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BALAYAGE THEOREMS FOR CONNECTEDNESS PROBLEMS

IN UNIFORMLY CONVEX SPACES

A. R. ALIMOV

Abstract. For sets with connected values of the operator of best ap-
proximation (in particular, for Chebyshev sets), we study connectedness
of their intersections with closed balls. For a given set M , we intro-
duce M -acting points and M -uniformly convex spaces. Given a set M ,
a point s of the unit sphere S is called an M -acting point if s ∈
(PMx − x)/ρ(x, PMx) for some x /∈ M , where ρ(x,M) is the distance
from x to M , and PMx is the set of all best approximants from M to x.
We show that, in many problems of geometric approximation theory,
it suffices to consider not the entire unit sphere, but only its M -acting
points. In particular, if the metric projection PM onto M has connected
values (for example, M is a Chebyshev set), the space is complete and
M -uniformly convex, then the set M has connected intersections with
closed balls.

0. Introduction

Below, X is a real normed linear space. We will follow the definitions from [6],
[8]. The main definitions are given below. Next:

B(x, r) is the closed ball with centre x and radius r;

B̊(x, r) is the open ball with centre x and radius r;
S(x, r) is the sphere with centre x and radius r.
For brevity, B := B(0, 1) is the unit ball, S = S(0, 1) is the unit sphere.
The best approximation (the distance) from a given element x in a normed

linear space X to a given nonempty set M ⊂ X = (X, ∥ · ∥) is defined by

ρ(x,M) := inf
y∈M

∥x− y∥.

A point y ∈ M is a nearest point for a point x ∈ X from N if ∥x−y∥ = ρ(x,M).
The set of all nearest points (elements of best approximation) fromM for a given x
is denoted by PMx, i.e.,

PMx :=
{
y ∈ M | ∥x− y∥ = ρ(x,M)

}
.

(the operator PM is known as the metric projection operator to the set M).
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If Q denotes some property (for example, “connectedness”), we say that a closed
set M has the property

P -Q if for all x ∈ X the set PMx is nonempty and has the property Q;
P0-Q if PMx has the property Q for all x ∈ X;
B-Q if M ∩B(x, r) has the property Q for all x ∈ X, r > 0;

B̊-Q if M ∩ B̊(x, r) has the property Q for all x ∈ X, r > 0.
For example, a closed subset of a finite-dimensional space is P -nonempty, i.e.,

is an existence set; M is P0-connected if, for each x, the set PMx of its nearest
points is connected (or empty); M is B̊-connected if its intersection with any
open ball is connected.

It is well known (see, for example, [15]) that B̊-connectedness of a set implies
its connectedness and local connectedness. It is easily verified (see, for example,

[20]) that a B-connected set is B̊-connected. The converse implication may fail
to hold for closed sets. For further details, see, for example, [15], [9], [2], and [19].

Vlasov [20] proved that, in a complete uniformly convex space, any P -connected
set is B-connected (in particular, any Chebyshev set1 is B-connected). Ch. Dun-
ham constructed a disconnected Chebyshev set in C[0, 1] (see [6, § 7.3]). Tsar’kov
[15] showed that, in a Efimov–Stechkin space, any closed P0-connected set is B̊-
connected. For further advances, see also § § 2 and 3 below.

The purpose of the paper is to show that, in many problems of geometric
approximation theory, it suffices to consider not the entire unit sphere, but rather
its subset consisting of the M -acting points (see Definition 1.1). Such results can
be looked upon as balayage theorems of geometric approximation theory, whose
remote classical ancestors are the Fermat’s Rule from calculus and the Chebyshev
equioscillation theorem from analytic approximation theory (see, for example,
[13]). In results of this kind, one gets rid of the unnecessary points in the domain
of a given functional without chancing its optimal value. For recent results on
balayage type theorems in geometric approximation theory, see [3] and [4].

It is well-known that in a reflexive (LUR)-space any P0-connected set is B̊-
connected (see, for example, [15, § 3]). Below, we obtain a balayage type theorem
for this result. Namely, given a set M , we show that in the problem of B-
connectedness of M it suffices to test for uniform convexity only M -acting points
of the unit sphere, rather than the entire sphere (Theorem 2.1). We also give
examples which illustrate how this theorem works. Density properties of points
of uniqueness are studied in § 3.

1. M-acting points and M-spaces

Let us recall the definition of an M -acting point.

Definition 1.1 (see [1]). Given a nonempty set M ⊂ X, a point s ∈ S is called
an M -acting point (here, “M” means the set M under consideration) if

s ∈ (PMx− x)/ρ(x, PMx) for some x /∈ M.

This means that if s is an M -acting point for a set M , then some ball B(x, r)
“touches” the set M by an analogue y ∈ S(x, r) of the point s, i.e., s = (y−x)/r.

1A set M ⊂ X is a Chebyshev set if it is a set of existence and uniqueness, i.e., for each
x ∈ X, PMx is a singleton.
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Definition 1.2. A space X is called locally uniformly convex (X ∈ (LUR)) if
any point s of the unit sphere S is an LUR-point, which means by definition that
∥sn∥ = 1, ∥sn + s∥/2 → 1 implies that sn → s.

The concept of an LUR-point was introduced by various authors.

Definition 1.3 (see [3]). Let ∅ ̸= M ⊂ X. A space X is called M -locally
uniformly convex (X ∈ (M -LUR)) if any M -acting point s of the unit sphere S
is an LUR-point (see Definition 1.2).

For some results of geometric approximation theory for M -locally uniformly
convex spaces, see [3].

A space X is called uniformly convex if, for each ε > 0, there exists δ > 0 such
that if x, y ∈ X, ∥x∥ = ∥y∥ = 1 and ∥x+ y∥/2 > 1− δ/2, then ∥x− y∥ < ε.

Definition 1.4 (see [3]). Let ∅ ̸= M ⊂ X. A space X is called M -uniformly
convex (X ∈ (M -UR)) if any M -acting point s of the unit sphere S is an LUR-
point (see Definition 1.3) and, for each ε > 0, there exists δ > 0 such that
∥x−y∥ < ε provided that x, y are M -acting points of the unit sphere S and ∥x+
y∥/2 > 1− δ/2.

2. The main theorem

The following result is well known (Vlasov, [20]): any P -connected subset of
a complete uniformly convex space is B-connected. Tsar’kov [15, Theorem 3]
strengthened this result as follows: in any reflexive (CLUR)-space2 (and, in par-
ticular, in any complete uniformly convex space), each closed P0-connected set
is B-connected. On the other hand, in any nonreflexive space, an example of
a disconnected P0-connected set is given by two parallel hyperplanes generated
by a non-norm-attaining functional.) For some new results on connectedness
of intersections with balls of P0- and P -connected sets in symmetric and asym-
metric spaces, see [7], [19], [3]. Some balayage-type theorems in the problem of
connectedness of sets can be found in [3]. In this regard, we note that according
to [3] if M ⊂ X is a sun and any M -acting luminosity point is an LUR-point,
then M is B-connected. A partially converse result was also proved in [3]: if

∅ ̸= M ⊂ X is B̊-connected and X ∈ (M -LUR), then M is unimodal (an
LG-set, or, equivalently, a strict protosun). Among the recent results in this di-
rection, we mention one result of Tsar’kov [16], who constructed an example of
a four-dimensional polyhedral space and non-B-connected sun in it. In the same
paper, I. G. Tsar’kov also constructed a disconnected sun in a three-dimensional
asymmetric normed space.

The following main result can be looked upon as a balayage theorem of the
result of Vlasov from [20].

Theorem 2.1. Let ∅ ̸= M ⊂ X be P -connected, where X is a Banach M -uni-
formly convex space (X ∈ (M -UR)). Then M is B̊-connected.

In particular, if M ⊂ X is a Chebyshev subset of a Banach space X ∈ (M -UR),
then M has connected intersections with open balls.

2(CLUR) is the class of spaces such that the condition x ∈ S, yn ∈ S, ∥x+yn∥/2 → 1 implies
that (yn) has a convergent subsequence. Note that any reflexive (CLUR)-space is a Efimov–
Stechkin space (see, for example, [15]).
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Remark 2.1. In connection to Theorem 2.1 we mention the following result (see
[3, Theorem 5]): Let M ⊂ X be a sun3 and let that any M -acting luminosity
point be an LUR-point. Then M is B-connected. A kind of converse result also
holds: if ∅ ̸= M ⊂ X is B̊-connected and X ∈ (M -LUR), then M is unimodal
(see [3, Theorem 6]).

Proof of Theorem 2.1. We follow some ideas of [15], [7]. We need the following
auxiliary result [15, Lemma 4]. Let x ∈ X, r > 0 andM∩B(x, r) = A1⊔C1, where
A1, C1 ∈ F (B(x, r)), max{ρ(x,A1), ρ(x,C1)} < r. Then there exist x1 ∈ X and
r1 > 0 such that

B(x1, r1) ⊂ B(x, r) and ρ(x1,M) = ρ(x1, A1) = ρ(x1, C1) < r1 (2.1)

Here and in what follows, F (N) is the class of closed subsets of a set N .
Next, let x ∈ X, r > 0 and M ∩B(x, r) = A1⊔C1, where A1, C1 ∈ F (B(x, r))

and d := ρ(x,A1) = ρ(x,C1) < r. Let us show that, for each ε > 0, there exist
x0 ∈ X and r0 > 0 such that

B(x0, r0) ⊂ B̊(x, r), ρ(x0, A1) = ρ(x0, C1) < r0 and

A1 ∩B(x0, r0) ⊂ B̊(y0, ε) for some y0 ∈ A1.
(2.2)

Let z ∈ C1 be such that ∥z − x∥ < d + (r − d)/10. Let δ := min{(r − d)/10,
ρ(x,A1)}/3. The distance function is continuous, and hence then there exists
z1 ∈ (x, z) such that

ρ(z1, C1) = ρ(z1, A1)− 2δ. (2.3)

Recall that a ∈ X is a point of approximative uniqueness for N (written
a ∈ AU(N)) if the set of nearest points from M for a consists of a single point
y ∈ N and ∥y − yn∥ → 0 as n → ∞ for any sequence (yn) ⊂ N such that
∥yn− a∥ → ρ(a,N). It is clear that if y ∈ AU(N), then y ∈ PNa. Approximative
uniqueness of sets is actively studied at present (see, for example, [5], [6], [18],
and [17]).

In [18, Theorem 3] and [7, Theorem 3.8] it was shown (in a more general setting
of complete asymmetric locally uniformly convex spaces) that, for a nonempty
closed set M ⊂ X, the set of points approximative uniqueness is dense in X, i.e.,
in a complete X ∈ (M -UR)

AU(M) is a set of second category. (2.4)

This result carried out verbatim to M -uniformly convex spaces. As a corollary
(see [7, Lemma 3.6]), in a complete M -uniformly convex space X (M is a fixed
closed set), the set of points of existence for M is dense in X.

By (2.4), there exists a point z2 ∈ AU(A1) such that ∥z2 − z1∥ ≤ δ. Let us
show that

B(z2, ρ(z2, A1) + δ) ⊂ B̊(x, r). (2.5)

3A set M is a sun if, for any x /∈ M , there is a best approximant y′inM for x such that
y ∈ PMz for any z on the ray emanating from y and passing through x. Suns sometimes called
generalized Kolmogorov sets, because they can be characterized in terms of the generalized
Kolmogorov criterion for best approximation.
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By the triangle inequality, ρ(u,N) ⩽ ∥v − u∥ + ρ(v,N), for all u, v ∈ X, for
a given N ⊂ X. Consequently,

ρ(z2, A1) + δ ≤ ρ(z1, A1) + 2δ = ρ(z1, C1) + 4δ

≤ ∥z − z1∥+ 4δ = ∥z − x∥ − ∥z1 − x∥+ 4δ

≤ ∥z − x∥ − (∥z2 − x∥ − ∥z2 − z1∥) + 4δ

≤ ∥z − x∥ − ∥z2 − x∥+ 5δ

≤ d+ (r − d)/10− ∥z2 − x∥+ (r − d)/2

= (3r + 2d)/5− ∥z2 − x∥ < r − ∥z2 − x∥.

Now using the well-known equivalence

B(x, r) ⊂ B̊(x′, r′) ⇐⇒ ∥x− x′∥ < r′ − r (2.6)

(see, for example, [6, Proposition 1.2]) we arrive at (2.5). Given δ > 0, we set

P δ
Mx :=

{
y ∈ M | ∥y − x∥ ≤ ρ(x,M) + δ

}
.

By the assumption, X is M -uniformly convex, and hence, by the definition of
a point of approximative uniqueness, for all x ∈ AU(M) and ε > 0, there exists
δ > 0 such that

P δ
Mx ⊂ B̊(y, ε), where PMx = {y}. (2.7)

As a result, we have z2 ∈ AU(A1). Now employing (2.7), we have, for some
δ = δ(ε) > 0,

P δ
A1

z2 ⊂ B̊(y1, ε), where PA1z2 = {y1}. (2.8)

Let α1 = α1(ε) be such that ρ(z2, A1) < α1 < ρ(z2, A1) + δ. For each z3 ∈
B̊(z2, α1) ∩A1, we have

ρ(z2, C1)− ρ(z2, A1) < (ρ(z1, C1) + δ)− (ρ(z1, A1)− δ)
(2.3)
= 0,

ρ(z3, C1)− ρ(z3, A1) = ρ(z3, C1) > 0.

Next, since the distance function is continuous, there exists x0 ∈ [z2, z3] such that
ρ(x0, A1) = ρ(x0, C1). We set r0 := α1 − ∥x0 − z2∥ (here, r0 is positive, because
ρ(z2, A1) < α1 and x0 ∈ [z2, z3]). We have

B(x0, r0) ⊂ B(z2, α1) ⊂ B(z2, ρ(z2, A1) + δ) ⊂ B̊(x, r). (2.9)

As a corollary, (B(x0, r0) ∩A1)
(2.9)
⊂ (B(z2, α1) ∩A1)

(2.8)
⊂ B̊(y1, ε), and

ρ(x0, A1) = ρ(x0, C1) ≤ ∥z3 − x0∥ = ∥z3 − z2∥− ∥x0 − z2∥ < α1 −∥x0 − z2∥ = r0,

which verifies (2.2) with y0 = y1.

Now let us proceed with the proof of Theorem 2.1. By (2.1), there exist x1 ∈ X
and r1 > 0 such that

B(x1, r1) ⊂ B(x, r) and ρ(x1,M) = ρ(x1, A0) = ρ(x1, C0).

We set

A1 = B(x1, r1) ∩A0, C1 = B(x1, r1) ∩ C0.

We induct on i. Assume that there exist xi ∈ X and ri > 0 such that B(xi, ri)∩
M = Ai ⊔ Ci, where Ai, Ci ∈ F (X) and ρ(xi, Ai) = ρ(xi, Ci) < ri.



58 A. R. ALIMOV

Using (2.2), one can find xi+1 ∈ X and ri+1 > 0 such that

B(xi+1, ri+1) ⊂ B̊(xi, ri), ρ(xi+1, Ai) = ρ(xi+1, Ci) < ri+1,

Ci+1 := (B(xi+1, ri+1) ∩Ai) ⊂ B̊(yi, r/2
(i+1)), where yi ∈ Ai.

(2.10)

We set Ai+1 = B(xi+1, ri+1) ∩ Ci. For m > n, we have

∥xm − xn∥ ≤
m−1∑
k=n

∥xk+1 − xk∥
(2.6),(2.10)

≤
m−1∑
k=n

(rk+1 − rk) = rm − rn.

Hence (xi) is a Cauchy sequence. Let x0 be the limit of this sequence. The
bounded sequence (ri) (ri > ri+1 ≥ 0) converges to some number r0 > 0 (r0 ̸= 0,
because A0 ∩ C0 = ∅). It is clear that

B(x0, r0) =

∞⋂
i=1

B̊(xi, ri). (2.11)

Each of the sequences (A2k)
∞
k=1, (A2k−1)

∞
k=1 consists of nested closed sets. In ad-

dition, from (2.10) for each k ∈ N we have y2k−1 ∈ A2k−1 ⊂ B̊(y2k−1, r/2
2k). The

Cauchy sequence (y2k−1) converges to some point u′ ∈ M . A similar argument

shows that, y2k ∈ A2k ⊂ B̊(y2k, r/2
2k−1) for each k ∈ N. The space is complete,

and hence (y2k) converges to some u′′ ∈ M . It is clear that Ã :=
⋂

k A2k−1 = {u′},
C̃ :=

⋂
k A2k = {u′′}. By (2.11), Ã = B(x0, r0) ∩ A0, C̃ = B(x0, r0) ∩ C0, and,

therefore,

ρ(x0, Ã) = ρ(x0, A0) = ρ(x0, C̃) = ρ(x0, C0) = ρ(x0,M).

So, x0 has precisely two (distinct) nearest points fromM , where u′ ∈ A0, u
′′ ∈ C0,

which contradicts the assumption that M is P -connected. This contradiction
verifies that M is B̊-connected. Theorem 2.1 is proved. □

Example 2.1. Let X = R2 ⊕1 R. The unit ball B of X is the convex hull of the
Euclidean 2-dimensional unit ball and the interval [−1, 1], i.e., B = {(ξ1, ξ2, c) |
c ∈ [−1, 1], ξ21 + ξ22 ≤ 1}. Recall that if x, y ∈ Y , x ̸= y, then the set

K̊(y, x) : =
⋃
r>0

B̊
(
−ry + (r + 1)x, (r + 1)∥y − x∥

)
=

{
z ∈ Y | [z, y] ∩ B̊(x, ∥y − x∥) ̸= ∅

}
is the (open) support cone (to the ball (x, ∥y − x∥) at its boundary point y). It

is well known that the set Y \ K̊(y, x) is a sun (see, for example, Theorem 3
in [10]). Let s ∈ S be an arbitrary point of the unit sphere. By the above, the set

M := X \ B̊(s, 0) is a sun (which is not a Chebyshev set). Now an application of
Theorem 2.1 and Lemma 15 in [15] shows that M is B-connected. In addition,
the metric projection operator onto M has connected values. Moreover, the
intersection of M with any ball is contractible. However, it is unknown at present
whether any sun in the spaceX = R2⊕1R has connected intersections with closed
balls.
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3. Density properties of points of uniqueness

We need the following result on the structure of the unit sphere of a locally
uniformly convex space (see [11], [12], [14]). In [12], this result is called the
Stechkin lens lemma, because the set Mε in this lemma resembles a lens. We
require the following local analogue of this result (see [3, Lemma 1]).

Lemma 3.A. Let x0 ∈ S be an LUR-point of the unit sphere S and let 0 < α < 1.
Consider the set

Mε := {X \ B̊(0, 1)} ∩B(αx0, 1− α+ ε).

Then
diamMε → 0 as ε → +0.

Recall that a set M ⊂ X is called nowhere dense if its closure does not contain
interior points in X. A set of first category (or a meager set) is a union of
countably many nowhere dense sets. The class of subsets of X of first category
is denoted by (I), and the class of complements of sets of first category in X is
denoted by (II).

We set

U(M) := {x ∈ X | PMx is either empty or a singleton.}
Any point x ∈ U(M) is called a point of uniqueness for M .

The following result in a particular case of locally uniformly convex spaces
was established by S.B. Stechkin (see [14, Theorem 4], and also [11, Theorem
2.7]). We extend this result to the case of M -locally uniformly convex spaces
(see Definition 1.3). For boundedly precompact sets M of an M -strictly convex
space, a similar result was established in [3, Theorem 4].

Theorem 3.1. Let M ⊂ X be a closed subset of a complete M -locally uniformly
convex space X (X ∈ (M -LUR)). Then

U(M) ∈ II (i.e., U(M) is a set of second category).

We set

d0(x) = lim
δ→0+

diam
(
M ∩B(x, ρ(x,M) + δ) ∩ Oδ(PMx)

)
;

here and in what follows, Oδ(A) is the δ-neighborhood of the set A.

Proof of Theorem 3.1. Following [14] and [11], we set

Φα : = {x ∈ X | diamPM (x) ≥ 1/α},
Fα : = {x ∈ X | diam d0(x) ≥ 1/α}.

It is clear that Fα ⊃ Φα (α > 0). Let us show that each set Φn, n ∈ N, is
nowhere dense, i.e., any open ball B̊1 contains an open ball B̊2 disjoint from Φn.
If B̊1 ∩ Φn = ∅, then there is nothing to prove. So, we now assume that x ∈
B̊1 ∩ Φn. In this case, x /∈ M . Let y0 ∈ PMx and z ∈ (x, y0). By Lemma 3.A,
diamP ε

M (z) → 0 as ε → 0, where, as above, P ε
M (z) := M ∩ B(z, ρ(z,M) + ε),

i.e., z /∈ Fn. By Lemma 3 in [14] (see also [11, Proposition 2.13]), the set Fα is
closed for each α (in this lemma, X is an arbitrary normed space). Therefore,

there exists an open ball B̊2 = B̊(z, γ) lying in X \ Fn. For each z′ ∈ B2, we
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have z′ /∈ Fn. Hence z′ /∈ Φn, i.e., B̊2 = ∩Φn = ∅. So, each Φn is nowhere dense
in X. Now the required result follows: U(M) = X \

⋃∞
n Φn is a set of second

category. □
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