RESTORATION OF POLYNOMIAL COEFFICIENT IN THE DIFFERENTIAL EQUATION OF THE THIRD ORDER

A. M. AKHTYAMOV, A. R. ALIEV, A. L. ELBABLY, AND N. L. MURADOVA

Abstract

The problem of identifying a polynomial coefficient in an ordinary differential equation of the third order by eigenvalues is considered. It is shown that the case of a differential equation of odd order differs from the case of a differential equation of even order. It is shown below that, in contrast to even-order differential equations, for the uniqueness of the restoration of the polynomial potential in the differential equation of the third order there is no need to use the eigenvalues of the two spectral problems. It suffices to use the eigenvalues of one boundary-value problem. A method for solving the problem based on finding unknown polynomial coefficients is presented. A method is also developed that allows one to prove the uniqueness of the restored polynomial coefficient by a finite number of eigenvalues. The latter method is based on the method of variation of an arbitrary constant. The uniqueness theorems for the solution of the inverse problem and examples of its solution are given.

1. Introduction

The paper considers the inverse problem for equation

$$
\begin{equation*}
l y=-y^{\prime \prime \prime}+q(x) y=\lambda y=s^{3} y \tag{1.1}
\end{equation*}
$$

Direct problems for even order differential operator have been fairly well studied (see, for example, [14], [28], [29]. The case odd order differential operator has been studied little. We note that differential equations of odd order with unbounded operator coefficients acting in the abstract Hilbert space H are considered in [4], [5] [6], [7], [8] on the half-axis $[0,+\infty)$. In these papers, for such equations in a broad aspects, questions of the well-posed and unique solvability of H-valued functions in Sobolev spaces under different boundary conditions at zero are studied. It should be pointed out that the differential equations considered in this paper are covered by the abstract equations of [4], [5] [6], [7], [8].

The study of inverse eigenvalue problems began with the work [9]. In this work, it was shown that if $\lambda_{n}=n^{2},(n=0,1, \ldots)$, then $q(x) \equiv 0$ for a boundary

[^0]value problem with a differential equation
$$
l y=-y^{\prime \prime}+q(x) y=\lambda y=s^{2} y
$$
and boundary conditions
$$
y^{\prime}(0)=y^{\prime}(\pi)=0,
$$
where $q(x)$ is a real continuous function. In other words, it was shown that if the spectrum of the equation
$$
y^{\prime \prime}+\lambda y=0
$$
for those but the boundary conditions were preserved, then there could not be any disturbance. In 1946, [10] G. Borg showed (see also [16]) that one spectrum, generally speaking, does not determine the equation, the Ambartsumian case is an exception. G. Borg considered methods for constructing an equation from two spectra. These results are conditional in nature, since the existence of a differential equation for which these two sequences are spectra is assumed. Later in the 50 's and 60 's of the 20 century in the works of V.A. Marchenko, B.M. Levitan, N. Levinson and M.G. Gasymov it was shown that the Sturm-Liouville operator with a discrete spectrum is uniquely determined by two spectra of boundary value problems with different boundary conditions at the zero point and one and the same condition at the other end [16], [17], [19], [23].

After the publication of classical monographs V.A. Marchenko [22] and B.M. Levitan [18] where the potential $q(x)$ was either a continuous or summable function, the main efforts of scientists are aimed at generalizing the results obtained both in the direction of restoring more general potentials and differential equations [13], [30], [32], and in the direction of using more general boundary conditions [12], [15], [21], [24], [25], [26], [27]. In all these works, at least two infinite sets of eigenvalues are required to restore a continuous function or a more general function $q(x)$. However, for applied problems such an approach is not very effective, since in reality with the help of frequency meters it is possible to determine only finite sets of natural frequencies. In addition, as a rule, there is some additional information about the identified object, which allows us to specify the class of required functions. Therefore, the problem arises of identifying a potential of a special type by a finite number of eigenfrequencies. Nevertheless, no effective methods of solving this problem have been proposed. Previously, problems were solved for identifying species and parameters of boundary conditions with respect to a finite number of eigenfrequencies [1], [2].

In [31], the uniqueness of the reconstruction of the two-term equations $y^{(2 n)}+$ $q(x) y=\lambda y$ by the spectrum of the problem

$$
\begin{equation*}
y^{(2 n)}+q(x) y=\lambda y, \quad y(0)=y^{\prime}(0)=\cdots=y^{(2 n-2)}(0)=y(1)=0 \tag{1.2}
\end{equation*}
$$

and the spectrum of the problem

$$
\begin{equation*}
y^{(2 n)}+q(x) y=\lambda y, \quad y(0)=y^{\prime}(0)=\cdots=y^{(2 n-2)}(0)=y^{\prime}(1)=0 \tag{1.3}
\end{equation*}
$$

is showed.
In [3] it is shown that it is not enough eigenvalues for one of the problems (1.2) or (1.3) to prove the uniqueness of the restoration of the linear potential in the Sturm-Liouville problem. The corresponding counterexamples are given in the paper. It is also proved that the use of two eigenvalues, one of which is
the eigenvalue of problem (1.2), and the other is the eigenvalue of problem (1.3), allows uniquely recover the linear potential $q(x)$.

In this paper it is shown that the case of a differential equation of odd order differs radically from the case of a differential equation of even order. It is shown below that for the uniqueness of the restoration of the polynomial potential in the differential equation of the third order there is no need to use the eigenvalues of the two problems. It suffices to use the eigenvalues of one boundary-value problem.

2. Polynomial Restoration. Examples

We denote by L_{1}, L_{2}, L_{1}^{0} and L_{2}^{0}, respectively, the following boundary-value problems for the third-order differential equation:
Problem L_{1} :

$$
l y=-y^{\prime \prime \prime}+q(x) y=\lambda y=s^{3} y, \quad y(0)=y^{\prime}(0)=y(1)=0
$$

Problem L_{2} :

$$
l y=-y^{\prime \prime \prime}+q(x) y=\lambda y=s^{3} y, \quad y(0)=y^{\prime}(0)=y^{\prime}(1)=0
$$

Problem L_{1}^{0} :

$$
l z=z^{\prime \prime \prime}+s^{3} z=0, \quad z(0)=z^{\prime}(0)=z(1)=0
$$

Problem L_{2}^{0} :

$$
l y=z^{\prime \prime \prime}+s^{3} z=0, \quad z(0)=z^{\prime}(0)=z^{\prime}(1)=0 .
$$

Example 2.1. Let the numbers

$$
s_{1}^{3}=4.2852^{3}, \quad s_{2}^{3}=7.8756^{3}, \quad s_{3}^{3}=11.495^{3}
$$

be the eigenvalues of problem L_{1} and $q(x) \equiv q_{0}+q_{1} x+q_{2} x^{2}$. It is required to reconstruct the quadratic function $q(x) \equiv q_{0}+q_{1} x+q_{2} x^{2}$ by these three eigenvalues $\lambda_{i}, i=1,2,3$ of problem L_{1}.

The solutions $y_{1}(x, \lambda), y_{2}(x, \lambda)$ and $y_{3}(x, \lambda)$ can be found as a Taylor series with the help of a package of analytical computations (for analytical computations we used Maple). These solutions will contain unknown coefficients q_{0}, q_{1} and q_{2}. Substituting the numbers

$$
s_{1}^{3}=4.2852^{3}, \quad s_{2}^{3}=7.8756^{3}, \quad s_{3}^{3}=11.495^{3}
$$

and the main part of the Taylor series (the first 200 terms of the series) in $\Delta_{1}(\lambda)=y_{3}(x, \lambda)=0$ we obtain a system of equations with respect to q_{0}, q_{1}, and q_{2}. Solving this system of equations q_{0}, q_{1}, and q_{2} in the package of analytic computations, we find:

$$
q_{0}=1.0000, \quad q_{1}=2.0000, \quad q_{2}=3.0000
$$

Whence

$$
q(x)=1+2 x+3 x^{2} .
$$

Example 2.2. Let $q(x)$ be the function $q(x) \equiv q_{0}+q_{1} x+q_{2} x^{2}$ and

$$
s_{1}^{3}=3.1379^{3}, \quad s_{2}^{3}=6.6739^{3}, \quad s_{3}^{3}=10.288^{3}
$$

be eigenvalues of problem L_{2}. It is required to reconstruct the quadratic function

$$
q(x) \equiv q_{0}+q_{1} x+q_{2} x^{2}
$$

by these three eigenvalues $\lambda_{i}, i=1,2,3$ of problem L_{2}.
The solutions

$$
y_{1}(x, \lambda), \quad y_{2}(x, \lambda), \quad y_{3}(x, \lambda)
$$

can be found as a Taylor series with the help of a package of analytical computations. These solutions will contain unknown coefficients q_{0}, q_{1} and q_{2}. Substituting the numbers

$$
s_{1}^{3}=3.1379^{3}, \quad s_{2}^{3}=6.6739^{3}, \quad s_{3}^{3}=10.288^{3}
$$

and the main part of the Taylor series (the first 200 terms of the series) in

$$
\Delta_{2}(\lambda)=y_{3}^{\prime}(x, \lambda)=0
$$

we obtain a system of equations with respect to q_{0}, q_{1} and q_{2}. Solving this system of equations q_{0}, q_{1}, q_{2} in the package of analytic computations, we find:

$$
q_{0}=1.0000, \quad q_{1}=2.0000, \quad q_{2}=3.0000 .
$$

Whence

$$
q(x)=1+2 x+3 x^{2} .
$$

Example 2.3. Let the numbers

$$
s_{1}^{3}=4.2690^{3}, \quad s_{2}^{3}=7.8708^{3}, \quad s_{3}^{3}=11.493^{3}, \quad s_{4}^{3}=15.118^{3}
$$

be eigenvalues of problem L_{1} and $q(x) \equiv q_{0}+q_{1} x+q_{2} x^{2}+q_{3} x^{3}$. For these four eigenvalues $\lambda_{i}, i=1,2,3,4$ of problem L_{1}, the function $q(x) \equiv q_{0}+q_{1} x+q_{2} x^{2}+$ $q_{3} x^{3}$.

The solutions $y_{1}(x, \lambda), y_{2}(x, \lambda)$ and $y_{3}(x, \lambda)$ can be found as a Taylor series with the help of a package of analytical computations. These solutions will contain unknown coefficients q_{0}, q_{1}, q_{2} and q_{3}. Substituting the numbers

$$
s_{1}^{3}=4.2690^{3}, \quad s_{2}^{3}=7.8708^{3}, \quad s_{3}^{3}=11.493^{3}, \quad s_{4}^{3}=15.118^{3}
$$

and the main part of the Taylor series (the first 200 terms series) in $\Delta_{2}(\lambda)=$ $y_{3}(x, \lambda)=0$ we obtain a system of equations with respect to q_{0}, q_{1}, q_{2} and q_{3}. Solving this system of equations q_{0}, q_{1}, q_{2} in the package of analytic computations, we find:

$$
q_{0}=1.0000, \quad q_{1}=1.0000, \quad q_{2}=1.0000, \quad q_{3}=1.0000 .
$$

Hence

$$
q(x)=1+x+x^{2}+x^{3} .
$$

Are the solutions are unique? Yes, they are. This can be proved by the lemma, which the following section is posed.

3. The Main Lemma

We denote by $y_{j}(x, \lambda)$ and $z_{j}(x, \lambda)(j=1,2,3)$ the solutions of equations (1.1) and

$$
\begin{equation*}
z^{\prime \prime \prime}+\lambda z=z^{\prime \prime \prime}+s^{3} z=0 \tag{3.1}
\end{equation*}
$$

respectively, and satisfying the following conditions

$$
y_{j}^{(i-1)}(x, \lambda)=\left\{\begin{array}{ll}
1, & \text { if } i=j \tag{3.2}\\
0, & \text { if } i \neq j
\end{array}, \quad i, j=1,2,3, \quad z_{j}^{(i-1)}(x, \lambda)= \begin{cases}1, & \text { if } i=j \\
0, & \text { if } i \neq j\end{cases}\right.
$$

Lemma 3.1. An arbitrary solution $y(x)=y(x, \lambda)$ of equation (1.1) can be written in the form

$$
\begin{align*}
y(x)= & y(0) z_{1}(x, \lambda)+y^{\prime}(0) z_{2}(x, \lambda)+y^{\prime \prime}(0) z_{3}(x, \lambda)+ \\
& +q_{0} Z_{0}+q_{1} Z_{1}+\cdots+q_{n-1} Z_{n-1}, \tag{3.3}
\end{align*}
$$

where

$$
\begin{gathered}
Z_{m}=z_{1}(x, \lambda) \int_{0}^{x} \xi^{m} y(\xi)\left(z_{2}(\xi, \lambda) z_{3}^{\prime}(\xi, \lambda)-z_{2}^{\prime}(\xi, \lambda) z_{3}(\xi, \lambda)\right) d \xi- \\
-z_{2}(x, \lambda) \int_{0}^{x} \xi^{m} y(\xi)\left(z_{1}(\xi, \lambda) z_{3}^{\prime}(\xi, \lambda)-z_{1}^{\prime}(\xi, \lambda) z_{3}(\xi, \lambda)\right) d \xi+ \\
+z_{3}(x, \lambda) \int_{0}^{x} \xi^{m} y(\xi)\left(z_{1}(\xi, \lambda) z_{2}^{\prime}(\xi, \lambda)-z_{1}^{\prime}(\xi, \lambda) z_{2}(\xi, \lambda)\right) d \xi \\
m=0,1, \ldots, n-1 .
\end{gathered}
$$

Proof. Equation (1.1) can be rewritten as

$$
\begin{equation*}
y^{\prime \prime \prime}+s^{3} y=q(x) y . \tag{3.4}
\end{equation*}
$$

Equation (3.1) has a fundamental system of solutions

$$
z_{1}(x, \lambda), \quad z_{2}(x, \lambda), \quad z_{3}(x, \lambda)
$$

Therefore, consider (3.4) as a nonhomogeneous equation with the right-hand side $q(x) y$ and apply the method of variation of arbitrary constants. We have the system of equations

$$
\left\{\begin{array}{l}
C_{1}^{\prime} z_{1}+C_{2}^{\prime} z_{2}+C_{3}^{\prime} z_{3}=0 \\
C_{1}^{\prime} z_{1}^{\prime}+C_{2}^{\prime} z_{2}^{\prime}+C_{3}^{\prime} z_{3}^{\prime}=0 \\
C_{1}^{\prime} z_{1}^{\prime \prime}+C_{2}^{\prime} z_{2}^{\prime \prime}+C_{3}^{\prime} z_{3}^{\prime \prime}=q(x) y
\end{array}\right.
$$

From here

$$
\begin{aligned}
& C_{1}^{\prime}=\frac{D_{1}}{D}, \quad C_{2}^{\prime}=\frac{D_{2}}{D}, \quad C_{3}^{\prime}=\frac{D_{3}}{D}, \\
& \left.\begin{aligned}
& D=\left|\begin{array}{ccc}
z_{1} & z_{2} & z_{3} \\
z_{1}^{\prime} & z_{2}^{\prime} & z_{3}^{\prime} \\
z_{1}^{\prime \prime} & z_{2}^{\prime \prime} & z_{3}^{\prime \prime}
\end{array}\right|, \quad D_{1}=\left|\begin{array}{ccc}
0 & z_{2} & z_{3} \\
z_{1} & 0 & z_{3} \\
z_{2}^{\prime} & z_{3}^{\prime} \\
z_{1}^{\prime} & 0 & z_{3}^{\prime} \\
z_{1}^{\prime \prime} & q(x) y & z_{3}^{\prime \prime}
\end{array}\right|, \quad z_{2}^{\prime \prime} \\
& z_{3}^{\prime \prime}
\end{aligned} \right\rvert\,, \quad\left[\left.\begin{array}{lll}
z_{1} & z_{2} & 0 \\
z_{1}^{\prime} & z_{2}^{\prime} & 0 \\
z_{1}^{\prime \prime} & z_{2}^{\prime \prime} & q(x) y
\end{array} \right\rvert\, .\right.
\end{aligned}
$$

From the Liouville formula [20, p. 349] and (3.2) it follows that determinant D (Wronskian) is equal to one. Hence we obtain

$$
\begin{aligned}
& y(x)=C_{1} z_{1}(x, \lambda)+C_{2} z_{2}(x, \lambda)+C_{3} z_{3}(x, \lambda)+ \\
& +z_{1}(x, \lambda) \int_{0}^{x} q(\xi) y(\xi)\left(z_{2}(\xi, \lambda) z_{3}^{\prime}(\xi, \lambda)-z_{2}^{\prime}(\xi, \lambda) z_{3}(\xi, \lambda)\right) d \xi- \\
& -z_{2}(x, \lambda) \int_{0}^{x} q(\xi) y(\xi)\left(z_{1}(\xi, \lambda) z_{3}^{\prime}(\xi, \lambda)-z_{1}^{\prime}(\xi, \lambda) z_{3}(\xi, \lambda)\right) d \xi+ \\
& +z_{3}(x, \lambda) \int_{0}^{x} q(\xi) y(\xi)\left(z_{1}(\xi, \lambda) z_{2}^{\prime}(\xi, \lambda)-z_{1}^{\prime}(\xi, \lambda) z_{2}(\xi, \lambda)\right) d \xi .
\end{aligned}
$$

(Here C_{1}, C_{2}, C_{3} are already other constants, they are denoted by the previous symbols to avoid an abundance of notation.)

If $x=0$, then from the last equation we obtain $y(0)=C_{1} \cdot 1+0$. Whence we have

$$
\begin{align*}
& y(x)=y(0) z_{1}(x, \lambda)+C_{2} z_{2}(x, \lambda)+C_{3} z_{3}(x, \lambda)+ \\
& +z_{1}(x, \lambda) \int_{0}^{x} q(\xi) y(\xi)\left(z_{2}(\xi, \lambda) z_{3}^{\prime}(\xi, \lambda)-z_{2}^{\prime}(\xi, \lambda) z_{3}(\xi, \lambda)\right) d \xi- \\
& -z_{2}(x, \lambda) \int_{0}^{x} q(\xi) y(\xi)\left(z_{1}(\xi, \lambda) z_{3}^{\prime}(\xi, \lambda)-z_{1}^{\prime}(\xi, \lambda) z_{3}(\xi, \lambda)\right) d \xi+ \tag{3.5}\\
& +z_{3}(x, \lambda) \int_{0}^{x} q(\xi) y(\xi)\left(z_{1}(\xi, \lambda) z_{2}^{\prime}(\xi, \lambda)-z_{1}^{\prime}(\xi, \lambda) z_{2}(\xi, \lambda)\right) d \xi .
\end{align*}
$$

Similarly we obtain

$$
\begin{aligned}
& y^{\prime}(0)=y(0) z_{1}^{\prime}(0, \lambda)+C_{2} z_{2}^{\prime}(0, \lambda)+C_{3} z_{3}^{\prime}(0, \lambda)+ \\
& +z_{1}^{\prime}(0, \lambda) \int_{0}^{0} q(\xi) y(\xi)\left(z_{2}(\xi, \lambda) z_{3}^{\prime}(\xi, \lambda)-z_{2}^{\prime}(\xi, \lambda) z_{3}(\xi, \lambda)\right) d \xi+ \\
& +z_{1}(0, \lambda) q(0) y(0)\left(z_{2}(0, \lambda) z_{3}^{\prime}(0, \lambda)-z_{2}^{\prime}(0, \lambda) z_{3}(0, \lambda)\right)- \\
& -z_{2}^{\prime}(0, \lambda) \int_{0}^{0} q(\xi) y(\xi)\left(z_{1}(\xi, \lambda) z_{3}^{\prime}(\xi, \lambda)-z_{1}^{\prime}(\xi, \lambda) z_{3}(\xi, \lambda)\right) d \xi- \\
& -z_{2}(0, \lambda) q(0) y(0)\left(z_{1}(0, \lambda) z_{3}^{\prime}(0, \lambda)-z_{1}^{\prime}(0, \lambda) z_{3}(0, \lambda)\right) d \xi+ \\
& +z_{3}^{\prime}(0, \lambda) \int_{0}^{0} q(\xi) y(\xi)\left(z_{1}(\xi, \lambda) z_{2}^{\prime}(\xi, \lambda)-z_{1}^{\prime}(\xi, \lambda) z_{2}(\xi, \lambda)\right) d \xi+ \\
& +z_{3}(0, \lambda) q(0) y(0)\left(z_{1}(0, \lambda) z_{2}^{\prime}(0, \lambda)-z_{1}^{\prime}(0, \lambda) z_{2}(0, \lambda)\right) d \xi .
\end{aligned}
$$

From this and (3.1) we have $y^{\prime}(0)=C_{2}$.
By analogy, we also obtain $y^{\prime \prime}(0)=C_{3}$.
Using (3.5) we obtain equation (3.3).

4. Uniqueness Theorems

Characteristic determinants $\Delta_{1}(\lambda), \Delta_{2}(\lambda)$ of problems L_{1} and L_{2} respectively have the form

$$
\begin{aligned}
& \Delta_{1}(\lambda)=\left|\begin{array}{lll}
y_{1}(0) & y_{2}(0) & y_{3}(0) \\
y_{1}^{\prime}(0) & y_{2}^{\prime}(0) & y_{3}^{\prime}(0) \\
y_{1}(1) & y_{2}(1) & y_{3}(1)
\end{array}\right|=\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
y_{1}(1) & y_{2}(1) & y_{3}(1)
\end{array}\right|=y_{3}(1), \\
& \Delta_{2}(\lambda)=\left|\begin{array}{lll}
y_{1}(0) & y_{2}(0) & y_{3}(0) \\
y_{1}^{\prime}(0) & y_{2}^{\prime}(0) & y_{3}^{\prime}(0) \\
y_{1}^{\prime}(1) & y_{2}^{\prime}(1) & y_{3}^{\prime}(1)
\end{array}\right|=\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
y_{1}^{\prime}(1) & y_{2}^{\prime}(1) & y_{3}^{\prime}(1)
\end{array}\right|=y_{3}^{\prime}(1) .
\end{aligned}
$$

Taking into account the lemma, the characteristic determinants $\Delta_{1}(\lambda)$ and $\Delta_{2}(\lambda)$ of problems L_{1} and L_{2} respectively, can be written in the following form

$$
\begin{aligned}
\Delta_{1}(\lambda) & =y_{3}(1, \lambda)= \\
& =\left[z_{3}(x, \lambda)+q_{0} Z_{0}(1, \lambda)+q_{1} Z_{1}(1, \lambda)+\cdots+q_{n-1} Z_{n-1}(1, \lambda)\right]_{x=1} \\
\Delta_{2}(\lambda) & =y_{3}^{\prime}(1, \lambda)= \\
& =\left[z_{3}^{\prime}(x, \lambda)+q_{0} Z_{0}^{\prime}(1, \lambda)+q_{1} Z_{1}^{\prime}(1, \lambda)+\cdots+q_{n-1} Z_{n-1}^{\prime}(1, \lambda)\right]_{x=1}= \\
& =z_{3}^{\prime}(1, \lambda)+q_{0} Q_{0}(1, \lambda)+q_{1} Q_{1}(1, \lambda)+\cdots+q_{n-1} Q_{n-1}(1, \lambda),
\end{aligned}
$$

where

$$
\begin{aligned}
Q_{m}(1, \lambda)= & z_{1}^{\prime}(1, \lambda) \int_{0}^{1} \xi^{m} y_{3}(\xi)\left(z_{2}(\xi, \lambda) z_{3}^{\prime}(\xi, \lambda)-z_{2}^{\prime}(\xi, \lambda) z_{3}(\xi, \lambda)\right) d \xi- \\
& -z_{2}^{\prime}(1, \lambda) \int_{0}^{1} \xi^{m} y_{3}(\xi)\left(z_{1}(\xi, \lambda) z_{3}^{\prime}(\xi, \lambda)-z_{1}^{\prime}(\xi, \lambda) z_{3}(\xi, \lambda)\right) d \xi+ \\
& +z_{3}^{\prime}(1, \lambda) \int_{0}^{1} \xi^{m} y_{3}(\xi)\left(z_{1}(\xi, \lambda) z_{2}^{\prime}(\xi, \lambda)-z_{1}^{\prime}(\xi, \lambda) z_{2}(\xi, \lambda)\right) d \xi+ \\
& +z_{1}(1, \lambda) \xi^{m} y_{3}(\xi)\left(z_{2}(\xi, \lambda) z_{3}^{\prime}(\xi, \lambda)-z_{2}^{\prime}(\xi, \lambda) z_{3}(\xi, \lambda)\right)- \\
& -z_{2}(1, \lambda) \xi^{m} y_{3}(\xi)\left(z_{1}(\xi, \lambda) z_{3}^{\prime}(\xi, \lambda)-z_{1}^{\prime}(\xi, \lambda) z_{3}(\xi, \lambda)\right)+ \\
& +z_{3}(1, \lambda) \xi^{m} y(\xi)\left(z_{1}(\xi, \lambda) z_{2}^{\prime}(\xi, \lambda)-z_{1}^{\prime}(\xi, \lambda) z_{2}(\xi, \lambda)\right), \\
& m=0,1, \ldots, n-1 .
\end{aligned}
$$

Let $\lambda_{i}(i=1,2, \ldots, n)$ be eigenvalues of problem L_{1}. If the system of equations

$$
z_{3}\left(1, \lambda_{i}\right)+q_{0} Z_{0}\left(1, \lambda_{i}\right)+q_{1} Z_{1}\left(1, \lambda_{i}\right)+\cdots+q_{n-1} Z_{n-1}\left(1, \lambda_{i}\right)=0, \quad i=\overline{1, n},
$$

has a unique solution, this means that the polynomial $q(x)$ is uniquely determined. Hence we have proved
Theorem 4.1. If eigenvalues λ_{i} of problem L_{1} are such that the system of equations (4.1) has a unique solution, then the problem of finding the polynomial $q(x)$ has a unique solution.

Similarly, if $\lambda_{i}(i=1,2, \ldots, n)$ are eigenvalues of problem L_{2} and the system of equations

$$
\begin{equation*}
z_{3}^{\prime}\left(1, \lambda_{i}\right)+q_{0} Q_{0}\left(1, \lambda_{i}\right)+q_{1} Q_{1}\left(1, \lambda_{i}\right)+\cdots+q_{n-1} Q_{n-1}\left(1, \lambda_{i}\right)=0, \quad i=\overline{1, n}, \tag{4.2}
\end{equation*}
$$

has a unique solution, then this means that the polynomial $q(x)$ is uniquely determined. Hence we have proved

Theorem 4.2. If the eigenvalues λ_{i} of problem L_{2} are such that the system of equations (4.2) has a unique solution, then the problem of finding the polynomial $q(x)$ has a unique solution.

5. Proof of the Uniqueness of Finding Polynomials. Examples

Are the polynomials obtained in Examples 2.1 and 2.2 the unique solutions? Below it is shown that this is so.
Example 5.1. We substitute the found polynomial $q(x)=1+2 x+3 x^{2}$ from Example 2.1 and the eigenvalues

$$
s_{1}^{3}=4.2852^{3}, \quad s_{2}^{3}=7.8756^{3}, \quad s_{3}^{3}=11.495^{3}
$$

of problem L_{1} in (4.1). As a result, we obtain the system of equations

$$
\begin{aligned}
& 0.0049136 q_{0}+0.0024643 q_{1}+0.0013660 q_{2}-0.013940=0 \\
& -0.002574 q_{0}-0.0012864 q_{1}-0.00080851 q_{2}+0.0075717=0 \\
& 0.0034587 q_{0}+0.0017286 q_{1}+0.0011199 q_{2}-0.010276=0 .
\end{aligned}
$$

This system has the unique solution

$$
q_{0}=1.0000, \quad q_{1}=2.0000, \quad q_{2}=3.0000
$$

Where does it follow that

$$
q(x)=1+2 x+3 x^{2}
$$

is the only polynomial that can be recovered by eigenvalues

$$
s_{1}^{3}=4.2852^{3}, \quad s_{2}^{3}=7.8756^{3}, \quad s_{3}^{3}=11.495^{3}
$$

of problem L_{1}.
Example 5.2. We substitute the found polynomial $q(x)=1+2 x+3 x^{2}$ from Example 2.2 and the eigenvalues

$$
s_{1}^{3}=3.1379^{3}, \quad s_{2}^{3}=6.6739^{3}, \quad s_{3}^{3}=10.288^{3}
$$

of problem L_{2} in (4.2). As a result, we obtain the system of equations

$$
\begin{aligned}
& 0.030569 q_{0}+0.018827 q_{1}+0.012590 q_{2}-0.10599=0 \\
& -0.018296 q_{0}-0.0095634 q_{1}-0.0063691 q_{2}+0.056530=0 \\
& 0.030341 q_{0}+0.015451 q_{1}+0.010294 q_{2}-0.092126=0
\end{aligned}
$$

This system has the unique solution

$$
q_{0}=1.0000, \quad q_{1}=2.0000, \quad q_{2}=3.0000 .
$$

Where does it follow that

$$
q(x)=1+2 x+3 x^{2}
$$

is the unique polynomial that can be recovered by eigenvalues

$$
s_{1}^{3}=3.1379^{3}, \quad s_{2}^{3}=6.6739^{3}, \quad s_{3}^{3}=10.288^{3}
$$

of problem L_{2}.
Example 5.3. We substitute the found polynomial $q(x)=1+x+x^{2}+x^{3}$ from Example 2.3 and the eigenvalues

$$
s_{1}^{3}=4.2690^{3}, \quad s_{2}^{3}=7.8708^{3}, \quad s_{3}^{3}=11.493^{3}, \quad s_{4}^{3}=15.118^{3}
$$

of problem L_{1} in (4.1). As a result, we obtain the system of equations

$$
\begin{aligned}
& 0.0049375 q_{0}+0.0024741 q_{1}+0.0013709 q_{2}+0.00081836 q_{3}-0.0096009=0 \\
& -0.0025713 q_{0}-0.0012854 q_{1}-0.00080804 q_{2}-0.00056948 q_{3}+0.0052341=0, \\
& 0.0034560 q_{0}+0.0017275 q_{1}+0.0011194 q_{2}+0.00081544 q_{3}-0.0071183=0 \\
& -0.0070691 q_{0}-0.0035337 q_{1}-0.0023167 q_{2}-0.0017084 q_{3}+0.014628=0
\end{aligned}
$$

This system has the unique solution

$$
q_{0}=1.0000, \quad q_{1}=1.0000, \quad q_{2}=1.0000, \quad q_{3}=1.0000
$$

Where does it follow that

$$
q(x)=1+x+x^{2}+x^{3}
$$

is the only polynomial that can be recovered by eigenvalues

$$
s_{1}^{3}=4.2690^{3}, \quad s_{2}^{3}=7.8708^{3}, \quad s_{3}^{3}=11.493^{3}, \quad s_{4}^{3}=15.118^{3}
$$

of problem L_{1}.

6. About the Methods Used in the Work

The method of finding the eigenvalues by means of an expansion in a power series was also applied in the book [11, p. 25.6], but the eigenvalues were not by breaking the series and solving the corresponding algebraic equation, but by obtaining recurrence formulas.

A method based on the method of variation of an arbitrary constant and used by us to prove the uniqueness of the found polynomial potential was used earlier (see, for example, [23, chapter II, p. 4.3]) for another purpose as obtaining asymptotic relations of a fundamental system of solutions for large $|\lambda|$.

In solving the direct and inverse problems in the package of analytical computations, the first 200 terms of the series were used as the main part of the expansion series of the Taylor series in x and λ, and 50 significant digits were used in the calculations. Numerical experiments show that quite satisfactory results are obtained when using the first 60 terms of the series and 15 significant figures in the calculations. This is due to the fact that the linearly independent solutions of the equation and the characteristic determinant turn out to be alternating series and, therefore, according to the Leibnitz test, the remainder of the series can be estimated by its first term, which turns out to be a very small quantity. Therefore, the errors in the calculation of the eigenvalues are small.

References

[1] A. M. Akhtyamov, Is it possible to determine the type of fastening of a vibrating plate from its sounding?, Acoust. Phys. 49 (2003), no. 3, 269-275.
[2] A. M. Akhtyamov and I. M. Utyashev, Identification of boundary conditions at both ends of a string from the natural vibration frequencies, Acoust. Phys. 61 (2015), no. 6, 615-622.
[3] A. M. Akhtyamov and I. M. Utyashev, Restoration of the linear potential in the Sturm-Liouville problem, Proc. Mavlyutov Inst. Mech. 12 (2017), no. 2, 152-156 (in Russian).
[4] A. R. Aliev, Solubility of boundary-value problems for a class of third-order operator-differential equations in a weighted space, Russ. Math. Surv. 60 (2005), no. 4, 791-793.
[5] A. R. Aliev, On the boundary value problem for a class of operator-differential equations of odd order with variable coefficients, Dokl. Math. 78 (2008), no. 1, 497-499.
[6] A. R. Aliev, On the solvability of initial boundary-value problems for a class of operator-differential equations of third order, Math. Notes 90 (2011), no. 3-4, 307321.
[7] A. R. Aliev and S. F. Babayeva, On the boundary value problem with the operator in boundary conditions for the operator-differential equation of the third order, J. Math. Phys. Anal. Geom. 6 (2010), no. 4, 347-361.
[8] A. R. Aliev and N. L. Muradova, Third-order operator-differential equations with discontinuous coefficients and operators in the boundary conditions, Electron. J. Differential Equations 2013 (2013), no. 219, 1-13.
[9] V. Ambarzumian, Über eine Frage der Eigenwerttheorie, Z. Physik 53 (1929), no. 9-10, 690-695 (in German).
[10] G. Borg, Eine umkehrung der Sturm-Liouvilleschen eigenwertaufgabe. Bestimmung der differentialgleichung durch die eigenwerte, Acta Math. 78 (1946), no. 1, 1-96 (in German).
[11] L. Collatz, Eigenwertaufgaben mit technischen anwendungen, Geest \& Portig K.G., Leipzig, 1949, 1963 (in German).
[12] M. G. Gasymov, I. M. Guseinov and I. M. Nabiev, An inverse problem for the Sturm-Liouville operator with nonseparable selfadjoint boundary conditions, Siberian Math. J. 31 (1990), no. 6, 910-918.
[13] I. M. Guseinov and I. M. Nabiev, The inverse spectral problem for pencils of differential operators, $S b$. Math. 198 (2007), no. 11, 1579-1598.
[14] T. Sh. Kal'menov and D. Suragan, Determination of the structure of the spectrum of regular boundary value problems for differential equations by V. A. Il'in's method of anti-a priori estimates, Dokl. Akad. Nauk 423 (2008), no. 6, $730-732$ (in Russian).
[15] E. L. Korotyaev and D. S. Chelkak, The inverse Sturm-Liouville problem with mixed boundary conditions, St. Petersburg Math. J. 21 (2010), no. 5, 761-778.
[16] N. Levinson, The inverse Sturm-Liouville problem, Mat. Tidsskr. B 1949 (1949), 25-30.
[17] B. M. Levitan, Determination of a Sturm-Liouville differential equation in terms of two spectra, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 63-78 (in Russian).
[18] B. M. Levitan, Inverse Sturm-Liouville problems, VNU Sci. Press, Utrecht, 1987.
[19] B. M. Levitan and M. G. Gasymov, Determination of a differential equation by two of its spectra, Russ. Math. Surv. 19 (1964), no. 2, 1-63.
[20] J. Liouville, Note sur la théorie de la variation des constantes arbitraires, Journal de Mathématiques Pures et Appliquées 3 (1838), no. 1, 342-349 (in French).
[21] Kh. R. Mamedov and F. A. Cetinkaya, Inverse problem for a class of SturmLiouville operator with spectral parameter in boundary condition, Bound. Value Probl. 2013 (2013), no. 183, 1-16.
[22] V. A. Marchenko, Sturm-Liouville operators and their applications, Birkhäuser Verlag, Basel, 1986.
[23] M. A. Naimark, Linear differential operators, Part I, II, Frederick Ungar, New York, 1967, 1968.
[24] E. S. Panakhov, H. Koyunbakan and U. Ic, Reconstruction formula for the potential function of Sturm-Liouville problem with eigenparameter boundary condition, Inverse Probl. Sci. Eng. 18 (2010), no. 1, 173-180.
[25] O. A. Plaksina, Inverse problems of spectral analysis for the Sturm-Liouville operators with nonseparated boundary conditions, Math. USSR-Sb. 59 (1988), no. 1, 1-23.
[26] O. A. Plaksina, Inverse problems of spectral analysis for Sturm-Liouville operators with nonseparated boundary conditions. II, Math. USSR-Sb. 64 (1989), no. 1, 141160.
[27] V. A. Sadovnichii, Uniqueness of the solution of the inverse problem in the case of a second order equation with indecomposable boundary conditions. Regularized
sums of part of eigenvalues. Factorization of the characteristic determinant, Dokl. Akad. Nauk SSSR 206 (1972), no. 2, 293-296 (in Russian).
[28] V. A. Sadovnichii and B. E. Kanguzhin, On the relation between the spectrum of a differential operator with symmetric coefficients and boundary conditions, Dokl. Akad. Nauk SSSR 267, (1982), no. 2, 310-313 (in Russian).
[29] M. A. Sadybekov and N.S. Imanbaev, A regular differential operator with perturbed boundary condition, Math. Notes 101 (2017), no. 5, 878-887.
[30] A. M. Savchuk and A. A. Shkalikov, Inverse problems for Sturm-Liouville operators with potentials in Sobolev spaces: uniform stability, Funct. Anal. Appl. 44 (2010), no. 4, 270-285.
[31] V. A. Yurko, Uniqueness of a reconstruction of binomial differential operators from two spectra, Math. Notes 43 (1988), no. 3, 205-210.
[32] V. A. Yurko, Introduction to the theory of inverse spectral problems, Fizmatlit, Moscow, 2007 (in Russian).
A. M. Akhtyamov

Mavlyutov Institute of Mechanics, Ufa Branch, Russian Academy of Sciences, Ufa, 450054, Russia

E-mail address: akhtyamovam@mail.ru
A. R. Aliev

Azerbaijan State Oil and Industry University, Baku, AZ 1010, Azerbaijan; Institute of Mathematics and Mechanics, Ministry of Science and Education of the Republic of Azerbaijan, Baku, AZ 1141, Azerbaijan

E-mail address: alievaraz@yahoo.com, alievaraz@asoiu.edu.az
A. L. Elbably

Helwan University, Ain Helwan, Cairo, 11795, Egypt
E-mail address: ahmed_elbably2004@yahoo.com
N. L. Muradova

Nakhchivan Teachers' Institute, Ministry of Science and Education of the Republic of Azerbaijan, Nakhchivan, Azerbaijan

E-mail address: nazilamuradova@gmail.com
Received: July 21, 2023; Revised: November 2, 2023; Accepted: November 20, 2023

[^0]: 2010 Mathematics Subject Classification. 34A55, 34B05.
 Key words and phrases. differential equation of the third order, inverse eigenvalue problem, restoration of polynomial coefficient.

