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SOLVING A CLASS OF QUASILINEAR FIRST ORDER PDE

SAMIHA DJEMAI AND SALIM MESBAHI

Abstract. This paper focuses on a specific class of partial differential
equations in three real variables, which are first order and quasilinear.
Our objective is to introduce a solving method for these equations, draw-
ing inspiration from the Lagrangian approach. We will thoroughly ex-
amine all potential cases and clarify various aspects of the method using
practical exercises specifically designed for this purpose.

1. Introduction

The study of partial differential equations (which will be abbreviated as PDE in
the following) is still an enthralling field, full of challenging equations that beg for
new ideas and novel approaches. Many problems still exist, acting as continual
reminders of the immense intricacy buried in these equations despite decades
of research and mathematical prowess. With each unsolved equation, the need
for fresh perspectives and ground-breaking concepts grows, fostering eagerness
for the undiscovered truths. The field of PDEs stands as a testament to the
unyielding spirit of human curiosity and the limitless potential for breakthroughs
that lie just beyond the horizon.

Our comprehension of real-world phenomena and our technology today are
largely based on PDEs. It is thanks to modeling through PDEs that we have been
able to understand phenomena derived from other disciplines (such as biology,
ecology, economics, physical sciences, astronomy, chemistry, etc.). There is no
doubt that PDEs remain one of the most active areas of research due to their
multiple applications in all areas of science. See Chowdhury et al. [2], Kruzhkov
[4], Rhee et al. [7], Sneddon [9] and references given there.

In this paper, we restrict our work to a class of first order quasilinear PDEs
with three real variables, whose general form is

Pp+Qq +Rr = S (1.1)
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with

P = a1x+ b1y + c1z + d1u+ e1

Q = a2x+ b2y + c2z + d2u+ e2

R = a3x+ b3y + c3z + d3u+ e3

S = a4x+ b4y + c4z + d4u+ e4

where p =
∂u

∂x
, q =

∂u

∂y
, r =

∂u

∂z
, and u = u (x, y, z) is a smooth vector field in a

domain Ω of R3. The functions P , Q, R, S are linear of (x, y, z, u), and ak, bk,
ck, dk, ek are real numbers for all 1 ≤ k ≤ 4.

In Ince [3], Kruzhkov [4] and Sneddon [9], we find a brief discussion on solving
equation (1.1) in the simple case of two variables.

We recall that a PDE is said to be quasilinear, if it is linear with respect to all
the highest order derivatives of the unknown function. A smooth function u =
u (x, y, z) is a solution of equation (1.1), if and only if u is constant along the phase
curves of the field u, i.e., it is the first integral of the associated characteristic
system

dx

P
=
dy

Q
=
dz

R
=
du

S
(1.2)

Lagrange’s method of characteristics reduces the problem of solving PDE (1.1)
to the characteristic system (1.2). For further information about this method and
how to apply it, see Kruzhkov [4], Rhee et al. [7] and Sneddon [9].

Theorem 1.1. The general solution of PDE (1.1) is F (φ,ψ, ξ) = 0, where F
is an arbitrary function and φ (x, y, z) = c1, ψ (x, y, z) = c2, ξ (x, y, z) = c3 are
linearly independent first integrals of the associated characteristic system (1.2).

In Kruzhkov [4], Mesbahi [5], Reinhard [6], Sneddon [9], we find a proof of this
theorem as well as several other important theorems and properties.

First order PDEs appear frequently in stochastic process theory, as the Fokker-
Planck equation, and in mathematical physics, as the Hamilton-Jacobi equation.
As other examples, we mention the Hopf equation (also known as Burgers’ equa-
tion without viscosity), which is used in a variety of contexts, such as the dynam-
ics of gases without pressure and in describing the velocity field of a medium con-
sisting of particles moving without interaction in the absence of external forces.
In solid mechanics, we often find the mass conservation equation, which describes
the movement of a fluid (liquid or gas) when sinks and sources are absent. We
also mention the transport equation, which is the prototype of PDEs of the first
order. The model is used in various sciences, such as the model for fluid infil-
tration through sand, where the fluid flows under gravity alone without sources
or sinks, see Chechkin et al. [1]. The transport equation also appears in the
mathematical modeling of traffic-like collective movements at different levels of
biological organization. Molecular motor proteins like kinesin and dynein, which
are responsible for most intracellular transport in eukayotic cells, sometimes ex-
perience traffic jams, which manifest as disease, see Chowdhury et al. [2] and
Schadschneider [8].
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Below we will present a method for solving system (1.2) and consequently
equation (1.1). We will discuss all possible cases, supporting each case with an
illustrative example that will explain many aspects of the method used.

2. Method of solving

Suppose it is possible to find constants λ, µ, υ, τ such that each ratio of system
(1.2) is equal to

λdx+ µdy + υdz + τdu

λP + µQ+ υR+ τS

If λ, µ, υ ,τ are constant multipliers, this expression will be an exact differential,
if it is of the form

1

ρ

λdx+ µdy + υdz + τdu

λx+ µy + υz + τu

This brings us to the following system

λdx+µdy+υdz+τdu
(a1λ+a2µ+a3υ+a4τ)x+(b1λ+b2µ+b3υ+b4τ)y+(c1λ+c2µ+c3υ+c4τ)z+(d1λ+d2µ+d3υ+d4τ)u

=
1

ρ

λdx+ µdy + υdz + τdu

λx+ µy + υz + τu
(2.1)

and this is possible only if
λ (a1 − ρ) + a2µ+ a3υ + a4τ = 0
b1λ+ (b2 − ρ)µ+ b3υ + b4τ = 0
c1λ+ c2µ+ (c3 − ρ) υ + c4τ = 0
d1λ+ d2µ+ d3υ + (d4 − ρ) τ = 0

(2.2)

System (2.2) can be represented in the matrix form AX = 0, with

A =


a1 − ρ a2 a3 a4
b1 b2 − ρ b3 b4
c1 c2 c3 − ρ c4
d1 d2 d3 d4 − ρ

 , X =


λ
µ
υ
τ


where detA = 0 is required to obtain non-zero solutions for X instead of just the
trivial zero solution, in order to provide meaningful insight about the system’s
behavior. Setting detA = 0 allows finding a particular non-zero solution for X
that meets the paper’s objective, which leads to

Ψ (ρ) = detA = 0 (2.3)

This polynomial has four roots in C, which we may denote by ρ1, ρ2, ρ3, ρ4.
We distinguish the following possible cases:

(i) ρ1 ̸= ρ2 ̸= ρ3 ̸= ρ4 ∈ R (ii) ρ1 ̸= ρ2 ∈ R, ρ3 = ρ4 ∈ C
(iii) ρ1 = ρ2 ̸= ρ3 = ρ4 ∈ C (iv) ρ1 ̸= ρ2 = ρ3 = ρ4 ∈ R
(v) ρ1 = ρ2 ̸= ρ3 = ρ4 ∈ R (vi) ρ1 = ρ2 ̸= ρ3 ̸= ρ4 ∈ R
(vii) ρ1 = ρ2 ∈ R, ρ3 = ρ4 ∈ C (viii) ρ1 = ρ2 = ρ3 = ρ4 ∈ C
(ix) ρ1 = ρ2 = ρ3 = ρ4 ∈ R

In the following paragraphs, we will discuss all possible cases and provide an
illustrative example for each. In everything that follows, we denote by c or cj an
arbitrary real constant.
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2.1. Case (i): ρ1 ̸= ρ2 ̸= ρ3 ̸= ρ4 ∈ R. In this case, for any ρj , 1 ≤ j ≤ 4, There
exist real constants (λj , µj , υj , τj) satisfying system (2.1), and thus we have four
possible exact differentials, which gives us

λ1dx+µ1dy+υ1dz+τ1du
ρ1(λ1x+µ1y+υ1z+τ1u)

= λ2dx+µ2dy+υ2dz+τ2du
ρ2(λ2x+µ2y+υ2z+τ2u)

= λ3dx+µ3dy+υ3dz+τ3du
ρ3(λ3x+µ3y+υ3z+τ4u)

= λ4x+µ4dy+υ4dz+τ4du
ρ4(λ4x+µ4y+υ4z+τ4u)

.

This admits as first integrals the following

(λ1x+ µ1y + υ1z + τ1u)
ρ2 . (λ2x+ µ2y + υ2z + τ2u)

−ρ1 = c1

(λ2x+ µ2y + υ2z + τ2u)
ρ3 . (λ3x+ µ3y + υ3z + τ3u)

−ρ2 = c2

(λ3x+ µ3y + υ3z + τ3u)
ρ4 . (λ4x+ µ4y + υ4z + τ4u)

−ρ3 = c3

which are linearly independent, where c1, c2 and c3 are arbitrary real constants.
Hence the integral curves F (c1, c2, c3) = 0, where F is an arbitrary real function.

Example 2.1. Let the equation be given as

xp+ (x+ 2y) q + (3z) r = z + 4u

In this case, the polynomial Ψ (ρ) of (2.3) admits four different real roots ρ1 = 1,
ρ2 = 2, ρ3 = 3, ρ4 = 4. The constants (λj , µj , υj , τj) associated respectively are
(1, 0, 0, 0), (1, 1, 0, 0), (0, 0, 1, 0), (0, 0, 1, 1). The characteristic system associated
with our equation becomes

dx

x
=
d (x+ y)

2 (x+ y)
=
dz

3z
=
d (z + u)

4 (z + u)

which gives us the following linearly independent first integrals

x2 (x+ y)−1 = c1 , (x+ y)3 z−2 = c2 , z
4 (z + u)−3 = c3

where c1, c2 and c3 are arbitrary real constants. Hence the integral curves
F (c1, c2, c3) = 0, where F is an arbitrary real function.

2.2. Case (ii): ρ1 ̸= ρ2 ∈ R, ρ3 = ρ4 ∈ C. Suppose that the roots of the
polynomial Ψ (ρ) are ρ1 ̸= ρ2 ∈ R and ρ3 = ρ′3 + iρ′′3 = ρ4 ∈ C. In this case, we
can find constants (λj , µj , υj , τj), 1 ≤ j ≤ 4, satisfying system (2.1), where

λj , µj , υj , τj ∈ R, for j ∈ {1, 2}
(λ3, µ3, υ3, τ3) =

(
λ′3 + iλ′′3, µ

′
3 + iµ′′3, υ

′
3 + iυ′′3 , τ

′
3 + iτ ′′3

)
(λ4, µ4, υ4, τ4) =

(
λ′3 − iλ′′3, µ

′
3 − iµ′′3, υ

′
3 − iυ′′3 , τ

′
3 − iτ ′′3

)
with λ′3, λ

′′
3, µ

′
3, µ

′′
3, υ

′
3, υ

′′
3 , τ

′
3, τ

′′
3 ∈ R. The characteristic system becomes

df

ρ1f
=

dg

ρ2g
=

dh

(ρ′3 + iρ′′3)h
=

dk

(ρ′3 − iρ′′3) k
(2.4)

where

f = λ1x+ µ1y + υ1z + τ1u

g = λ2x+ µ2y + υ2z + τ2u

k̄ = h =
(
λ′3 + iλ′′3

)
x+

(
µ′3 + iµ′′3

)
y +

(
υ′3 + iυ′′3

)
z +

(
τ ′3 + iτ ′′3

)
u

From the first equality of system (2.4), we have the following first integral

(λ1x+ µ1y + υ1z + τ1u)
ρ2 · (λ2x+ µ2y + υ2z + τ2u)

−ρ1 = c1
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The second equality of system (2.4) gives us

E = g(ρ
′
3+iρ′′3) · h−ρ2 = c

and from it, we get

logE = ρ′3 log (λ2x+ µ2y + υ2z + τ2u)− ρ2z1

+i
(
ρ′′3 log (λ2x+ µ2y + υ2z + τ2u)− ρ2z2

)
where

z1 =
1

2
log
((
λ′3x+ µ′3y + υ′3z + τ ′3u

)2
+
(
λ′′3x+ µ′′3y + υ′′3z + τ ′′3 u

)2)
z2 = arctan

(
λ′′3x+ µ′′3y + υ′′3z + τ ′′3 u

λ′3x+ µ′3y + υ′3z + τ ′3u

)
which implies

E = exp
(
log (g)ρ

′
3 − ρ2z1

)
· exp

[
i
(
log (g)ρ

′′
3 − ρ2z2

)]
We get the following first integral

E = (g)ρ
′
3 · e−ρ2z1 cos

(
ρ′′3 log (g)− ρ2z2

)
= c2

The third equality of system (2.4) gives us

E′ = h(ρ
′
3−iρ′′3) · k−(ρ′3+iρ′′3) = c

which gives
logE′ = 2i

(
ρ′3z2 − ρ′′3z1

)
and since we are looking for real solutions, we take the following first integral

E′ = ρ′3z2 − ρ′′3z1 = c3

The three first integrals obtained are linearly independent, where c1, c2 and c3
are arbitrary real constants. Hence the integral curves F (c1, c2, c3) = 0, where
F is an arbitrary real function.

Example 2.2. Let the equation be given as

(2x) p+ (x+ 2y + 2u) q + (z − y) r = z + u

The polynomial Ψ (ρ) admits for roots ρ1 = 0, ρ2 = 2, ρ3 = 2 − i = ρ4. The
constants (λj , µj , υj , τj) associated respectively are

(1,−2,−4, 4) , (1, 0, 0, 0) , (1 + i, 1− i, 1 + i, 2) , (1− i, 1 + i, 1− i, 2)

In this way, we can obtain the following linearly independent first integrals

x− 2y − 4z + 4u = c1

x2 exp (−2z1) · cos (1 log (x)− 2z2) = c2

2z2 − z1 = c3

where

z1 =
1

2
log
[
(x+ y + z + 2u)2 + (x− y + z + 0u)2

]
z2 = arctan

(
x− y + z + 0u

x+ y + z + 2u

)
Hence the integral curves F (c1, c2, c3) = 0, where F is an arbitrary real function.
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2.3. Case (iii): ρ1 = ρ2 ̸= ρ3 = ρ4 ∈ C. Let ρ1 = ρ′1 + iρ′′1 = ρ2 and ρ3 =
ρ′3 + iρ′′3 = ρ4 ∈ C be the roots of the polynomial Ψ (ρ). In this case, we can find
real constants (λj , µj , υj , τj), 1 ≤ j ≤ 4, satisfying system (2.1), where

(λj , µj , υj , τj) =
(
λ′j + iλ′′j , µ

′
j + iµ′′j , υ

′
j + iυ′′j , τ

′
j + iτ ′′j

)
, j ∈ {1, 3}

(λj , µj , υj , τj) =
(
λ′j − iλ′′j , µ

′
j − iµ′′j , υ

′
j − iυ′′j , τ

′
j − iτ ′′j

)
, j ∈ {2, 4}

with λ′j , λ
′′
j , µ

′
j , µ

′′
j , υ

′
j , υ

′′
j , τ

′
j , τ

′′
j ∈ R. The characteristic system becomes

df

(ρ′1 + iρ′′1) f
=

dg

(ρ′1 − iρ′′1) g
=

dh

(ρ′3 + iρ′′3)h
=

dk

(ρ′3 − iρ′′3) k
(2.5)

where

ḡ = f =
(
λ′1 + iλ′′1

)
x+

(
µ′1 + iµ′′1

)
y +

(
υ′1 + iυ′′1

)
z +

(
τ ′1 + iτ ′′1

)
u

k̄ = h =
(
λ′3 + iλ′′3

)
x+

(
µ′3 + iµ′′3

)
y +

(
υ′3 + iυ′′3

)
z +

(
τ ′3 + iτ ′′3

)
u

As in the previous case, by applying the same steps to the first and third
equality of system (2.5), we obtain the following first integrals

ρ′1z2 − ρ′′1z1 = c1 and ρ′3z
′
2 − ρ′′3z

′
1 = c2

where

z1 =
1

2
log
((
λ′1x+ µ′1y + υ′1z + τ ′1u

)2
+
(
λ′′1x+ µ′′1y + υ′′1z + τ ′′1 u

)2)
z2 = arctan

λ′′1x+ µ′′1y + υ′′1z + τ ′′1 u

λ′1x+ µ′1y + υ′1z + τ ′1u

z′1 =
1

2
log
((
λ′3x+ µ′3y + υ′3z + τ ′3u

)2
+
(
λ′′3x+ µ′′3y + υ′′3z + τ ′′3 u

)2)
z′2 = arctan

λ′′3x+ µ′′3y + υ′′3z + τ ′′3 u

λ′3x+ µ′3y + υ′3z + τ ′3u

For the second equality of system (2.5), we get

E = g(ρ
′
3+iρ′′3) · h−(ρ′1−iρ′′1) = c

which gives

logE =
(
ρ′3z1 + ρ′′3z2 − ρ′1z

′
1 − ρ′′1z

′
2

)
+ i
(
ρ′′3z1 − ρ′3z2 + ρ′′1z

′
1 − ρ′1z

′
2

)
then

E = exp
(
ρ′3z1 + ρ′′3z2 − ρ′1z

′
1 − ρ′′1z

′
2

)
. exp

[
i
(
ρ′′3z1 − ρ′3z2 + ρ′′1z

′
1 − ρ′1z

′
2

)]
and since we are looking for real solutions, we take the following first integral

exp
(
ρ′3z1 + ρ′′3z2 − ρ′1z

′
1 − ρ′′1z

′
2

)
. cos

(
ρ′′3z1 − ρ′3z2 + ρ′′1z

′
1 − ρ′1z

′
2

)
= c3

As a result, the integral curve F (c1, c2, c3) = 0, where c1, c2, c3 are arbitrary
real constants and F is an arbitrary real function.

Example 2.3. Let the equation be given as

(x− y + z) p+ (x+ u) q + (y − u) r = x+ z



68 SAMIHA DJEMAI AND SALIM MESBAHI

The polynomial Ψ (ρ) admits for roots ρ1 = −i = ρ2, ρ3 = 1
2 − 1

2 i
√
3 = ρ4. The

constants (λj , µj , υj , τj) associated respectively are

(1− 2i, 2 + i, 2− 4i,−5) , (1 + 2i, 2− i, 2 + 4i,−5) ,(
1−

√
3i, 0, 1−

√
3i,−2

)
,
(
1 +

√
3i, 0, 1 +

√
3i,−2

)
.

In this way, we can obtain the following linearly independent first integrals

−z1 = c1

exp

(
1

2
z1 +

√
3

2
z2 − 0z′1 + 1z′2

)
. cos

(
1

2
z1 −

√
3

2
z2 − 1z′1 + 0z′2

)
= c2

1

2
z′2 −

√
3

2
z′1 = c3

where

z1 =
1

2
log
(
(x+ 2y + 2z − 5u)2 + (2x− y + 4z + 0u)2

)
z2 = arctan

2x− y + 4z + 0u

x+ 2y + 2z − 5u

z′1 =
1

2
log

(
(x+ 0y + z − 2u)2 +

(√
3x+ 0y +

√
3z + 0u

)2)
z′2 = arctan

√
3x+ 0y +

√
3z + 0u

x+ 0y + z − 2u

Hence the integral curves F (c1, c2, c3) = 0, where F is an arbitrary real function.

The remaining cases will only be treated through examples. This approach
aims to streamline concepts and circumvent specific computational challenges
arising from the nature of the equation to be resolved. By employing the same
methodology as in prior cases, we arrive each time at an insufficient number of first
integrals. This is the basic difficulty in this work, and to overcome it, the suitable
approach has been identified, which we will explain through the examples that
we will present later in this paper. First, we proceed as in the previous examples,
we will find at most two first integrals, then we work to complete them to obtain
three linearly independent first integrals, which will make it possible to find the
general solution of the proposed equation. We will treat each case separately with
an illustrative example. It is worth noting that in each of the subsequent cases,
obtaining three first integrals that are linearly independent is sufficient, and our
objective is not to discover all potential first integrals. It is important to mention
that all the equations we will examine below have been meticulously formulated
to be compatible with all conceivable cases. We will develop the method used
previously in the first three cases to obtain additional linearly independent first
integrals. For this, suppose that it is possible to find constants (αj , βj , γj , δj),
1 ≤ j ≤ 4, and ρ such that each ratio of (1.2) is equal to the following exact
differential form

ϕ1
ϕ2

=
dD

ρD
(2.6)
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with

ϕ1 = (α1x+ β1y + γ1z + τ1u) dx+ (α2x+ β2y + γ2z + τ2u) dy

+(α3x+ β3y + γ3z + τ3u) dz + (α4x+ β4y + γ4z + τ4u) du

ϕ2 = (α1x+ β1y + γ1z + τ1u)x+ (α2x+ β2y + γ2z + τ2u) (x+ 2y)

+ (α3x+ β3y + γ3z + τ3u) z + (α4x+ β4y + γ4z + τ4u) (z + u)

where dD denotes the total derivative of D.
We will work to clarify all possible cases through the examples that we will

address below.

2.4. Case (iv): ρ1 ̸= ρ2 = ρ3 = ρ4 ∈ R.

Example 2.4. Let the equation be given as

xp+ (x+ 2y) q + zr = z + u (2.7)

The polynomial Ψ (ρ) admits a triple root ρ1 = 1 and a simple root ρ2 = 2. The
constants (λj , µj , υj , τj) associated respectively are (1, 0,−1, 0) and (1, 1, 0, 0).
The characteristic system corresponding to equation (2.7) can therefore be writ-
ten in the form

dx

x
=

dy

x+ 2y
=
dz

z
=

du

z + u
=
d (x− z)

x− z
=
d (x+ y)

2 (x+ y)
(2.8)

This leads to a single first integral

(x+ y)1 (x− z)−2 = c1

We only need two more first integrals. For that, suppose it is possible to find
constants (αj , βj , γj , δj), 1 ≤ j ≤ 4, and ρ such that each ratio of (2.8) is of the
form (2.6), with

D = (α1 + α2)x
2 + 2β2y

2 + (γ3 + γ4) z
2 + γ4u

2 + (β1 + β2 + 2α2)xy

+(γ1 + γ2 + α3 + α4)xz + (δ1 + δ2 + α4)xu+ (2γ2 + β3 + β4) yz

+(2δ2 + β4) yu+ (δ3 + δ4 + γ4) zu

That’s right, if

(2− ρ)α1 + 2α2 = 0, γ1 + γ2 + (1− ρ)α3 + α4 = 0
(1− ρ)β1 + β2 + 2α2 = 0, 2γ2 + (1− ρ)β3 + β4 = 0

(1− ρ) γ1 + γ2 + α3 + α4 = 0, (2− ρ) γ3 + 2γ4 = 0
(1− ρ) δ1 + δ2 + α4 = 0, (1− ρ) δ3 + δ4 + γ4 = 0
β1 + β2 + (2− ρ)α2 = 0, δ1 + δ2 + (1− ρ)α4 = 0

(4− ρ)β2 = 0, 2δ2 + (1− ρ)β4 = 0
(2− ρ) γ2 + β3 + β4 = 0, δ3 + δ4 + (1− ρ) γ4 = 0

(2− ρ) δ2 + β4 = 0, 2γ4 − ρδ4 = 0

This linear homogeneous system will have a non-trivial solution, if the determi-
nant of its coefficient matrix is zero, i.e.,

ρ16 − 23ρ15 + 231ρ14 − 1323ρ13 + 4716ρ12 − 10 626ρ11

+14 312ρ10 − 8800ρ9 − 2880ρ8 + 7776ρ7 − 3456ρ6 = 0

The roots of this polynomial are : 2 (quadruple), 4, 1+
√
3, 1−

√
3, 3 (triple), 0 (of

order 6). We can find several first integrals, but we only need two. For this, we
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will choose enough values of ρ. We can take two different values, and we can
be satisfied with a root which is at least double, then we can take ρ ∈ {2, 3}.
If we substitute the values of ρ in (2.6) and solve the resulting system, we find
(α1, β1, γ1, δ1, α2, β2, γ2, δ2, α3, β3, γ3, δ3, α4, β4, γ4, δ4) as following

(−1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0) for ρ = 2

(2, 1,−1, 0, 1, 0,−1, 0,−1,−1, 0, 0, 0, 0, 0, 0) for ρ = 3

These values would transform system (2.8) into the following exact differential
form

d (x− z)

x− z
=
d (x+ y)

2 (x+ y)
=
d
(
−x2 + 2z2 + 2xz

)
2 (−x2 + 2z2 + 2xz)

=
d
(
3x2 + 3xy − 3xz − 3yz

)
3 (3x2 + 3xy − 3xz − 3yz)

which gives us these two new first integrals(
−x2 + 2z2 + 2xz

)3
.
(
3x2 + 3xy − 3xz − 3yz

)−2
= c2(

3x2 + 3xy − 3xz − 3yz
)4
.
(
2x2 + 4y2 + 4xy

)−3
= c3

Hence the integral curves F (c1, c2, c3) = 0, where F is an arbitrary real function.

2.5. Case (v): ρ1 = ρ2 ̸= ρ3 = ρ4 ∈ R.

Example 2.5. Let the equation be given as

(x+ y − z) p+ (2y) q + (2z + u) r = u (2.9)

The polynomial Ψ (ρ) admits two double roots ρ1 = 1 and ρ2 = 2. The constants
(λj , µj , υj , τj) associated respectively are (0, 0, 0, 1) and (0,−1, 1, 1). Therefore,
the characteristic system that corresponds to equation (2.9) can be expressed as
follows

dx

x+ y − z
=
dy

2y
=

dz

2z + u
=
du

u
=
d (−y + z + u)

2 (−y + z + u)
(2.10)

This leads to a single first integral

u2

−y + z + u
= c1

From system (2.10), other first integrals can be extracted, but we will find this
using our method for the sake of better understanding. Suppose it is possible to
find constants (αj , βj , γj , δj), 1 ≤ j ≤ 4, and ρ such that each ratio of (2.10) is of
the form (2.6), with

D = (α1)x
2 + (β1 + 2β2) y

2 + (−γ1 + 2γ3) z
2 + (β1 + α1 + 2α2)xy

+(γ1 − α1 + 2α3)xz + (δ1 + α3 + α4)xu+ (γ1 − β1 + 2β3 + 2γ2) yz

+(δ1 + 2δ2 + β3 + β4) yu+ (−δ1 + 2δ3 + γ3 + γ4) zu+ (δ3 + δ4)u
2
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That’s right, if

(2− ρ)α1 = 0, γ1 − α1 + (2− ρ)α3 = 0
(1− ρ)β1 + α1 + 2α2 = 0, γ1 − β1 + (2− ρ)β3 + 2γ2 = 0
(1− ρ) γ1 − α1 + 2α3 = 0, −2γ1 + (4− ρ) γ3 = 0
(1− ρ) δ1 + α3 + α4 = 0, −δ1 + (2− ρ) δ3 + γ3 + γ4 = 0
β1 + α1 + (2− ρ)α2 = 0, δ1 + α3 + (1− ρ)α4 = 0

2β1 + (4− ρ)β2 = 0, δ1 + 2δ2 + β3 + (1− ρ)β4 = 0
γ1 − β1 + 2β3 + (2− ρ) γ2 = 0, −δ1 + 2δ3 + γ3 + (1− ρ) γ4 = 0
δ1 + (2− ρ) δ2 + β3 + β4 = 0, 2δ3 + (2− ρ) δ4 = 0

If the determinant of the coefficient matrix of this linear homogeneous system is
zero, it indicates that the system will possess a non-trivial solution, i.e.,

ρ16 − 30ρ15 + 406ρ14 − 3272ρ13 + 17 449ρ12 − 64 658ρ11 + 169 896ρ10

−316 592ρ9 + 410 064ρ8 − 351 648ρ7 + 179 712ρ6 − 41 472ρ5 = 0

This polynomial has as roots : 2 (quintuple), 3 (quadruple), 4 (double), 0 (quintuple).
We only need two additional first integrals, for this we will choose enough values
of ρ. As in the previous case, we avoid ρ = 0, then we can take ρ ∈ {2, 3}.
If we substitute the values of ρ in (2.6) and solve the resulting system, we find
(α1, β1, γ1, δ1, α2, β2, γ2, δ2, α3, β3, γ3, δ3, α4, β4, γ4, δ4) as following

(0, 0, 0, 0, 0, 0, 0, 1, 0,−1, 0, 0, 0, 1, 0, 2) for ρ = 2

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 1, 0, 0, 2, 1) for ρ = 3

These values would transform system (2.10) into the following exact differential
form

du

u
=
d (−y + z + u)

2 (−y + z + u)
=
d
(
2u2
)

2 (2u2)
=
d
(
8z2 + 2u2 + 8zu

)
3 (8z2 + 2u2 + 8zu)

which gives us these two first integrals(
2u2
)3 · (8z2 + 2u2 + 8zu

)−2
= c2(

8z2 + 2u2 + 8zu
)4 · (3u2 + 3yu+ 3zu

)−3
= c3

Hence the integral curves F (c1, c2, c3) = 0, where F is an arbitrary real function.

2.6. Case (vi): ρ1 = ρ2 ̸= ρ3 ̸= ρ4 ∈ R.

Example 2.6. Let the equation be given as

xp+ (x+ 2y) q + (3z) r = z + u (2.11)

The characteristic system corresponding to equation (2.11) is

dx

x
=

dy

x+ 2y
=
dz

3z
=

du

z + u
(2.12)

The polynomial Ψ (ρ) admits one double root ρ1 = ρ2 = 1 and two simple
roots ρ3 = 2, ρ4 = 3. The constants (λj , µj , υj , τj) associated respectively are
(1, 0,−1, 2), (1, 1, 0, 0) and (0, 0, 1, 0). Then, system (2.12) gives us

d (x− z + 2u)

(x− z + 2u)
=
d (x+ y)

2 (x+ y)
=
dz

3z
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This leads to these two first integrals

(x− z + 2u)2 . (x+ y)−1 = c1 and (x+ y)3 . (z)−2 = c2

So, we need another first integral. For that, suppose it is possible to find constants
(αj , βj , γj , δj), 1 ≤ j ≤ 4, and ρ such that each ratio of (2.12) is of the form (2.6),
with

D = (α1 + α2)x
2 + (β1 + 2β2) y

2 + (3γ3 + γ4) z
2 + δ4u

2 + (3δ3 + γ4) zu

+(γ1 + γ2 + 3α3 + α4)xz + (γ1 + 2γ2 + 3β3 + β4) yz

+(β1 + β2 + 2α2 + α1)xy + (δ1 + 2δ2 + β4) yu+ (δ1 + δ2 + α4)xu

That’s right, if

2α1 + 2α2 = 0, γ1 + γ2 + 3α3 + α4 = 0
β1 + β2 + 2α2 + α1 = 0, γ1 + 2γ2 + 3β3 + β4 = 0
γ1 + γ2 + 3α3 + α4 = 0, 6γ3 + 2γ4 = 0

δ1 + δ2 + α4 = 0, 3δ3 + γ4 = 0
β1 + β2 + 2α2 + α1 = 0, δ1 + δ2 + α4 = 0

2β1 + 4β2 = 0, δ1 + 2δ2 + β4 = 0
γ1 + 2γ2 + 3β3 + β4 = 0, 3δ3 + γ4 = 0

δ1 + 2δ2 + β4 = 0, 2δ4 = 0

This system will have a non-trivial solution, if the determinant of its coefficient
matrix is zero, i.e.,

ρ16 − 35ρ15 + 541ρ14 − 4866ρ13 + 28 240ρ12 − 110 780ρ11 + 298 955ρ10

−553 425ρ9 + 686 695ρ8 − 542 426ρ7 + 244 980ρ6 − 47 880ρ5 = 0

Among the roots of this polynomial are the following : 1, 2, 3, 6, 0, 5
2 ±

1
2

√
5, 9

2 ±
1
2

√
5. Just choose a single value for ρ, then we can take ρ = 2. If we substitute

this value of ρ in (2.6) and solve the resulting system, we find

(α1, β1, γ1, δ1, α2, β2, γ2, δ2, α3, β3, γ3, δ3, α4, β4, γ4, δ4)

as following

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2,−1) for ρ = 2

Then system (2.12) becomes

d (x− z + 2u)

(x− z + 2u)
=
d (x+ y)

2 (x+ y)
=
dz

3z
=
d
(
u2 + zu

)
2 (u2 + zu)

which gives us another first integral

(x− z + 2u)2 .
(
u2 + zu

)−1
= c3

Hence the integral curves F (c1, c2, c3) = 0, where F is an arbitrary real function.

2.7. Case (vii): ρ1 = ρ2 ∈ R, ρ3 = ρ4 ∈ C.

Example 2.7. Let the equation be given as

(2x− y) p+ (x+ 2y + 2u) q + zr = z + u (2.13)

The characteristic system corresponding to equation (2.13) is

dx

2x− y
=

dy

x+ 2y + 2u
=
dz

z
=

du

z + u
(2.14)
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The polynomial Ψ (ρ) admits one double root ρ1 = ρ2 = 1 and two complex roots
conjugate ρ3 = 2 + i = ρ4. The constants (λj , µj , υj , τj) associated respectively
are (0, 0, 1, 0), (1 + i, 1− i, 1 + i, 2) and (1− i, 1 + i, 1− i, 2). Then, each ratio of
(2.14) is equal to

dz

z
= d((1−i)x+(1+i)+y(1−i)z+2u)

(2+i)((1−i)x+(1+i)+y(1−i)z+2u) =
d((1+i)x+(1−i)+y(1+i)z+2u)

(2−i)((1+i)x+(1−i)+y(1+i)z+2u) (2.15)

This leads to two first integrals, we can take the following

z2 exp (−z1) cos (1 log (g)− z2) = c1 and 2z2 − z1 = c2

where

z1 =
1

2
log
(
(x+ y + z + 2u)2 + (−x+ y − z)2

)
z2 = arctan

−x+ y − z

x+ y + z + 2u

In order to obtain an additional first integral, we use the same procedure as in
the previous examples. This approach also enables us to obtain other linearly
independent first integrals, but we are limited to finding just one. For that,
suppose it is possible to find constants (αj , βj , γj , δj), 1 ≤ j ≤ 4, and ρ such that
each ratio of (2.14) is of the form (2.6), with

D = (2α1 + α2)x
2 + (−β1 + 2β2) y

2 + (2γ2 + δ3 + δ4 + γ4) zu

+(γ3 + γ4) z
2 + (2δ2 + δ4)u

2 + (2β1 + β2 + 2α2 − α1)xy

+(−δ1 + 2δ2 + 2β2 + β4) yu+ (2δ1 + δ2 + 2α2 + α4)xu

+(−γ1 + 2γ2 + β3 + β4) yz + (2γ1 + γ2 + α3 + α4)xz

That’s right, if

(4− ρ)α1 + 2α2 = 0 , 2γ1 + γ2 + (1− ρ)α3 + α4 = 0
(2− ρ)β1 + β2 + 2α2 − α1 = 0 , −γ1 + 2γ2 + (1− ρ)β3 + β4 = 0
(2− ρ) γ1 + γ2 + α3 + α4 = 0 , (2− ρ) γ3 + 2γ4 = 0
(2− ρ) δ1 + δ2 + 2α2 + α4 = 0 , 2γ2 + (1− ρ) δ3 + δ4 + γ4 = 0
2β1 + β2 + (2− ρ)α2 − α1 = 0 , 2δ1 + δ2 + 2α2 + (1− ρ)α4 = 0

−2β1 + (4− ρ)β2 = 0 , −δ1 + 2δ2 + 2β2 + (1− ρ)β4 = 0
−γ1 + (2− ρ) γ2 + β3 + β4 = 0 , 2γ2 + δ3 + δ4 + (1− ρ) γ4 = 0
−δ1 + (2− ρ) δ2 + 2β2 + β4 = 0 , 4δ2 + (2− ρ) δ4 = 0

This system will have a non-trivial solution, if the determinant of its coefficient
matrix is zero, i.e.,

ρ16 − 31ρ15 + 438ρ14 − 3712ρ13 + 20 908ρ12 − 81 964ρ11 + 227 592ρ10

−446 368ρ9 + 604 096ρ8 − 535 360ρ7 + 278 400ρ6 − 64 000ρ5 = 0

This polynomial has the following roots : 0, 1, 2, 4, 4 ± 2i, 3 ± i. Just choose a
single value for ρ, then we can take ρ = 1. substitute it into (2.6) and solve the
resulting system, we find

(α1, β1, γ1, δ1, α2, β2, γ2, δ2, α3, β3, γ3, δ3, α4, β4, γ4, δ4)

as following

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−2, 0, 0, 0, 1, 0) for ρ = 1
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Then system (2.15) becomes

d
(
−z2 + zu

)
−z2 + zu

=
dz

z
= d((1−i)x+(1+i)+y(1−i)z+2u)

(2+i)((1−i)x+(1+i)+y(1−i)z+2u) =
d((1+i)x+(1−i)+y(1+i)z+2u)

(2−i)((1+i)x+(1−i)+y(1+i)z+2u)

which gives us another first integral(
−z2 + zu

)
.z−1 = c3

Hence the integral curves F (c1, c2, c3) = 0, where F is an arbitrary real function.

2.8. Case (viii): ρ1 = ρ2 = ρ3 = ρ4 ∈ C.

Example 2.8. Let the equation be given as

(x+ y) p+ (−x+ y) q + (z + u) r = −z + u (2.16)

The characteristic system corresponding to equation (2.16) is

dx

x+ y
=

dy

−x+ y
=

dz

z + u
=

du

−z + u
(2.17)

The polynomial Ψ (ρ) admits two double conjugate complex roots ρ1 = 1 − i =
ρ2 = ρ3 = ρ4. The constants (λj , µj , υj , τj) associated respectively are (i, 1, 0, 0)
and (−i, 1, 0, 0). Each ratio of (2.17) is equal to

d (ix+ y)

(1− i) (ix+ y)
=

d (−ix+ y)

(1 + i) (−ix+ y)

This leads to the following first integral

z2 − z1 = c1

where

z1 =
1

2
log
(
y2 + x2

)
and z2 = arctan

x

y

We use the same procedure as before to obtain two additional first integrals. This
approach also enables us to obtain other first integrals, but we are limited to
finding only two. For that, suppose it is possible to find constants (αj , βj , γj , δj),
1 ≤ j ≤ 4, and ρ such that each ratio of (2.17) is of the form (2.6), with

D = (α1 − α2)x
2 + (β1 + β2) y

2 + (δ3 + γ3 + γ4 − δ4) zu

+(γ3 − γ4) z
2 + (δ1 − δ2 + α3 + α4)xu+ (γ1 − γ2 + α3 − α4)xz

+(δ1 + δ2 + β3 + β4) yu+ (δ3 + δ4)u
2 + (γ1 + γ2 + β3 − β4) yz

+(β1 + α1 − β2 + α2)xy

That’s right, if

(2− ρ)α1 − 2α2 = 0, γ1 − γ2 + (1− ρ)α3 − α4 = 0
(1− ρ)β1 + α1 − β2 + α2 = 0, γ1 + γ2 + (1− ρ)β3 − β4 = 0
(1− ρ) γ1 − γ2 + α3 − α4 = 0, (2− ρ) γ3 − 2γ4 = 0
(1− ρ) δ1 − δ2 + α3 + α4 = 0, (1− ρ) δ3 + γ3 + γ4 − δ4 = 0
β1 + α1 − β2 + (1− ρ)α2 = 0, δ1 − δ2 + α3 + (1− ρ)α4 = 0

2β1 + (2− ρ)β2 = 0, δ1 + δ2 + β3 + (1− ρ)β4 = 0
γ1 + (1− ρ) γ2 + β2 − β4 = 0, δ3 + γ3 + (1− ρ) γ4 − δ4 = 0
δ1 + (1− ρ) δ2 + β3 + β4 = 0, 2δ3 + (2− ρ) δ4 = 0
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This system will have a non-trivial solution, if the determinant of its coefficient
matrix is zero, i.e.,

ρ16 − 20ρ15 + 193ρ14 − 1173ρ13 + 4957ρ12 − 15 232ρ11 + 34 650ρ10

−58 344ρ9 + 71 512ρ8 − 61 504ρ7 + 34 688ρ6 − 11 264ρ5 + 1536ρ4 = 0

Among the roots of this polynomial, we take 1 and 2, and we substitute them in
(2.6). This allows us to find the constants

(α1, β1, γ1, δ1, α2, β2, γ2, δ2, α3, β3, γ3, δ3, α4, β4, γ4, δ4)

as following

(0, 0, 1, 1, 0, 0,−1, 1, 0,−2, 0, 0, 1, 1, 0, 0) for ρ = 1

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) for ρ = 2

Each ratio of (2.17) is equal to

d (xz + xu+−3yz + yu)

1 (xz + xu+−3yz + yu)
=
d
(
u2 − zu

)
2 (u2 − zu)

=
d (−ix+ y)

(1 + i) (−ix+ y)
=

d (ix+ y)

(1− i) (ix+ y)

which gives us the following first integrals

(xz + xu+−3yz + yu)2 ·
(
u2 − zu

)−1
= c2(

u2 − zu
)
· e−2z1 cos

(
log
(
u2 − zu

)
− 2z2

)
= c3

Hence the integral curves F (c1, c2, c3) = 0, where F is an arbitrary real function.

2.9. Case (ix): ρ1 = ρ2 = ρ3 = ρ4 ∈ R.

Example 2.9. Let the equation be given as

(2x) p+ (2y) q + (2y + 2z) r = −x+ z + 2u (2.18)

The characteristic system corresponding to equation (2.18) is

dx

2x
=
dy

2y
=

dz

2y + 2z
=

du

−x+ z + 2u
(2.19)

The polynomial Ψ (ρ) admits one quadruple root ρ = 2. The constants (λ, µ, υ, τ)
associated respectively are (1,−1, 0, 0). Each ratio of (2.19) is equal to

d (x− y)

2 (x− y)

We use the same procedure as in the previous example to obtain other first
integrals. For this, suppose that it is possible to find constants (αj , βj , γj , δj),
1 ≤ j ≤ 4, and ρ such that each ratio of (2.19) is of the form (2.6), with

D = (2α1 − α4)x
2 + (2γ3 + γ4) z

2 + (δ4 + 2δ3 + 2γ4) zu+ (2δ1 − δ4 + 2α4)xu

+(2β1 + 2α2 + 2α3 − β4)xy + (2γ1 + 2α3 − γ4 + α4)xz + (2δ4)u
2

+(2γ3 + β4 + 2β3 + 2γ2) yz + (2δ3 + 2δ2 + 2β4) yu+ (2β2 + 2β3) y
2
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That’s right, if

(4− ρ)α1 − 2α4 = 0, 2γ1 + (2− ρ)α3 − γ4 + α4 = 0
(2− ρ)β1 + 2α2 + 2α3 − β4 = 0, 2γ3 + β4 + (2− ρ)β3 + 2γ2 = 0
(2− ρ) γ1 + 2α3 − γ4 + α4 = 0, (4− ρ) γ3 + 2γ4 = 0

(2− ρ) δ1 − δ4 + 2α4 = 0, δ4 + (2− ρ) δ3 + 2γ4 = 0
2β1 + (2− ρ)α2 + 2α3 − β4 = 0, 2δ1 − δ4 + (2− ρ)α4 = 0

(4− ρ)β2 + 4β3 = 0, 2δ3 + 2δ2 + (2− ρ)β4 = 0
2γ3 + β4 + 2β3 + (2− ρ) γ2 = 0, δ4 + 2δ3 + (2− ρ) γ4 = 0

2δ3 + (2− ρ) δ2 + 2β4 = 0, (4− ρ) δ4 = 0

This system will have a non-trivial solution, if the determinant of its coefficient
matrix is zero, i.e.,

ρ16 − 40ρ15 + 720ρ14 − 7676ρ13 + 53 632ρ12 − 256 256ρ11 + 845 824ρ10

−1894 400ρ9 + 2719 744ρ8 − 2162 688ρ7 + 524 288ρ6 + 262 144ρ5 = 0

Among the roots of this polynomial, we take ρ = 4, and we substitute it in (2.6),
This allows us to find the constants

(α1, β1, γ1, δ1, α2, β2, γ2, δ2, α3, β3, γ3, δ3, α4, β4, γ4, δ4)

as following

(1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

(0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

These values would transform system (2.19) into the following exact differential
form

d
(
2x2 + 2y2 + 4xy

)
4 (2x2 + 2y2 + 4xy)

=
d
(
2x2
)

4 (2x2)
=
d (4xy)

4 (4xy)
=
d (x− y)

2 (x− y)
which gives us these linearly independent first integrals(

2x2 + 2y2 + 4xy
)
·
(
2x2
)−1

= c1(
2x2
)
· (4xy)−1 = c2

(4xy) · (x− y)−2 = c3

Hence the integral curves F (c1, c2, c3) = 0, where F is an arbitrary real function.

3. Conclusion

Our paper introduces a versatile approach that can effectively solve a wide
range of first order quasilinear equations, as described within the paper. The
method’s relevance transcends practical applications, encompassing various math-
ematical equations exhibiting quasilinearity. Through providing a comprehensive
framework, our research establishes a solid groundwork for addressing such equa-
tions and ensuring their successful resolution, irrespective of their immediate
real-world significance. The broad scope and applicability of our method high-
light its importance and potential in advancing the field of mathematical analysis.
As a practical application, we can use it to determine the surfaces orthogonal to
a given system of surfaces and to solve the Hamilton-Jacobi equation, which is
of great importance as a first order partial differential equation in mathematical
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physics. Additionally, it is worth noting that our methodology can be extended
to tackle equations with two variables of the same type. This extension finds rele-
vance in several renowned examples, including the transport equation, Maxwell’s
equation, and others.

In conclusion, we emphasize the challenging nature of unsolved PDEs and the
need for fresh insights and innovative concepts to address them. We assert that
the field of PDEs is rich with unresolved equations awaiting breakthroughs. In
the near future, we will endeavor to study some classes of first order nonlinear
PDEs.
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