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A STUDY OF ONE APPROACH TO SOLUTION OF THE

FIRST-ORDER NON-LINEAR IMPULSIVE DIFFERENTIAL

EQUATIONS WITH MULTIPOINT BOUNDARY CONDITIONS

MISIR J. MARDANOV AND YAGUB A. SHARIFOV

Abstract. In this paper the existence and uniqueness of solution for a
nonlinear first order ordinary differential system with multipoint bound-
ary conditions and impulse are given. The proof is obtained by defining
a suitable Green function, which converts the differential problem into
an equivalent integral equation so that the existence and uniqueness
can be easily studied on this equivalent problem by using the Banach
contraction principle. Existence results are shown by Schaefer’s and
Krasnoselskii’s fixed point theorems. An example is provided to see the
applicability of the obtained results.

1. Introduction and Problem Statement

Many problems in modern science, in technology and in economics are de-
scribed by some differential equations, with a first kind discontinuous solution at
a fixed value of the independent variable. Such differential equations are called
differential equations with impulse effects [8, 9, 15, 18, 31]. We will study the ex-
istence and uniqueness of impulsive equations coupled with multipoint boundary
conditions. Multipoint boundary value problems with impulse arise in many nat-
ural science disciplines such as physics, mathematics, and biology. For example,
the mathematical model of a dynamical system with n degrees of freedom, with
n states observed at n different instants of time leads to a multipoint boundary
value problem.

Multipoint boundary value problems for ODEs and their systems have been
intensively explored in the last few years and still are very attractive because of
their importance in the solution of concrete real problems. This is related with
their strong relation with a myriad of applications in various fields of physics and
mathematics [11, 10]. It is epitomized the fact that the vibrations of a uniform
cross-section string composed by N parts of different densities appear in the
theory of elastic stability [32]. It is noteworthy that these problems are modelled
by the multipoint boundary value problems in mathematical formulations. One
of the essential point is that multipoint boundary value problems also arise when
discretizing some boundary value problems for partial differential equations.
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Up-to-date, the multipoint boundary value problems for second-order differen-
tial equations have been mainly investigated (see [4, 12, 13, 19, 26] and references
therein). The initial study of multipoint boundary value problems for linear sec-
ond order ordinary differential equations was started by Il’in and Moiseev [16].
Since then nonlinear multipoint boundary value problems have been analyzed by
several authors using the Leray-Schauder Continuation Theorem, nonlinear alter-
natives of Leray-Schauder coincidence degree theory and fixed point theorem in
cones. However, differential equations of the first order haven’t been sufficiently
studied. Examples of such works can be found in [1, 3, 20, 21, 25, 27, 28, 29, 33,
34]. Similar problems restricted to only two-point and integral boundary value
problems are considered in [2, 5, 6, 7, 12, 14, 22, 23, 24, 30].

In this paper, we study the existence and uniqueness of the solution of the
following nonlinear differential system

ẋ = f(t, x), t ∈ [0, T ], t ̸= η ∈ (0, T ), x ∈ Rn, (1.1)

with multipoint boundary conditions

m∑
i=0

lix (ti) = α, (1.2)

and the impulsive condition

∆x (η) = J (x (η)) , (1.3)

where li, i = 1, 2, ...,m are constant square matrices of order n such that detN ̸=
0, N =

m∑
i=0

li; η is a some known fixed point; f : [0, T ] × Rn → Rn and J :

Rn → Rn are given functions; points ti, i = 1, 2, ...,m satisfies the condition
0 = t0 < t1 < ... < tm = T and η ∈ (tk, tk+1),

∆x (η) = x
(
η+
)
− x

(
η−
)
,

where

x
(
η+
)
= limx (η + h)

h→+0

, x
(
η−
)
= limx (η − h) = x (η)

h→+0

,

are the right- and left-hand limits of x (t) at t = η , respectively.
In order to show the existence and uniqueness, a suitable Green function is con-

structed for the multipoint boundary value problem and the considered problem
is reduced to an equivalent integral equations. Then the existence and unique-
ness of the solutions are studied using the Banach contraction principle. The
existence of the solution is also proved by applying Schaefer’s and Krasnoselskii’s
fixed point theorems. The Banach contraction principle, Schaefer’s and Kras-
noselskii’s fixed point theorem are particularly useful for proving the existence
and uniqueness results.

The organization of the paper is as follows. In Section 2, we introduce some
definitions and lemmas which are the key tools for our main task. Section 3
is devoted to the theorems on the existence and uniqueness of the solution of
problem (1.1)-(1.3) established under some sufficient conditions on the nonlinear
terms. An example is included.
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2. Preliminaries

We denote by C ([0, T ] ;Rn) the Banach space of all continuous functions from
[0, T ] into Rn. We consider the linear space

PC ([0, T ] ;Rn) = {x : [0, T ] → Rn; x (t) ∈ C ([0, η] , Rn) ∪ C ((η, T ], Rn]) ,

x
(
η−
)
andx

(
η+
)
exist andx

(
η−
)
= x (η)}.

PC ([0, T ] ;Rn) is a Banach space with the norm

∥x∥PC = max{∥x∥C([0,η],Rn) , ∥x∥C((η,T ],Rn)}.

We define the solution of problem (1.1)-(1.3) as follows:

Definition 2.1. A function x ∈ PC ([0, T ] ;Rn) is said to be a solution of prob-
lem (1.1)-(1.3) if ẋ = f(t, x) for each t ∈ [0, T ], and boundary conditions (1.2)
and (1.3) are satisfied.

For simplicity, let us first consider the following problem:

ẋ(t) = y(t), t ∈ [0, T ], (2.1a)

m∑
i=0

lix (ti) = α, (2.1b)

∆x (η) = J (x (η)) , (2.1c)

where y(t) is continuous function.

Lemma 2.1. Let y ∈ C ([0, T ] ;Rn) . Then the unique solution of the boundary
value problem for differential equation (2.1a) with impulsive boundary conditions
(2.1b), (2.1c) is given by

x(t) = N−1α+

∫ T

0
G(t, τ)y(τ)dτ + g (t, η) a, (2.1)

where

G (t, τ) =


G1 (t, τ) , t ∈ [0, t1] ,
G2 (t, τ) , t ∈ (t1, t2] ,

...................
Gm (t, τ) , t ∈ (tm−1, T ] ,

g (t, η) =


−N−1

m∑
i=k;t<η

li,

N−1
k+1∑

i=1;t≥η
li,
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with

Gi (t, τ) =



N−1l0, t0 ≤ τ ≤ t1,

N−1

(
1∑

k=0

lk

)
, t1 < τ ≤ t2,

.........................

N−1

(
i−1∑
k=0

lk

)
, ti−1 < τ ≤ ti,

N−1

(
i∑

k=0

lk

)
, ti < τ ≤ t,

−N−1

(
m∑

k=i+1

li

)
, t < τ ≤ ti+1,

−N−1

(
m∑

k=i+2

li

)
, ti+1 < τ ≤ ti+2,

..........................................
−N−1lm, tm < τ ≤ T,

where i = 1, 2, ...,m.

Proof. If the function x = x(·) is a solution of the differential equation (2.1a)
with impulsive boundary conditions (2.1c) then for any t ∈ (0, T ), it is

x(t) = x0 + χ (t− η) a+

∫ t

0
y(τ)dτ, (2.2)

where x0 is a constant vector and χ (t− η) =

{
0, if t < η,
1, if t ≥ η .

Then, in order to fulfill the multipoint boundary conditions (2.1b), we have

m∑
i=0

li[x0 + χ (ti − η) a+

∫ ti

0
y (s) ds] = α.

So that the constant vector x0 must be equal to

x0 = N−1α−N−1

[
m∑
i=1

liχ (ti − η) a+
m∑
i=1

li

∫ ti

0
y (s) ds

]
. (2.3)

From Eq. (2.2) if we take into account this value of x0 we get

x (t) = N−1α−N−1

[
m∑
i=1

liχ (ti − η) a+

m∑
i=1

li

∫ ti

0
y (s) ds

]
+

+χ (t− η) a+

∫ t

0
y (s) ds. (2.4)

Now suppose that t ∈ [0, t1]. Then we can write the equality (2.4) as follows:

x(t) = N−1α−N−1

(
l1

∫ t

0
y(τ)dτ + l1

∫ t1

t
y(τ)dτ

)
−

−N−1

(
l2

∫ t

0
µ(τ)dτ + l2

∫ t1

t
y(τ)dτ

)
−N−1l2

∫ t2

t1

y (τ) dτ −N−1×
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l3

∫ t

0
y (τ) dτ + l3

∫ t1

t
y (τ) dτ

)
−N−1l3

(
2∑

i=1

∫ ti+1

t
y (τ) dτ

)
− ...−

−N−1

(
lm

∫ t

0
y (τ) dτ + lm

∫ t1

t
y (τ) dτ

)
−N−1lm

(
m∑
i=1

∫ ti+1

ti

y (τ) dτ

)
−

−N−1
m∑
i=1

liχ (ti − η) a+ χ (t− η) a+

∫ t

0
y (τ) dτ .

This equality can be rewritten in the following equivalent form:

x(t) = N−1α+

∫ t

0

(
E −N−1

m∑
i=1

li

)
y(τ)dτ −N−1

∫ t1

t

(
m∑
i=1

li

)
y(τ)dτ−

−N−1

(
m∑
i=2

li

)∫ t2

t1

y (τ) dτ −N−1

(
m∑
i=3

li

)∫ t3

t2

y (τ) dτ − ...−

−N−1lm

∫ T

tm−1

y (τ) dτ + g (t, η) a, (2.5)

where E is an identity matrix.
Since the equality (

E −N−1
m∑
i=1

li

)
= N−1l0

holds true, we can introduce the following functions:

G1 (t, τ) =



N−1l0, t0 ≤ τ ≤ t,

−N−1

(
m∑
i=1

li

)
, t < τ ≤ t1,

−N−1

(
m∑
i=2

li

)
, t1 < τ ≤ t2,

−N−1

(
m∑
i=3

li

)
, t2 < τ ≤ t3,

..........................................
−N−1lm, tm−1 < τ ≤ T,

and

g (t, η) =


−N−1

m∑
i=k;t<η

li,

N−1
k+1∑

i=1;t≥η
li.

By using this function, Eq. (2.5) can be written as the integral equation

x(t) = N−1α+

∫ T

0
G1(t, τ)y(τ)dτ + g (t, η) a, t ∈ [0, t1] .

Now, let us assume t ∈ (tk, tk+1]. Then we can write Eq. (2.4) as

x(t) = N−1α−N−1

(
m∑
i=1

li

)∫ t1

0
y(t)dt−N−1

(
m∑
i=2

li

)∫ t2

t1

y(τ)dτ − ...−
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−N−1

(
m∑

i=k+1

li

)(∫ t

tk

y (τ) dτ +

∫ tk+1

t
y (τ) dτ

)
− ...−N−1lm

∫ T

tm−1

y (τ) dτ+

−N−1
m∑
i=1

liχ (ti − η) a+ χ (t− η) a+
k∑

i=1

∫ ti

ti−1

y (t) dt+

∫ t

tk

y (τ) dτ.

From here we obtain

x(t) = N−1α+N−1l0

∫ t1

0
y(t)dt+N−1

(
1∑

i=0

li

)(∫ t2

t1

y(τ)dτ

)
− ...−

−...−N−1

(
k−1∑
i=0

li

)∫ tk

tk−1

y (τ) dτ +N−1

(
k∑

i=0

li

)∫ t

tk

y (τ) dτ−

−N−1

(
m∑

i=k+1

li

)∫ tk+1

t
y (τ) dτ − ...−N−1lm

∫ T

tm−1

y (τ) dτ−

−N−1
m∑

i=k+1

lia+ χ (t− η) a+
k∑

i=1

∫ ti

i−1
y (t) dt+

∫ t

tk

y(τ)dτ.

Let’s iterate again to define a new function as follows:

Gk (t, τ) =



N−1l0, t0 ≤ τ ≤ t1,

N−1

(
1∑

i=0
li

)
, t1 < τ ≤ t2,

.........................

N−1

(
k−1∑
i=0

li

)
, tk−1 < τ ≤ tk,

N−1

(
k∑

i=0
li

)
, tk < τ ≤ t,

−N−1

(
m∑

i=k+1

lk

)
, t < τ ≤ tk+1,

−N−1

(
m∑

i=k+2

li

)
, tk+1 < τ ≤ tk+2,

..........................................
−N−1lm, tm−1 < τ ≤ T,

and

g (t, η) =


−N−1

m∑
i=k;t<η

li,

N−1
k+1∑

i=0;η≤t
li.

Thus, we have obtained that if t ∈ (tk, tk+1], then the solution of the boundary
value problem can be written in the form

x(t) = N−1α+

∫ T

0
Gk(t, τ)y(τ)dτ + g (t, η) a, t ∈ (tk, tk+1] .
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Similarly for every segment t ∈ (ti, ti+1], we get

Gi (t, τ) =



N−1l0, t0 ≤ τ ≤ t1,

N−1

(
1∑

i=0
li

)
, t1 < τ ≤ t2,

.........................

N−1

(
i−1∑
k=0

lk

)
, ti−1 < τ ≤ ti,

N−1

(
i∑

k=0

lk

)
, ti < τ ≤ t,

−N−1

(
m∑

k=i+1

li

)
, t < τ ≤ ti+1,

−N−1

(
m∑

k=i+2

li

)
, ti+1 < τ ≤ ti+2,

..........................................
−N−1lm, tm−1 < τ ≤ T.

So that the solution of the impulsive boundary value problem (2.1a)-(2.1c) can
be written as

x(t) = N−1α+

∫ T

0
G(t, τ)y(τ)dτ + g (t, η) a.

The proof is completed. □

This first result, which was obtained for the simple given vector y(t), shows that
the problem (2.1a)-(2.1c) is equivalent to an impulsive integral equation. This
holds true also for the more general case (1.1)-(1.3) according to the following
lemma.

Lemma 2.2. Assume thatf ∈ C ([0, T ]×Rn;Rn) and J ∈ C (Rn;Rn). Then
the function x (t) is a solution of boundary value problem (1.1)-(1.3) if and only
if x (t) is a solution of the impulsive integral equation

x(t) = N−1α+

∫ T

0
G(t, τ)f (τ, x (τ)) dτ + g (t, η) J (x (η)) . (2.6)

Proof. Clearly, this lemma can be derived by a similar argument used for the proof
of Lemma 2.1. By direct verification, we can show that the solution of impulsive
integral equation (2.6) satisfies the boundary value problem (1.1) - (1.3). Lemma
2.2 is proved. □

For our purposes, we will use the following classical theorem:

Theorem 2.1. [17]. Let M be a bounded, closed, convex, and nonempty subset
of a Banach space X. Let A1 and A2 be two operators such that

(i) A1x+A2y ∈ M whenever x, y ∈ M
(ii) A1 is compact and continuous
(iii) A2 is a contraction mapping
Then, there exists z ∈ M such that z = A1z +A2z

Proof: Is given in [17].
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3. Main Results

In this section we will give the main theorems both of uniqueness and existence
for the problem (1.1)-(1.3) by working on the equivalent integral equation (2.6).
Thus we have,

Theorem 3.1. [Uniqueness] Let us assume that
(H1) The function f : [0, T ]×Rn → Rn is continuous;
(H2) There exist three constants M, m, m1 such that

|f (t, x)− f (t, y)| ≤ M |x− y| ,

|J (x)− J (y)| ≤ m |x− y| ,
|J (x)| ≤ m1,

for each t ∈ [0, T ] and all x, y ∈ Rn;
(H3) There exists a constant K ≥ 0 such that |f (t, x)| ≤ K for each t ∈ [0, T ]

and all x ∈ Rn and
L = TSM + gm < 1, (3.1)

where
S = max

[0,T ]×[0,T ]
∥G (t, τ)∥ , g = max

[0,T ]
∥g (t, η)∥ .

Then the boundary value problem (1.1)-(1.3) has a unique solution on [0, T ].

Proof. To achieve this task, let us transform the boundary value problem (1.1)-
(1.3) into a fixed point problem. Consider the operator F : PC ([0, T ] ;Rn) →
PC ([0, T ] ;Rn) defined by

(Fx) (t) = N−1α+

∫ T

0
G(t, τ)f (τ, x (τ)) dτ.+ g (t, η) J (x (η)) . (3.2)

Evidently, the fixed points of the operator F are solutions of the boundary prob-
lem (1.1)-(1.3).

Setting max[0,T ] |f(t, 0)| = Mf and let us select r ≥ ∥N−1α∥+MfTS+gm1

1−L . We
show that FBr ⊂ Br where

Br = {x ∈ PC([0, T ]Rn) : ∥x∥ ≤ r} .
For x ∈ Br, using (H1) and (H2), we get

∥Fx(t)∥ ≤
∥∥N−1α

∥∥+ ∫ T

0
|G(t, τ)| (|f(τ, x(τ))− f(τ, 0)|+ |f(τ, 0)|) dτ+

+ |g (t, η)| (|(J (x (η))− J (0))|+ |J (0)|) ≤

≤
∥∥N−1d

∥∥+ S

∫ T

0
(M |x|+Mf ) dt+ g (m |x (η)|+m1) ≤

≤
∥∥N−1d

∥∥+ SMrT +MfTS + gmr + gm1 ≤
∥∥N−1α

∥∥+MfTS + gm1

1− L
≤ r.

In order to show that the operator F is a contraction, for any x, y ∈ Brwe have

|Fx− Fy| ≤

≤
∫ T

0
|G(t, τ) (f(τ, x(τ))− f(τ, y(τ))| dτ + |g (t, η)| |J (x (η)− J (y (η)))| ≤
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≤ MS

∫ T

0
|x (t)− y (t)| dt+ gm |x (η)− y (η)| ≤

≤ (MTS + gm)max
[0,T ]

|x(t)− y(t)| ≤ (MTS + gm) ∥x− y∥

or
∥Fx− Fy∥ ≤ L ∥x− y∥ .

Thus we have that F is contraction by condition (2.6). So that, the boundary
value problem (1.1)-(1.3) has a unique solution, and the proof is completed. □

Our second result is based on the Schaefer’s fixed point theorem.

Theorem 3.2 (Existence). Let us assume that the conditions (H1)-(H3) hold
true. Then there exists at least one solution in [0, T ] for the boundary value
problem (1.1)-(1.3).

Proof. Let F be the operator defined in (3.1). We shall use the Schaefer’s fixed
point theorem to prove that F has a fixed point. The proof of this theorem is
based on the following four steps.

Step 1: Let us show that the operator F is continuous. Let {xn} be a sequence
such that xn → x in PC ([0, T ] ;Rn). Then, for each t ∈ [0, T ]

|(Fx) (t)− (Fxn) (t)| =

=

∣∣∣∣∫ T

0
G (t, τ) (f (τ, x (τ))− f (τ, xn (τ))) dτ + g (t, η) (J (x (η))− J (xn (η)))

∣∣∣∣ ≤
≤ (TSM + gm) |x (t)− xn (t)| ≤ L ∥x− xn∥ .

From here we get ∥(Fx) (t)− (Fxn) (t)∥ → 0 as n → ∞, which implies that the
operator F is continuous.

Step 2: Let us show that F maps bounded sets into bounded sets in PC ([0, T ] ;Rn).
Indeed, it is enough to show that for any η > 0 there exists a positive constant
ω such that for each x ∈ Bη = {x ∈ C ([0, T ] ;Rn) : ∥x∥ ≤ η} it is ∥F (x)∥ ≤ ω.
Thus we have for each t ∈ [0, T ]

|(Fx) (t)| ≤
∥∥N−1α

∥∥+ TSM + gm.

This implies that

∥F (x)∥ ≤
∥∥N−1α

∥∥+ TSK + gm = ω,

Step 3: F maps bounded sets into equicontinuous sets of PC ([0, T ] ;Rn). Let
ξ1, ξ2 ∈ [0, T ] , ξ1 < ξ2, and ξ1, ξ2 < η or ξ1, ξ2 > η. Br be a bounded set of
PC ([0, T ] ;Rn) as in Step 2, and let x ∈ Br .

Case 1. ξ1, ξ2 ∈ [ti, ti+1] . Then,

F (x (ξ2))− F (x (ξ1)) =

∫ ξ2

ti

N−1

(
i∑

k=0

li

)
f (τ, x (τ)) dτ−

−
∫ ti+1

ξ2

N−1

(
m∑

k=i+1

li

)
f (τ, x (τ)) dτ−

−
∫ ξ\1

ti

N−1

(
i∑

k=0

li

)
f (τ, x (τ)) dτ +

∫ ti+1

ξ1

N−1

(
m∑

k=i+1

li

)
f (τ, x (τ)) dτ =
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=

∫ ξ2

ξ1

N−1

(
i∑

k=0

li

)
f (τ, x (τ)) dτ +

∫ ξ2

ξ1

N−1

(
m∑

k=i+1

li

)
f (τ, x (τ)) dτ =

=

∫ ξ2

ξ1

f (τ, x (τ)) dτ.

Case 2. ξ1 ∈ [ti−1, ti) , ξ2 ∈ [ti, ti+1] . Then

P (x (ξ2))− P (x (ξ1)) =

∫ ti

ti−1

N−1

(
i−1∑
k=0

li

)
f (τ, x (τ)) dτ+

+

∫ ξ2

ti

N−1

(
i∑

k=0

li

)
f (τ, x (τ)) dτ −

∫ ti+1

ξ2

N−1

(
m∑

k=i+1

li

)
f (τ, x (τ)) dτ−

−
∫ ξ\1

ti−1

N−1

(
i−1∑
k=0

li

)
f (τ, x (τ)) dτ +

∫ ti

ξ1

N−1

(
m∑
k=i

li

)
f (τ, x (τ)) dτ+

+

∫ ti+1

ti

N−1

(
m∑

k=i+1

li

)
f (τ, x (τ)) dτ =

=

∫ ti

ξ1

f (τ, x (τ)) dτ +

∫ ξ2

ti

f (τ, x (τ)) dτ =

∫ ξ2

ξ1

f (τ, x (τ)) dτ.

As t2 → t1, the right-hand side of the above equalities tends to zero. As a
consequence of Steps 1 to 3 together with the Ascoli-Arzela theorem, we can
conclude that F : PC ([0, T ] ;Rn) → PC ([0, T ] ;Rn) is completely continuous.

Step 4: Existence of a-priori bounds. Now, it remains to show that the set
∆ = {x ∈ PC ([0, T ] ;Rn) : x = λF (x) for some 0 < λ < 1} is bounded. Let
x ∈ ∆ . Then,x = λF (x) for some 0 < λ < 1. Thus, for each t ∈ [0, T ] we have

x(t) = λN−1α+ λ

∫ T

0
G(t, τ)f(τ, x(τ))dτ + λg (t, η) J (x (η)) .

From here

∥x∥ ≤
∥∥N−1α

∥∥+ SKT + gm.

For that reason the set ∆ is bounded. The conclusion of Schaefer’s fixed point
theorem applies and the operator F has at least one fixed point. Thus there
exists at least one solution for the problems (1.1)-(1.3) on [0, T ]. □

Our next result is based on the Krasnoselskii’s fixed point theorem and yields
an important result.

Theorem 3.3. Suppose |f (t, x)| ≤ µ (t) for (t, x) ∈ [0, T ]×Rn, µ ∈ C ([0, T ] ;R+).
Furthermore, the conditions (H1), (H2) hold and

mg < 1. (3.3)

Then boundary value problem (1.1)-(1.3) has at least one solution on [0, T ].
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Proof. Setting max
t∈[0,T ]

|µ (t)| = ∥µ∥ and choosing

ρ ≥ ∥µ∥ST + gm1 +
∥∥N−1α

∥∥
and we consider Bρ = {x ∈ PC ([0, T ] ;Rn) : ∥x∥ ≤ ρ}. The operators A1 and
A2 on Bρ are defined as follows

(A1x) (t) =

∫ T

0
G (t, τ) f (τ, x (τ)) dτ,

(A2x) (t) = g (t, η) J (x (η)) +N−1α.

For any x, y ∈ Bρ, we have

|(A1x) (t) + (A2y) (t)| ≤
∥∥N−1α

∥∥+
+ max

t∈[0,T ]

{∫ T

0
|G (t, τ) f (τ, x (τ))| dτ + |g (t, η) J (x (η))|

}
≤

≤ ∥µ∥ST + gm1 +
∥∥N−1α

∥∥ ≤ ρ.

Thus A1x + A2y ∈ Bρ. The condition (3.2) implies that the operator A2 is a
contraction mapping. Additionally, continuity of f implies that the operator
A1is continuous. Also, the operator A1 is uniformly bounded on Bρ where

∥A1x∥ ≤ ∥µ∥ST ≤ ρ.

Set max
[0,T ]×Bρ

|f (t, x)| = f. Consequently we have (see Theorem 3.2, step 3)

|(A1x) (t2)− (A1x) (t1)| ≤ Sf̄ |t2 − t1| ,
which tends to zero as t2− t1 → 0. Hence, the operator A1 is equicontinuous. So,
the operator A1 is relatively compact on Bρ. Then, by Arzela-Ascoli’s theorem,
the operator A1 is compact on Bρ. From here we obtain that the boundary value
problem (1.1)-(1.3) has at least one solution on [0, T ] . □

4. Example

Consider the following system of differential equation{
ẋ1 (t) = cosαx2 (t) , t ∈ [0, 1] ,

ẋ2 (t) = sinβx2 (t) , t ∈ [0, 1] , t ̸= 0.25
(A)

subject to {
x1 (0) + x2 (0)− x2 (0.5) = 1,
−x1 (0.5) + x1 (1) + x2 (1) = 0,

(B)

with impulsive condition

∆x2 (0.25) =
γ |x1 (0.25)|

(1 + |x1 (0.25)|)
. (C)

Evidently,

l0 =

(
1 1
0 0

)
, l1 =

(
0 −1
−1 0

)
, l2 =

(
0 0
1 1

)
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and

N = l0 + l1 + l2 =

(
1 0
0 1

)
.

Obviously, for t ∈ [0, 0.5] we obtain

G1 (t, τ) =



(
1 1
0 0

)
, 0 ≤ τ ≤ t,(

0 1
0 −1

)
, t < τ ≤ 0.5,(

0 0
−1 −1

)
, 0.5 < τ ≤ 1,

and for t ∈ (0.5, 1]

G2 (t, τ) =



(
1 1
0 0

)
, 0 ≤ τ ≤ 0.5,(

1 0
−1 0

)
, 0.5 < τ ≤ t,(

0 0
−1 −1

)
, t < τ ≤ 1.

From here we obtain

T = 1, S ≤ 2, M = max {|α| , |β|} , g ≤ 1, m = |γ| .

If L = TSM + gm = 2max {|α| , |β|}+ |γ| < 1, then boundary value problem has
unique solution on [0, 1].

5. Conclusion

The method considered in this paper are general enough and can be used exten-
sively in a wide class of problems. In this article, the existence and uniqueness of
the solutions for the first-order nonlinear differential equations with multi-point
and impulse conditions are established under sufficient conditions.
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