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RESTORATION OF POLYNOMIAL COEFFICIENT IN THE

DIFFERENTIAL EQUATION OF THE THIRD ORDER

A. M. AKHTYAMOV, A. R. ALIEV, A. L. ELBABLY, AND N. L. MURADOVA

Abstract. The problem of identifying a polynomial coefficient in an
ordinary differential equation of the third order by eigenvalues is con-
sidered. It is shown that the case of a differential equation of odd or-
der differs from the case of a differential equation of even order. It is
shown below that, in contrast to even-order differential equations, for the
uniqueness of the restoration of the polynomial potential in the differ-
ential equation of the third order there is no need to use the eigenvalues
of the two spectral problems. It suffices to use the eigenvalues of one
boundary-value problem. A method for solving the problem based on
finding unknown polynomial coefficients is presented. A method is also
developed that allows one to prove the uniqueness of the restored poly-
nomial coefficient by a finite number of eigenvalues. The latter method is
based on the method of variation of an arbitrary constant. The unique-
ness theorems for the solution of the inverse problem and examples of
its solution are given.

1. Introduction

The paper considers the inverse problem for equation

ly = −y′′′ + q(x) y = λ y = s3 y. (1.1)

Direct problems for even order differential operator have been fairly well stud-
ied (see, for example, [14], [28], [29]. The case odd order differential operator
has been studied little. We note that differential equations of odd order with
unbounded operator coefficients acting in the abstract Hilbert space H are con-
sidered in [4], [5] [6], [7], [8] on the half-axis [0,+∞). In these papers, for such
equations in a broad aspects, questions of the well-posed and unique solvability of
H-valued functions in Sobolev spaces under different boundary conditions at zero
are studied. It should be pointed out that the differential equations considered
in this paper are covered by the abstract equations of [4], [5] [6], [7], [8].

The study of inverse eigenvalue problems began with the work [9]. In this
work, it was shown that if λn = n2, (n = 0, 1, . . . ), then q(x) ≡ 0 for a boundary
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value problem with a differential equation

ly = −y′′ + q(x) y = λ y = s2 y,

and boundary conditions

y′(0) = y′(π) = 0,

where q(x) is a real continuous function. In other words, it was shown that if the
spectrum of the equation

y′′ + λ y = 0

for those but the boundary conditions were preserved, then there could not be
any disturbance. In 1946, [10] G. Borg showed (see also [16]) that one spectrum,
generally speaking, does not determine the equation, the Ambartsumian case is
an exception. G. Borg considered methods for constructing an equation from two
spectra. These results are conditional in nature, since the existence of a differen-
tial equation for which these two sequences are spectra is assumed. Later in the
50’s and 60’s of the 20 century in the works of V.A. Marchenko, B.M. Levitan,
N. Levinson and M.G. Gasymov it was shown that the Sturm-Liouville operator
with a discrete spectrum is uniquely determined by two spectra of boundary value
problems with different boundary conditions at the zero point and one and the
same condition at the other end [16], [17], [19], [23].

After the publication of classical monographs V.A. Marchenko [22] and B.M.
Levitan [18] where the potential q(x) was either a continuous or summable func-
tion, the main efforts of scientists are aimed at generalizing the results obtained
both in the direction of restoring more general potentials and differential equa-
tions [13], [30], [32], and in the direction of using more general boundary condi-
tions [12], [15], [21], [24], [25], [26], [27]. In all these works, at least two infinite
sets of eigenvalues are required to restore a continuous function or a more general
function q(x). However, for applied problems such an approach is not very effec-
tive, since in reality with the help of frequency meters it is possible to determine
only finite sets of natural frequencies. In addition, as a rule, there is some addi-
tional information about the identified object, which allows us to specify the class
of required functions. Therefore, the problem arises of identifying a potential of
a special type by a finite number of eigenfrequencies. Nevertheless, no effective
methods of solving this problem have been proposed. Previously, problems were
solved for identifying species and parameters of boundary conditions with respect
to a finite number of eigenfrequencies [1], [2].

In [31], the uniqueness of the reconstruction of the two-term equations y(2n) +
q(x) y = λ y by the spectrum of the problem

y(2n) + q(x) y = λ y, y(0) = y′(0) = · · · = y(2n−2)(0) = y(1) = 0 (1.2)

and the spectrum of the problem

y(2n) + q(x) y = λ y, y(0) = y′(0) = · · · = y(2n−2)(0) = y′(1) = 0 (1.3)

is showed.
In [3] it is shown that it is not enough eigenvalues for one of the problems

(1.2) or (1.3) to prove the uniqueness of the restoration of the linear potential
in the Sturm-Liouville problem. The corresponding counterexamples are given
in the paper. It is also proved that the use of two eigenvalues, one of which is
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the eigenvalue of problem (1.2), and the other is the eigenvalue of problem (1.3),
allows uniquely recover the linear potential q(x).

In this paper it is shown that the case of a differential equation of odd order
differs radically from the case of a differential equation of even order. It is shown
below that for the uniqueness of the restoration of the polynomial potential in
the differential equation of the third order there is no need to use the eigenvalues
of the two problems. It suffices to use the eigenvalues of one boundary-value
problem.

2. Polynomial Restoration. Examples

We denote by L1, L2, L
0
1 and L0

2, respectively, the following boundary-value
problems for the third-order differential equation:

P r o b l e m L1:

ly = −y′′′ + q(x) y = λ y = s3 y, y(0) = y′(0) = y(1) = 0;

P r o b l e m L2:

ly = −y′′′ + q(x) y = λ y = s3 y, y(0) = y′(0) = y′(1) = 0;

P r o b l e m L0
1:

lz = z′′′ + s3 z = 0, z(0) = z′(0) = z(1) = 0;

P r o b l e m L0
2:

ly = z′′′ + s3 z = 0, z(0) = z′(0) = z′(1) = 0.

Example 2.1. Let the numbers

s31 = 4.28523, s32 = 7.87563, s33 = 11.4953

be the eigenvalues of problem L1 and q(x) ≡ q0 + q1 x + q2 x
2. It is required

to reconstruct the quadratic function q(x) ≡ q0 + q1 x + q2 x
2 by these three

eigenvalues λi, i = 1, 2, 3 of problem L1.
The solutions y1(x, λ), y2(x, λ) and y3(x, λ) can be found as a Taylor series with

the help of a package of analytical computations (for analytical computations we
used Maple). These solutions will contain unknown coefficients q0, q1 and q2.
Substituting the numbers

s31 = 4.28523, s32 = 7.87563, s33 = 11.4953

and the main part of the Taylor series (the first 200 terms of the series) in
∆1(λ) = y3(x, λ) = 0 we obtain a system of equations with respect to q0, q1,
and q2. Solving this system of equations q0, q1, and q2 in the package of analytic
computations, we find:

q0 = 1.0000, q1 = 2.0000, q2 = 3.0000.

Whence

q(x) = 1 + 2x+ 3x2.
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Example 2.2. Let q(x) be the function q(x) ≡ q0 + q1 x+ q2 x
2 and

s31 = 3.13793, s32 = 6.67393, s33 = 10.2883

be eigenvalues of problem L2. It is required to reconstruct the quadratic function

q(x) ≡ q0 + q1 x+ q2 x
2

by these three eigenvalues λi, i = 1, 2, 3 of problem L2.
The solutions

y1(x, λ), y2(x, λ), y3(x, λ)

can be found as a Taylor series with the help of a package of analytical compu-
tations. These solutions will contain unknown coefficients q0, q1 and q2. Substi-
tuting the numbers

s31 = 3.13793, s32 = 6.67393, s33 = 10.2883

and the main part of the Taylor series (the first 200 terms of the series) in

∆2(λ) = y′3(x, λ) = 0

we obtain a system of equations with respect to q0, q1 and q2. Solving this system
of equations q0, q1, q2 in the package of analytic computations, we find:

q0 = 1.0000, q1 = 2.0000, q2 = 3.0000.

Whence

q(x) = 1 + 2x+ 3x2.

Example 2.3. Let the numbers

s31 = 4.26903, s32 = 7.87083, s33 = 11.4933, s34 = 15.1183

be eigenvalues of problem L1 and q(x) ≡ q0 + q1 x+ q2 x
2 + q3 x

3. For these four
eigenvalues λi, i = 1, 2, 3, 4 of problem L1, the function q(x) ≡ q0+ q1 x+ q2 x

2+
q3 x

3.
The solutions y1(x, λ), y2(x, λ) and y3(x, λ) can be found as a Taylor series with

the help of a package of analytical computations. These solutions will contain
unknown coefficients q0, q1, q2 and q3. Substituting the numbers

s31 = 4.26903, s32 = 7.87083, s33 = 11.4933, s34 = 15.1183

and the main part of the Taylor series (the first 200 terms series) in ∆2(λ) =
y3(x, λ) = 0 we obtain a system of equations with respect to q0, q1, q2 and q3.
Solving this system of equations q0, q1, q2 in the package of analytic computations,
we find:

q0 = 1.0000, q1 = 1.0000, q2 = 1.0000, q3 = 1.0000.

Hence

q(x) = 1 + x+ x2 + x3.

Are the solutions are unique? Yes, they are. This can be proved by the lemma,
which the following section is posed.
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3. The Main Lemma

We denote by yj(x, λ) and zj(x, λ) (j = 1, 2, 3) the solutions of equations (1.1)
and

z′′′ + λ z = z′′′ + s3 z = 0 (3.1)

respectively, and satisfying the following conditions

y
(i−1)
j (x, λ) =

{
1, if i = j

0, if i ̸= j
, i, j = 1, 2, 3, z

(i−1)
j (x, λ) =

{
1, if i = j

0, if i ̸= j
.

(3.2)

Lemma 3.1. An arbitrary solution y(x) = y(x, λ) of equation (1.1) can be written
in the form

y(x) = y(0) z1(x, λ) + y′(0) z2(x, λ) + y′′(0) z3(x, λ)+

+q0 Z0 + q1 Z1 + · · ·+ qn−1 Zn−1,
(3.3)

where

Zm = z1(x, λ)
∫ x
0 ξm y(ξ)

(
z2(ξ, λ) z

′
3(ξ, λ)− z′2(ξ, λ) z3(ξ, λ)

)
dξ−

−z2(x, λ)
∫ x
0 ξm y(ξ)

(
z1(ξ, λ) z

′
3(ξ, λ)− z′1(ξ, λ) z3(ξ, λ)

)
dξ+

+z3(x, λ)
∫ x
0 ξm y(ξ)

(
z1(ξ, λ) z

′
2(ξ, λ)− z′1(ξ, λ) z2(ξ, λ)

)
dξ,

m = 0, 1, . . . , n− 1.

Proof. Equation (1.1) can be rewritten as

y′′′ + s3 y = q(x) y. (3.4)

Equation (3.1) has a fundamental system of solutions

z1(x, λ), z2(x, λ), z3(x, λ).

Therefore, consider (3.4) as a nonhomogeneous equation with the right-hand side
q(x) y and apply the method of variation of arbitrary constants. We have the
system of equations 

C ′
1 z1 + C ′

2 z2 + C ′
3 z3 = 0,

C ′
1 z

′
1 + C ′

2 z
′
2 + C ′

3 z
′
3 = 0,

C ′
1 z

′′
1 + C ′

2 z
′′
2 + C ′

3 z
′′
3 = q(x) y.

From here

C ′
1 =

D1

D
, C ′

2 =
D2

D
, C ′

3 =
D3

D
,

D =

∣∣∣∣∣∣∣
z1 z2 z3

z′1 z′2 z′3
z′′1 z′′2 z′′3

∣∣∣∣∣∣∣ , D1 =

∣∣∣∣∣∣∣
0 z2 z3

0 z′2 z′3
q(x) y z′′2 z′′3

∣∣∣∣∣∣∣ ,
D2 =

∣∣∣∣∣∣∣
z1 0 z3

z′1 0 z′3
z′′1 q(x) y z′′3

∣∣∣∣∣∣∣ , D3 =

∣∣∣∣∣∣∣
z1 z2 0

z′1 z′2 0

z′′1 z′′2 q(x) y

∣∣∣∣∣∣∣ .
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From the Liouville formula [20, p. 349] and (3.2) it follows that determinant
D (Wronskian) is equal to one. Hence we obtain

y(x) = C1 z1(x, λ) + C2 z2(x, λ) + C3 z3(x, λ)+

+z1(x, λ)
∫ x
0 q(ξ) y(ξ)

(
z2(ξ, λ) z

′
3(ξ, λ)− z′2(ξ, λ) z3(ξ, λ)

)
dξ−

−z2(x, λ)
∫ x
0 q(ξ) y(ξ)

(
z1(ξ, λ) z

′
3(ξ, λ)− z′1(ξ, λ) z3(ξ, λ)

)
dξ+

+z3(x, λ)
∫ x
0 q(ξ) y(ξ)

(
z1(ξ, λ) z

′
2(ξ, λ)− z′1(ξ, λ) z2(ξ, λ)

)
dξ.

(Here C1, C2, C3 are already other constants, they are denoted by the previous
symbols to avoid an abundance of notation.)

If x = 0, then from the last equation we obtain y(0) = C1 · 1 + 0. Whence we
have

y(x) = y(0) z1(x, λ) + C2 z2(x, λ) + C3 z3(x, λ)+

+z1(x, λ)
∫ x
0 q(ξ) y(ξ)

(
z2(ξ, λ) z

′
3(ξ, λ)− z′2(ξ, λ) z3(ξ, λ)

)
dξ−

−z2(x, λ)
∫ x
0 q(ξ) y(ξ)

(
z1(ξ, λ) z

′
3(ξ, λ)− z′1(ξ, λ) z3(ξ, λ)

)
dξ+

+z3(x, λ)
∫ x
0 q(ξ) y(ξ)

(
z1(ξ, λ) z

′
2(ξ, λ)− z′1(ξ, λ) z2(ξ, λ)

)
dξ.

(3.5)

Similarly we obtain

y′(0) = y(0) z′1(0, λ) + C2 z
′
2(0, λ) + C3 z

′
3(0, λ)+

+z′1(0, λ)
∫ 0
0 q(ξ) y(ξ)

(
z2(ξ, λ) z

′
3(ξ, λ)− z′2(ξ, λ) z3(ξ, λ)

)
dξ+

+z1(0, λ) q(0) y(0)
(
z2(0, λ) z

′
3(0, λ)− z′2(0, λ) z3(0, λ)

)
−

−z′2(0, λ)
∫ 0
0 q(ξ) y(ξ)

(
z1(ξ, λ) z

′
3(ξ, λ)− z′1(ξ, λ) z3(ξ, λ)

)
dξ−

−z2(0, λ) q(0) y(0)
(
z1(0, λ) z

′
3(0, λ)− z′1(0, λ) z3(0, λ)

)
dξ+

+z′3(0, λ)
∫ 0
0 q(ξ) y(ξ)

(
z1(ξ, λ) z

′
2(ξ, λ)− z′1(ξ, λ) z2(ξ, λ)

)
dξ+

+z3(0, λ) q(0) y(0)
(
z1(0, λ) z

′
2(0, λ)− z′1(0, λ) z2(0, λ)

)
dξ.

From this and (3.1) we have y′(0) = C2.
By analogy, we also obtain y′′(0) = C3.
Using (3.5) we obtain equation (3.3). □

4. Uniqueness Theorems

Characteristic determinants ∆1(λ), ∆2(λ) of problems L1 and L2 respectively
have the form

∆1(λ) =

∣∣∣∣∣∣∣
y1(0) y2(0) y3(0)

y′1(0) y′2(0) y′3(0)

y1(1) y2(1) y3(1)

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

1 0 0

0 1 0

y1(1) y2(1) y3(1)

∣∣∣∣∣∣∣ = y3(1),

∆2(λ) =

∣∣∣∣∣∣∣
y1(0) y2(0) y3(0)

y′1(0) y′2(0) y′3(0)

y′1(1) y′2(1) y′3(1)

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

1 0 0

0 1 0

y′1(1) y′2(1) y′3(1)

∣∣∣∣∣∣∣ = y′3(1).
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Taking into account the lemma, the characteristic determinants ∆1(λ) and
∆2(λ) of problems L1 and L2 respectively, can be written in the following form

∆1(λ) = y3(1, λ) =

=

[
z3(x, λ) + q0 Z0(1, λ) + q1 Z1(1, λ) + · · ·+ qn−1 Zn−1(1, λ)

]
x=1

,

∆2(λ) = y′3(1, λ) =

=

[
z′3(x, λ) + q0 Z

′
0(1, λ) + q1 Z

′
1(1, λ) + · · ·+ qn−1 Z

′
n−1(1, λ)

]
x=1

=

= z′3(1, λ) + q0Q0(1, λ) + q1Q1(1, λ) + · · ·+ qn−1Qn−1(1, λ),

where

Qm(1, λ) = z′1(1, λ)
∫ 1
0 ξm y3(ξ)

(
z2(ξ, λ) z

′
3(ξ, λ)− z′2(ξ, λ) z3(ξ, λ)

)
dξ−

−z′2(1, λ)
∫ 1
0 ξm y3(ξ)

(
z1(ξ, λ) z

′
3(ξ, λ)− z′1(ξ, λ) z3(ξ, λ)

)
dξ+

+z′3(1, λ)
∫ 1
0 ξm y3(ξ)

(
z1(ξ, λ) z

′
2(ξ, λ)− z′1(ξ, λ) z2(ξ, λ)

)
dξ+

+z1(1, λ) ξ
m y3(ξ)

(
z2(ξ, λ) z

′
3(ξ, λ)− z′2(ξ, λ) z3(ξ, λ)

)
−

−z2(1, λ) ξ
m y3(ξ)

(
z1(ξ, λ) z

′
3(ξ, λ)− z′1(ξ, λ) z3(ξ, λ)

)
+

+z3(1, λ) ξ
m y(ξ)

(
z1(ξ, λ) z

′
2(ξ, λ)− z′1(ξ, λ) z2(ξ, λ)

)
,

m = 0, 1, . . . , n− 1.

Let λi (i = 1, 2, . . . , n) be eigenvalues of problem L1. If the system of equations

z3(1, λi)+q0 Z0(1, λi)+q1 Z1(1, λi)+ · · ·+qn−1 Zn−1(1, λi) = 0, i = 1, n, (4.1)

has a unique solution, this means that the polynomial q(x) is uniquely deter-
mined. Hence we have proved

Theorem 4.1. If eigenvalues λi of problem L1 are such that the system of equa-
tions (4.1) has a unique solution, then the problem of finding the polynomial q(x)
has a unique solution.

Similarly, if λi (i = 1, 2, . . . , n) are eigenvalues of problem L2 and the system
of equations

z′3(1, λi)+q0Q0(1, λi)+q1Q1(1, λi)+· · ·+qn−1Qn−1(1, λi) = 0, i = 1, n, (4.2)

has a unique solution, then this means that the polynomial q(x) is uniquely
determined. Hence we have proved

Theorem 4.2. If the eigenvalues λi of problem L2 are such that the system of
equations (4.2) has a unique solution, then the problem of finding the polynomial
q(x) has a unique solution.

5. Proof of the Uniqueness of Finding Polynomials. Examples

Are the polynomials obtained in Examples 2.1 and 2.2 the unique solutions?
Below it is shown that this is so.

Example 5.1. We substitute the found polynomial q(x) = 1 + 2x + 3x2 from
Example 2.1 and the eigenvalues

s31 = 4.28523, s32 = 7.87563, s33 = 11.4953
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of problem L1 in (4.1). As a result, we obtain the system of equations

0.0049136 q0 + 0.0024643 q1 + 0.0013660 q2 − 0.013940 = 0,

−0.002574 q0 − 0.0012864 q1 − 0.00080851 q2 + 0.0075717 = 0,

0.0034587 q0 + 0.0017286 q1 + 0.0011199 q2 − 0.010276 = 0.

This system has the unique solution

q0 = 1.0000, q1 = 2.0000, q2 = 3.0000.

Where does it follow that

q(x) = 1 + 2x+ 3x2

is the only polynomial that can be recovered by eigenvalues

s31 = 4.28523, s32 = 7.87563, s33 = 11.4953

of problem L1.

Example 5.2. We substitute the found polynomial q(x) = 1 + 2x + 3x2 from
Example 2.2 and the eigenvalues

s31 = 3.13793, s32 = 6.67393, s33 = 10.2883

of problem L2 in (4.2). As a result, we obtain the system of equations

0.030569 q0 + 0.018827 q1 + 0.012590 q2 − 0.10599 = 0,

−0.018296 q0 − 0.0095634 q1 − 0.0063691 q2 + 0.056530 = 0,

0.030341 q0 + 0.015451 q1 + 0.010294 q2 − 0.092126 = 0.

This system has the unique solution

q0 = 1.0000, q1 = 2.0000, q2 = 3.0000.

Where does it follow that

q(x) = 1 + 2x+ 3x2

is the unique polynomial that can be recovered by eigenvalues

s31 = 3.13793, s32 = 6.67393, s33 = 10.2883

of problem L2.

Example 5.3. We substitute the found polynomial q(x) = 1+ x+ x2 + x3 from
Example 2.3 and the eigenvalues

s31 = 4.26903, s32 = 7.87083, s33 = 11.4933, s34 = 15.1183

of problem L1 in (4.1). As a result, we obtain the system of equations

0.0049375 q0 + 0.0024741 q1 + 0.0013709 q2 + 0.00081836 q3 − 0.0096009 = 0,

−0.0025713 q0 − 0.0012854 q1 − 0.00080804 q2 − 0.00056948 q3 + 0.0052341 = 0,

0.0034560 q0 + 0.0017275 q1 + 0.0011194 q2 + 0.00081544 q3 − 0.0071183 = 0,

−0.0070691 q0 − 0.0035337 q1 − 0.0023167 q2 − 0.0017084 q3 + 0.014628 = 0.

This system has the unique solution

q0 = 1.0000, q1 = 1.0000, q2 = 1.0000, q3 = 1.0000.
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Where does it follow that

q(x) = 1 + x+ x2 + x3

is the only polynomial that can be recovered by eigenvalues

s31 = 4.26903, s32 = 7.87083, s33 = 11.4933, s34 = 15.1183

of problem L1.

6. About the Methods Used in the Work

The method of finding the eigenvalues by means of an expansion in a power
series was also applied in the book [11, p. 25.6], but the eigenvalues were not
by breaking the series and solving the corresponding algebraic equation, but by
obtaining recurrence formulas.

A method based on the method of variation of an arbitrary constant and used
by us to prove the uniqueness of the found polynomial potential was used earlier
(see, for example, [23, chapter II, p. 4.3]) for another purpose as obtaining
asymptotic relations of a fundamental system of solutions for large |λ|.

In solving the direct and inverse problems in the package of analytical com-
putations, the first 200 terms of the series were used as the main part of the
expansion series of the Taylor series in x and λ, and 50 significant digits were
used in the calculations. Numerical experiments show that quite satisfactory re-
sults are obtained when using the first 60 terms of the series and 15 significant
figures in the calculations. This is due to the fact that the linearly independent
solutions of the equation and the characteristic determinant turn out to be al-
ternating series and, therefore, according to the Leibnitz test, the remainder of
the series can be estimated by its first term, which turns out to be a very small
quantity. Therefore, the errors in the calculation of the eigenvalues are small.
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