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THE CAUCHY PROBLEM FOR THE MODIFIED
KORTEWEG-DE VRIES-LIOUVILLE (MKDV-L) EQUATION
WITH AN ADDITIONAL TERM IN THE CLASS OF
PERIODIC INFINITE-GAP FUNCTIONS

AKNAZAR KHASANOV, ULUGHBEK KHUDAYOROV, AND TEMUR KHASANOV

Abstract. In this paper, the inverse spectral problem method is used
to integrate a modified Korteweg-de Vries-Liouville (mKdV-L) equation
with an additional term in the class of periodic infinite-gap functions.
The evolution of the spectral data of the periodic Dirac operator is in-
troduced, and the coefficient of the Dirac operator is a solution for a
modified Korteweg-de Vries-Liouville equation with an additional term.
A simple algorithm for deriving the Dubrovin system of differential equa-
tions is proposed. The solvability of the Cauchy problem for a Dubrovin
infinite system of differential equations in the class of six times con-
tinuously differentiable periodic infinite-gap functions is proven. It is
proven that there is a global solution of the Cauchy problem for a mod-
ified Korteweg-de Vries-Liouville equation with an additional term for
sufficiently smooth initial conditions.

1. Introduction

In this paper, we consider the Cauchy problem for a combination of the mod-
ified Korteweg-de Vries and Liouville equation (mKdV-L), with an additional
term of the form

3
qzt = a(t) {Qxcm:ac - 2q§qm} +b(t)e! —c(t)qre, q=q(z,t), z€R, t>0 (1.1)

with initial condition

4@ D)y = (@), qolz +7) = ao() € CO(R) (1.2)
in the class of real infinite-gap m-periodic functions with respect to x:
g(z +7,t) = q(a,t), q(z,t) € Cpi(t>0)NC(t>0). (1.3)
Here a(t), b(t), c(t) € C (]0,00)) are given continuous bounded functions.
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It is easy to verify that the compatibility conditions for the following linear

equations
1
_ [ 3% —A _(wn
B A B b(t) [ 0 4 —3¢ A
w={a0r (& 0)5 (0 o) e 23 ) ) e
are equivalent to the equation (1.1) for the function ¢ = ¢(z,t),z € R,t >
Here

0.

1 1 A A
A= _2>\2(h - ZQE + 5(&90907 B = )\QIx + 4)\3 + §Q§7 C = )\qgrx - 4)\3 - qu

Note that from the equation (1.1), for the case a(t) = 1, b(t) = 0, c(t) =
0 we obtain the modified Korteweg-de Vries equation (mKdV) [17], [45] and
for a(t) = 0, b(t) = 1, ¢(t) = 0 we have the Liouville equations (see [15], p.
14 and [16]). In this paper, we propose an algorithm for constructing exact
solutions ¢(z,t), * € R, t > 0, of the (1.1)-(1.3) by reducing to the inverse
spectral problem for the following Dirac operator:

S(T,t)yEB%—I—Q(:U—I—T,t)y:)\y, TER t>0, T€R  (14)
where
s=(55) awn=(gun %)
Plat) = 0,Q(x, 1) %q;(a:,t).

It is well known that finding an explicit formula for solving the nonlinear
evolutionary Korteweg-de Vries equation (KdV), the modified Korteweg-de Vries
equation (mKdV), the nonlinear Schrodinger equation (NSE), the sine-Gardon
equation(s-G), the Hirota equation and etc. in the class of periodic functions
essentially depends on the number of nontrivial gaps in the spectrum of the
periodic Sturm-Liouville and Dirac operator. In this regard, the class of periodic
functions is conveniently divided into two sets:

1. The class of periodic finite-gap functions;

2. The class of periodic infinite-gap functions.

The complete integrability of nonlinear evolution equations (KdV, NSE, mKdV,
s-G, Hirota) in the class of finite-gap periodic and quasi-periodic functions was
studied using the method of the inverse spectral problem for the Sturm-Liouville
and Dirac operator with a periodic potential, when the spectrum has only a finite
number of non-trivial gaps, in the works of Its-Matveev [12], Dubrovin-Novikov
8], Its-Kotlyarov([13], Its [14], Smirnov [42], Matveev-Smirnov [33], [34]. In ad-
dition, an explicit formula was derived in terms of the Riemann theta functions
for finite-gap solutions of nonlinear evolution equations (KdV, NSE, mKdV, s-G,
Hirota, etc.).

Thus, in these papers (see [8],[12], [13], [14], [33], [34] and [42], the solvability
of the Cauchy problem for nonlinear evolution equations (KdV, NSE, mKdV,
s-G, etc.) was proved for any finite-gap periodic and quasi-periodic initial data.
This theory is described in more detail in the monographs [38] and [46], as well
as in the works [24], [28], [32].
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It is known from [11] that if ¢(x) = 2a cos 2z, a # 0, then all gaps are open in
the spectrum of the Sturm-Liouville operator £y = —y” + q(z)y, = € R, in other
words, ¢(x) is a periodic infinite-gap potential. There are similar examples for
the periodic Dirac operator in [6].

A method for constructing exact solutions of the Cauchy problem for com-
bining the defocusing nonlinear Schrodinger equation and the complex modified
Korteweg-de Vries equation (DNSE-cmKdV),

iq+b(t) (gza—2|q)* Q) —ia(t) (qeea—6q1* @) = 0, a(t), b(t) € C[0,00),z € R, t > 0.

q(z,t)|i=0 = qo(2), qo(x + ) = qo(z) € C°(R)
in the class of m-periodic infinite-gap functions was proposed in [31]. Based on the
ideas of [31], the solvability of the Cauchy problem for the mKdV-sG equation of
the following form

Gt = a(t) {qu - ;qf«qm} +b(t)chg, q=q(z,t), z€R, >0,
q(z,t)]i=0 = qo(z), qo(z +m) = qo(z) € C*(R)
in the class of w-periodic infinite-gap functions was studied in [21]. Here a(t), b(t) €
C (]0,00)) are given continuous bounded functions.
This statement of the problem has not been studied before for equation (1.1).
We note that the Cauchy problem for nonlinear evolution equations without
a source and with a source, as well as with an additional term in various for-

mulations in the class of periodic and almost periodic infinite-gap functions was
studied in [2], [7], [19], [20], [22] and [27], [29], [35], [36], [39].

2. Evolution of spectral data

Denote by c(z, A\, 7,t) = (c1(x, A\, 7,t), ca(x, A\, 7,1))T and
s(z,\,7,t) = (s1(x, A\, 7,t), s52(x, N\, 7,1))T solutions of the equation (1.4) with
initial conditions ¢(0, A, 7,t) = (1,0)” and s(0, A, 7,¢) = (0,1)”. Function

AN T, t) =cr(m, N\, 7, t) + sa(m, A\, T, t)

is called the Lyapunov function for the equation (1.4).
Moreover, for solutions c¢(z, A, 7,t) and s(z, A, 7,t) for large |A| the following

asymptotics hold:
Cos Az
ez, A\, 7,t) = ( sin A ) +

1 [ Ld(z+7,t) 4+ ¢.(7,t)] sin \x + a(z, 7, t) sin Az 1
_ 21 ) x\' s 1y =
+2)‘ < - [ ;:(x + 7, t) - q/m(T,t)] COS AT — a(;[j"r’ t) COS \T +0 A2 ) |)‘| — 00,

sl A7 t) = ( —sin Ax )+

COS AT

11/ o 1
2_[qgg(:ijT,t) ¢, (7, t)] cos A\x + a(z, T,t) cos Az >+O <)\2>’ A > oo,

1 X
a(z,7,t) = 1 / [qg(s + 7, t)]z ds.
0
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From these asymptotics for real A, we have

1 1
AN T, t) = 2COSA7T+XG(7T,T, t)sin A\ 4+ O <)\2> , Al = o0,

da(m,T,t)

A%\, 7,t) —4 = —4sin® At + 3

cos A sin At + O (/\2> , A = 0.

Vector functions
+ _ ok + T _ +
Y (x, A 1, t) = (Y7 (2, A\, 7, 8), 05 (2, A, 7, 1)) = c(x, A\, 7, t)+m™ (A, 7,t)s(x, A, 7, 1)
are called Floquet solutions of the equation (1.4). The Weyl-Titchmarsh functions
are defined by the following formulas [5]
so(m A\, 7, t) — cr(m, A\, 7, t) F A/ A2\, 7, t) — 4
251(7‘-7)\17—7 t) .

The spectrum of the Dirac operator £(7,t) is purely continuous and consists
of the following set

mE(\,7,t) =

o() ={\eR: |A()\)\§2}:R\< U (AQn_l,A%)).

n=—oo

The intervals (Agp—1, A2n), n € Z\ {0}, are called gaps, where \,, are the roots of
the equation A(A) F2 = 0. They coincide with the eigenvalues of the periodic or
antiperiodic (y(0) = £y(w)) problem for the equation (1.4). It is easy to prove
that A_y = Ag = 0, i.e. A = 0 is the double eigenvalue of the periodic problem
for the equation (1.4).

The roots of the equation si(m, A, 7,t) = 0 will be denoted by &,(7,t),n €
Z\ {0}, while &,(7,t) € [Aan—1,Aa2n], n € Z\{0}. Since the coefficient in the
equation (1.4) has the form P(z,t) = 0, Q(z,t) = 1¢,(z,t), then Aoy = g =
& =0, i.e. £ =0 is an eigenvalue of the Dirichlet problem.

Numbers &, (7,t),n € Z\ {0} and o, (7,t) = sgn{sa(m,&n, 7, ) — c1(m, &, T, 1) },
n € Z\ {0}, are called the spectral parameters of the operator £(7,t). Spectral
parameters &,(7,t),0,(7,t) = £1,n € Z\ {0}, and the spectrum boundaries
An(T,t),n € Z\ {0}, are called the spectral data of the Dirac operator £(7,1).

The problem of recovering the coefficient Q(x,t) of the operator £(7,t¢) from
spectral data is called the inverse problem.

Using the initial function go(z + 7), 7 € R, we construct the Dirac operator
£(7,0) of the following form

d
E(T,O)yEBﬁJrﬂo(:HT)y:Ay, reR, T€R

0  3g)(z+7) Y1
Q = 240 =
0(x+7) ( %qé(l‘-i-T) 0 , Y Yo s

then we will see that the boundaries of the spectrum A\, (7),n € Z, of the obtained
problem do not depend on the parameter 7 € R, i.e. An(T) = )\n,n € 7Z, and
the spectral parameters depend on the parameter 7: £ = fn( ), 0 (T) =
+1,n € 7Z, and they are periodic functions: &(7 + m) = £9(7), 02(7’ +7) =
od(r), T €R,n € Z.
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Solving the direct problem, find the spectral data { \,, £5(7),05(7), n € Z\ {0} }
of the operator £(7,0).
The inverse problem for the Dirac operator of the following form

= (0 (1) (56 5 ) () =

with periodic coefficients p(z) = p(z+7), ¢(z) = q(x+), were studied in various
formulations in [3], [4], [10], [18], [23], [25], [26], [30], [37], [40], [41]. It should be
noted that the inverse problem in terms of the spectral data {\,, &, on, n > 1}
for the Hill operator was studied in [1], [9] and [43], [44].

3. Main results
The main result of this paper is contained in the following theorem.

Theorem 3.1. Let q(x,t), x € R, t > 0, function be a solution of the Cauchy
problem (1.1)-(1.3). Then the boundaries of the spectrum A\, (7,t),n € Z\ {0} ,7 €
R, of the operator £(7,t) do not depend on the parameters T and t, i.e. A\p(7,t) =
An,n € Z\ {0}, and the spectral parameters &,(t,t), on(1,t) = £1,n € Z\ {0},
satisfy the first and second systems of Dubrovin differential equations, respectively:

24820 —0, n e\ {0},

R (3.1)
35%7(:715) =2(=1)"on (1, )hy (&(7,1)) &n(T, 1), n € Z\{0};
Pulr) =0, n e z\{0},

2. (3.2)

Pealrt) — (1), (7, ) (E(7 1)) gn (E(T, 1)), m € Z\{O}.

Here the signs o,(7,t) = £1, n € Z\ {0}, are reversed for each point collision
&n(T,t),n € Z\ {0}, with the boundaries of its gap [A2n—1, A2p]. In addition, the
following initial conditions are satisfied

En(T, D)l img = E0(7), on(T, )], = o (7), n € Z\{0} (3.3)

where £2(7), 0%(7) = £1, n € Z\ {0} are spectral parameters of the Dirac oper-

ator £(7,0). The sequences h,(£) and g,(&), n € Z\ {0}, involved in the equation
(3.2) are determined by the following formulas:

hn(g) = \/(gn(7_7t) - )\anl)()\Qn - gn(th)) X fn(g)a

B 7 Qi1 — & 1) (Aak — &u(T, 1)
RO=y L g m g T @4)

9n(€) = a(?) {452 (1,1) + & (,1) [1613 + qTT] } +

2
b(t)

+m exp {q (7‘, t)} + C(t)gn (7—’ t) .
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Proof. Let 7 periodic with respect to x function ¢(x,t), x € R, ¢t > 0 satisfy
the equation (1.1). Denote by y, = (Yn1(z,7,t), yn2(z, 7, 1), n € Z\ {0} or-
thonormal eigenfunctions of the operator £(7,t) considered on the segment [0, 7],
with Dirichlet boundary conditions

y1(077—7 t) = 07y1(7T,T, t) = 07 (35)

corresponding to eigenvalues &, = &,(7,t), n € Z\{0}. Differentiating with
respect to t the following equality

gn(ﬂ t) = (S(T7 t)ym yn)a ne Z\ {O} )
and using the symmetry operator £(7,t), we have

86”(;;-’” = (Q(:U + 7, ) Yn, Yn), n € Z\ {0} . (3.6)

Using the following explicit form of the dot product

0. = [ In(@a @) +@a@lde = (20 ) o= (20,

y2(z) z(x)
we rewrite the equality (3.6) in the following form
0&,, (1, 1) /”
LCAS .1 Yn. 2wt AT 3.7
BN Oy,ly,2Qtﬂf (3.7)
Substituting the expressions (1.1) into (3.7), we obtain the following equality
0y, (1,1
gB(tT) =a(t)[1(1,t) + b(t)[2(T,t) + c(t)I3(T, 1) (3.8)
where

T 3
1) = [ st {teceata + 78) = Seo 4 7.0 1) o 39
0
I (7—7 t) = / [yn,lyn,Zeq(z+T7t) di’, (310)
0

13(7_7t) = _/0 [yn,lyn,2qgﬁz] dx. (311)

Using the following equalities

yn,l(l" T, t) = m (y;LQ ($, T, t) + %q; (':U + T, t)yn,Q(xa T, t)) )
yn,Q(ma T, t) = Wlﬂt) (_y;z,l(xa T, t) + %q/z(x + 7, t)yn,l(x7 T, t))a

it is easy to derive the following equality

3
Yn,1Yn,2 {q:va:xx(x + T, t) - 5%23(33 + 7, t)qxx(x + T7t)} =

1
= { <2Enq§ + 463 — Enqm> Y2+

1 1 !
+ <qgczm - 5‘]2 - 4531%:) Yn,1Yn,2 + <2§nq:% + 452 + §Hme> yg,?} .
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Using this equality in the above, it is easy to calculate I (7, t):

11 t) = (620 + 4600+ 6ur(7:0)) (. 70) = 120,720

(3.12)
Then calculate Iy(7,t) and I3(7,t):

Iy(r,t) = / |:yn,lyn,26q(w+7—’t)} dx =
0
1

g 1
- = q(z+T,t) ! L _
gn ( ,t) A |:y7’b726 <yn,2(‘r7 T? t) + 2qx (‘T + 7-7 t)yN,Q (‘T7 7—7 t)>:| de'

-
1 g !

= %m0 (/0 [yi,z(xm t)e‘J(”T’t)} dw) =
1
(

76(1(7@ [y% 2(7T, T, t) - 3/721 2(07 R t)] ’
20 ’ ’

T, t)

T ™
3(7,t) = — Yn,1Yn,2qzz| AT = Yn,1¥Yn2 T Yn,1Yn 254z | AT =
I3(7,t) 0[ Jd 0[{’, + Yn1¥no ] d

=60 [ [0R -~ sabac) do = [ [+ oka) do =

= {n [y72p72(7r7 T, t) - y721,2(07 T, t)] )

o(r,t) = me A0 [y2 (1) — 42 5(0,7,1)] | (3.13)
I3(7,t) = & [yn o (7, 7,t) — 47 5 (0, 7,1)] . (3.14)
Substituting (3.12), (3.13) and (3.14) into (3.8), we have
Pt~ |at {462 00+ 6 1) |52 4|+
+2§”((t)t> exp {q (r, 1)} + C(t)ﬁn] % [Po(mrt) — 200 m 0] . (3.15)

Since the eigenvalues &, = &,(7,t) of the Dirichlet problem for the equation (1.4)
are simple, the following equality holds:

1
Cn(7_7 t)

yn(x,T, t) = 3($a€na7—at)a

where

C%(T, t) = /W[s%(:c,fn,ﬂ t) + 5%(3:,5,“7', t)]|dx =
0

0s1(m,&n, 7, t)
- 8)\ 82(7Ta£n77—7t)'

Using these equalities, we have

52(7T> gna T, t) - ﬁ
yZ,Z(ﬂ—a T, t) - yz,2(07 T, t) == 851(71',{7“::) S
oA
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Substituting into this relation the following equality

1
n — - . — 0n\T, A2(&,) — 4,
82(7776 » Ty t) 82(7T, fna T, t) o (7- t) (g )
we have
On (T7 t) A2 (gn) —4
yT2L,2(7T7 T, t) - y’?l,,2(07 T, t) == 951 (m,&n .7 t) : (316)

Using the known expansions

Y, ICT )

k=—00 a%
s —A
stmat = I %22

k=—o00

where ap = 1 and a; = k at k # 0, rewrite the equality (3.16) as the following
form:

Y2 (1) = Y 5(0,8) = 2(=1)" 0 (7, ) hn (€).
Substituting this expression into the equality (3.15), we get (3.2). Similarly, the
equality (3.1) can be proved.
If we replace the Dirichlet boundary conditions with periodic (y(0,t) = y(m,))

or antiperiodic (y(0,t) = —y(m,t)) boundary conditions, then instead of equation
(3.15), we have

Pu(ml) — 0, i.e. An(7,8) = Aa(7,0), 1 € Z\ {0}.

Now put ¢ = 0, in the equation £(7,t)v,, = Ap(7,t)vp, n € Z\ {0}. Since the
eigenvalues A\, (1) = A\ (7,0), n € Z\ {0}, periodic or antiperiodic problem for
the equation £(7,0)v, = Ay (T)vp, n € Z\ {0} do not depend on the parameter
7 € R, we have \,(7,t) = \y(7) = A, n € Z\ {0}.

Theorem 3.1 is proved.

Then, taking into account the following trace formulas

o0

qs— (7—7 t) =2 Z (_1)k_1 Ok (7_7 t) hk (E (Ta t)) ) (317)
k=—00,k#0
Q(Tv t) = C(t) +2 /T Z (_1)k_1 Ok (87 t) hk (g (S, t)) d87 (318)
0\ k=—o0, k0

1 S| = A1+ A
<2qf<me>) ot ()= (W—ﬁ(m)) (3.19)
k=—00,k#0

where C(t) is some bounded continuous function, the (3.2) system can be rewrit-
ten in closed form:

35718(:” = 2(=1)"0n (7, )/ En (T, 1) — Aon—1) Dan — Enlt, 7)) f(E) g (€), (3.20)
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where

0 2 2
92(6) = alt) |48 () + 20 (1) D (W—@%(m)) v

k=—00,k0

o

expdC®+2 [ (3 0 ol (€t | ds
fe=—00, k0

b(t)
Ty
+e(t)én (,1)} -

(3.21)
Applying the Mittag-Leffler theorem, we have

so(m, A, 7, t) —er(m, A\, 7,t)

si(my A, 7, t)
= % Z (=D o (7, 8) hy (€ (7, 8)) + O ()\2> , A = oo.
k=—00,k#0

On the other hand, using the asymptotics for the solutions c(z, A, 7,t) and
s(z, A\, 7,t) for large |A| , we have

so(m, A\, 7, t) —ei(m, A\ 7,t) 1
— 0] A .
Sl(ﬂ—’ )\7 p t) )\ ( ) + )\2 ’ ’ | — OO

Comparing these asymptotics, we obtain the trace formula (3.17).

If y(z,7,t) = (y1(z, 7,t),y2(x, 7,1))T is a solution of a periodic or antiperiodic
problem for the equation (1.4) corresponding to the spectral parameter A # 0,
then yi(z,7,t) is a solution to the following boundary value problems

_yil +q1 (.ZL‘ + 7, t)yl = )‘2y17 Y1 <O7 T, t) = iyl(ﬂa T, t)
where

1 1
q1($at) = 7q37(x’t) + QQII(xvt)

4
Since, the function ¢ (z + 7,t) satisfies the following equality

q(r,t) = A\ + Z (Ao + A3 — 267(7, 1)).
k=1

From this follows the formula (3.19).
As a result of the change of variables

En(Tot) = Aan—1 + (Aon — Aop—1) sin® 2, (7, 1), n € Z\ {0} (3.22)

Dubrovin system of differential equations (3.20) and the initial conditions (3.3)
can be rewritten as a single equation in the Banach space K:

dx(7,t)

p7an H(xz(7,t)), x(r,t)],—y = (1) €K, (3.23)
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where
K= {z(r,t) = (..., x—1(7,t), 21 (7, ), ...) :
lz(r, o)l = D> (1+nl) (Ao = Aon1) [za(r )] < o0 ¢,
n=—00,n#0

H(z) = (..., H-1(x), Hi(x),...),

Hy(z) = (=1)"02(7) - gn(eoy M + (A2 = A1) sin® z1(7, 1), ...) %

X fr(os M+ (A2 = A1) sin® 21 (7, 1), ,...) = (=1)"02 (1) gn (2(7, 1)) fn (z(7,1)).
It is known that if go(z+7) = go(z) € C%(R) then (qo(a:))/ € C5(R). Therefore,

for the gap length of the operator £(7,0), we have the following equality (see [37],
p. 98):

Vi = Aok — Agk—1 = el O
24 |k° K|V
where
Aok, Aok—1 _k+zcjk T+ 275 k|7 || + KO e, (3.24)
7j=1
o0 9 o0
Soolal <o D ()P <00 d=gf —gp.
k=—o00 k=—o00

Hence, taking into account &,(7,t) € [A2p—1, A2,], we have

i f n ) - 3 2 .
égnli (1,t) = &(m, 1) 2 a>0

Now, using this inequality and (3.24), we estimate the following functions:

fala(r, )], 22D g, (a(r, )], |2z,
Lemma 3.1. The following estimates are valid:
10y < [ful)] < O, | 2D < 0, (3.25)
3 | 9gn(x)
2. lgn(x)] < Cyn|”, o < C5%m |m| In| ,m, n € Z\{0} (3.26)

where C; > 0,5 = 1,2,3,4,5, do not depend on the parameters m and n.

Proof. The inequality (3.25) was proved in [39]. Therefore, we prove the
inequalities (3.26). Since the functions a(t),b(t) and c(¢) are bounded, then
dM; > 0,5 = 1,2,3, such that the following inequalities are valid: |a(t)| < M,
b(t)] < Ma, |c(t)] < Ms. Using this inequalities and (3.22), we obtain the
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following estimates:

. 3 .
|gn(x(T,t)] < 4M ‘)\gn_l + Y sin? z, (7, t)‘ + M| Xop_1 4 Yn sin’ z, (1, t)| x
o
X Z { [)\Qk + Aok—1 + V& sin? xg (T, t)] Yk cos? xg (T, t)} +
k=—o00, k0

+ M|A2n—1+ sin® T (T, 1) X

oo
x| >0 {[2Aak-1 + ke sin® ax (7, )] i sin® (7, 1) }| +

k=—00,k#0
+ M X
2| A2n—1 + Yn sin? 2, (7, 1)
T o0
X exp \C(t)+/ > (=D ol (s) sin(ai(s, 1)) fi (2 (s,1))| ds p +
0 |k=—o0, k0
oo
+ M|Agn—1 + Ynsin® 2 (1,1)| < AM(A1|n])® + MAsn| > {Asnfy} +
k=—00,k#0
o0 M T o0
SMA Y {albud+ e d M+ [0S s+
k= —o0,k#0 4 0 p=—oo, k£0

+ MAj|n| < Cyln)?,

where M = max { My, My, M3} .

Now, let’s estimate the function ’M‘:

OxTm

‘WW‘ < ‘a(t)’ ‘_2[)\277,—1 + Yn Sin2 xn(7-7t)]<)\2m—1 + Tm Sil’l2 .%'m(T, t)” X

Oz,
o, b(t)]
m m(7,t -
X Y SINZ Ty (7, 1) + S S " D) X
% exp L |C(1)] + / SO~ od(s) sin(2ek(s, ) fi (2 (5,) | ds b x
0 |k=—00, k0

|

X [2 cos(2zm, (s, 1)) fm (x(s,t)) + sin(2zm, (s, t))(ww] ds’ +

/ T (1) o (3) %
0

Oxm(s,t)
RS - . Ofr (x(s,1))
+ /0 k_;}@ém (_1)k 1 7’?02(8) Sln(2$k(3, t))W ds| <

M T =
< MByJn|[mlym + ——exp { My + / S Comds p x
2A4|n| 0
=—00, k#£0
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T o
X Bﬂm|ﬂ+3373ny¢+fym/ > Csds p < Csymlnl|ml.
0 k=—00, k#m

Lemma 3.1 is proved.

Lemma 3.2. If qo(z + 7) = qo(x) € CO(R), then the vector function H(x(t,t))
satisfies the Lipschitz condition in the Banach space K, i.e. there exists a constant
£ > 0 such that the following inequality holds for arbitrary elements

z(7,t), y(r,t) € K

[1H (x(7,t)) — H(y(r, 1)) || < Llz(7,t) —y(7,0)||
where .
L=C Y [nf(nl+1)(Aan — Aon-1) < 0. (3.27)
n=—00,n#0

Proof. First, using Lemma 3.1, we estimate the derivative with respect to
ZTm (7, 1) of the function F,(z) = g, (z)fn(x),n € Z\ {0}:

OF,(z)| | Ogn(x) Ofn(x) Ofn(x)
)| | O) g ) 4 200l ()| < | 20

< C5Cy [n]® v + C2C5 |m| 0] v < C' ) (Im] + 1) yim

Ogn ()

O0xm

gn(@)| + ] fula)| <

where C' = const > 0 does not depend on m and n.
Next, using the following equality

Hy(x(7,t)) = (=1)" 0 (1) Fn(2(7,t)),n € Z\ {0},
we have
[ Hn (2(7, 1)) = Hn (y(7, )| = |Fu(2(7, 1)) — Fu(y(7,1))] -
Now, let’s apply Lagrange Mean Value Theorem to the function
p(t) = Fu(z +t(y — 2)),
on the interval ¢ € [0, 1]. Then we have the following equality
(1) — 9(0) = ¢'(t),

i.e.

ox
m=—00,m7#0 m

where 0 = z + t*(y — =). Hence it follows that
[Hy (2(7,1)) = Hn (y(7,8))| = [Fn (2(7, 1)) = Fn (y(7,1))] <
> 0F,(0)

= Z Oz,

m=—00,m#0

] () — (s 8)] <

o0

< C ‘n‘S Z (|m’ + 1) : |A2m - A2771—1| : ’mm(T7 t) - ym(Tv t)’ =

m=—00,m7#0

3
= Clnl*[lz =yl
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Now let’s estimate the norm ||H (z(7,t)) — H(y(7,1))|:

o0

1H(@) = Hl = Y (ol +1) Qon = Aza1) [Ha(z) = Haly)| <

n=—00,n#0

< 3> CPnl+1) Oen —Aear) Nz —yll = Lz —y].

n=—00,n#0

where

L= Z Cnf (In] + 1) (Aan — Aan—1) =

n=—00,n#0

=C Z In® (|n] + 1)y, < co.

n=—o00,n#0

Thus, the Lipschitz condition is satisfied. Therefore, the solution of the Cauchy
problem (3.2), (3.3) is exists and unique for all ¢ > 0 and 7 € R.
Lemma 3.2 is proved.

Remark 3.1. Theorem 3.1 and Lemma 3.2 give a method for solving the problem
(1.1)-(1.3).

Proof. To do this, first find the spectral data \,, £2(7), 0%(7) = £1, n €
Z\ {0}, of the Dirac operator £(7,0). Denote the spectral data of the operator
L£(7,t) by An, &n(T,t), on(r,t) = £1, n € Z\ {0}. Then, solving the Cauchy
problem (3.20), (3.3) for an arbitrary value of 7, and find &,(7,t), on(7,t), n €
Z\ {0}. From the trace formula (3.17) we define the function ¢,(7,t), i.e. solving
the problem (1.1)-(1.3).

So far, we have assumed that the Cauchy problem (1.1)-(1.3) has a solution. It
is not difficult to get rid of this assumption by directly verifying that the function

qr-(7,t), T € R, t > 0 obtained in this way actually satisfies the equations (1.1).

Remark 3.2. The function ¢, (7, t) which is constructed using the Dubrovin system
of equations (3.2), (3.3) and the trace formula (3.17) satisfies the equation (1.1).

Proof. To do this, we use the second trace formula

2 00 2 2
<;CIT (7_7 t)) + %Q‘r‘r (T, t) = Z <)\2kl2+)\2k - fl% (7-7 t)) : (3'28)

k=—00,k#0

Differentiating the formula (3.28) with respect to t, we have

%qT(T,t)th(T,t)—&-%(th(T,t))T:— 3 2§k(7,t)85’“a(;’t). (3.29)
k= — o0,k 40

Here, we used the equality (¢- (7,1)),, = (¢r (7,1)),,. Further, taking into account
Dubrovin system of equations (3.2) and equality (3.29), we obtain

o

qr (1,t) 2 (7,t) + 27 (1,1) = =8 Z (=D Eop (7, t)h ()& (7,1) x

k=—00,k0
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x [a(t) {452 (7,8) + & (7:1) qu " q”] } !

o) g c T
+me + (t)gk( 7t):|7 (330)
where
z(1,t) = qre (1,1).- (3.31)

Now, we use Dubrovin system of differential equations corresponding to the equa-

tion (1.4),
agna(:’t) =2(=1)"" o, (1,t) hy (E(7,1)) &0 (7, 1), (3.32)

as well as the trace formula (3.17). Then from (3.30), we have the following
equality

) 4.
dr (7-7 t) z (7_7 t) + 2z (7', t) = 4a(t) Z M+

k=—00,k#0 or
1, < 9g2(r,t) o) < 9€2(r,t) (7, 1)
+2a(t) [Qqﬁqw] > BT o (n)er g (7, ty42e(r) Yo PR,
ke=—00,k#£0 k=—o00
(3.33)

Next, we calculate the sums of the following functional series:

)

o 0G(n)  ~ 9&(nY)
Z F Z k@T

-
k=—00,k#0 k=—00,k0

To do this, we differentiate with respect to 7 the trace formulas (3.28), then we
have

1
e (T, ) = @ (T, ) @rrr (T, ) + @rr (7, 1) 2 (7, ) + Zﬁ(f 1) =

o Agp + A3
—4 2k 2k—1 44 t . 34
> (2 & (1.1) (3.34)
k=—00,k#0
Thus,
00 864
Qrrrrr + QrrQrrr + QrQrrrr — qTTTqZ - QQETQT - QEQTT =4 Z 87;67
k=—00,k#0
00
0
TqrT rrr = —2 - -
rdrr + 4 >,
k=—00,k#0

Using these formulas from (3.33), we have
¢z (T,t) + 27 (1,1) =
= a(t) (qTTTTT t GrrQrrr + QrQrrrr — q7'7'7'q12- - QQZTCIT - QEQTT) -

1
- a(t) |:2qz + QTT:| (qTqTT + qTTT) + 2b(t)eqq’ra
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l.e.
Grz (1,t) + 2z (1,t) =
= _ § 2 _ 9.2 o § 3
= a(t) |Grrrrr + Grlrrrr = S4rrrdr = 347r4r = 5874 | + (3.35)
+ 2b(t)eq(T7t)QT - C(t)qTqTT - c(t)qTTT‘

Here’ q= Q(T, t)a fk = gk('rv t)
It is easy to check that the function

z (7’, t) = a(t) <q77—77— - ;)q?-QT’T> + b(t)eq — C(t)qTT + 4 (t)eiq

is a solution of the linear equation (3.35). Choosing C(t) = 0, we have

(120) = al0) (4 -

From here and from the notation (3.31), we get the equation (1.1):

3
2q3qTT> +b(t)e? — c(t)qrr

gt (T, t) = alt) {qu(T, t) — ;qi(f, t)qrr (T, t)} +b()e? T — c(t)qrr (T, 1).

Remark 3.3. The uniform convergence of the series in the above formulas (3.17)-
(3.19) and (3.27), as well as (3.34) follow from the equality (3.24) and the estimate
(3.25).

Thus, we have established the solvability of the Cauchy problem (1.1)-(1.3) in
the class C™(R), n > 6, of periodic infinite-gap functions.

Theorem 3.2. If the initial function qo(x) satisfies the following condition
qo(z + ) = qo(x) € C"(R),n > 6,

then there exists a solution ¢ (x,t), x € R, t > 0 of the problem (1.1)-(1.3),
which is uniquely is given by the formula (3.17) and belongs to the class
Coi(t>0)NC(t>0).

Corollary 3.1. Using the results of [18], [44], we deduce that if the initial func-
tion qo(x) is a real analytic ™ periodic function, then the solution q(x,t) is a real
analytic function with respect to x.

Corollary 3.2. If the number 5 is a period (antiperiod) for the initial function
qo(z), then all roots of the equation A(N)+2 =10 (A(X)—2 =0) are double. Since
the Lyapunov function corresponding to the coefficient q(x,t) coincides with A(N),
according to the results of [4], [23] the number T is also a period (antiperiod) for
the solution q(z,t) with respect to the variable x.

4. Open Question.

Currently, the problem of the solvability of the Cauchy problem (1.1)-(1.3) in
the class C™(R), 0 < n <5, is open.
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