions of the complex variable k with complex coefficients that do not vanish
identically, and σr ∈ R, σ0 < σ1 < ... < σn. Suppose also that vr are chosen so
that lim

k→∞
ar(k) = αr is finite and non-zero for all r. There exists a compact set

Ω ⊂ C, real numbers mr and positive Kr, r = 1, ..., n such that the zeros of F (k)
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outside Ω lie in one of n logarithmic strips, each one bounded between the curves
−Imk +mr log |k| = ±Kr. The counting function behaves in the limit R → ∞
as

N(R,F ) =
σn − σ0

π
R+O(1). (3.17)

Now we formulate and prove a theorem that will allow us to determine the
form of asymptotics (in particular, Weyl or non-Weyl) of resonances for a quan-
tum graph, on the edges of which the Dirac operator acts with general coupling
conditions.

Theorem 3.2. Let a quantum graph be given, consisting of a compact interior, to
which a finite number of edges of infinite length are attached. The Dirac operator
1.1 will act on the edges of this quantum graph. The coupling conditions at the
vertices of the quantum graph will be described by the unitary matrix Uj. Then
the asymptotics of the resonance counting function as R→ ∞ is of the form:

N(R,F ) =
2W

π
R+O(1),

where the W is called the effective size of the quantum graph, it satisfies the
following relation:

0 ≤W ≤ V =
N∑
j=1

lj .

One should note that condition W < V is equivalent to the fact that there is a

vertex where the effective coupling matrix Ũj(k) has an eigenvalue −1+i−k
√
2

1+i+k
√
2

or

−1+i+k
√
2

1+i−k
√
2

for any k (the matrix Ũj(k) is assumed to exist).

Proof. The condition of the theorem consists of two parts. The first part describes
the general form of asymptotics, and the second part describes necessary and
sufficient conditions for non-Weyl asymptotics.

To prove the first part, we will use the results of the lemma 3.1 and the remarks
to it. Then using the notation from the theorem 3.2 we obtain that −V ≤ σ0 ≤

0, 0 ≤ σn ≤ V , where V =
N∑
j=1

lj . Then 0 ≤ σn − σ0 ≤ 2V and by the theorem

3.2 N(R,F ) = 2W
π R+O(1), where 0 ≤W ≤ V , as required in the first part.

To prove the second part, it is worth noting that the non-Weyl terminology
asymptotics means that the inequality W < V must hold, that is, it means that
at least one of the two inequalities −V < σ0 or σn < V . That is, the coefficient
before e+, e− must be equal to 0. In the lemma 3.1 it was obtained that the

coefficient before e± is equal to iN

2N
· det(1+i√

2
(U − iI) ± k(U + I)), which will be

zero if and only if, when −1+i−k
√
2

1+i+k
√
2

or −1+i+k
√
2

1+i−k
√
2

will be the eigenvalue of the

effective matching matrix ˜U(k) for any k. Thus, the theorem is proved. □

Thus, in order to determine the form of the asymptotic behavior of the reso-
nances, it is sufficient to study the eigenvalues of the effective coupling matrix.
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