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ONE EXAMPLE OF SINGULAR REPRESENTATIONS OF

REAL NUMBERS FROM THE UNIT INTERVAL

SYMON SERBENYUK

Abstract. In this article, the operator approach for modeling numeral
systems, previously introduced by the author of this research, is gen-
eralized for a certain case. An example of such numeral systems is
introduced and discussed.

1. Introduction

In modern science, the modeling of various numeral systems and their in-
vestigation is widely utilized for constructing objects and techniques in applied
mathematics, which are used to model real objects and phenomena in economics,
physics, computer science, computer security, social sciences, and other fields. It
should be remarked that the construction of new representations of real num-
bers is an important tool for the following areas of science: applications of non-
cracking coding mechanisms in cybersecurity, encoding and decoding informa-
tion, and modeling and studying of “pathological” mathematical objects (Cantor
and Moran sets, singular functions, non-differentiable, or nowhere monotonic
functions, etc.; the notion of “pathology” in mathematics is explained in [26]).
Pathological mathematical objects are widely applied in various areas of science
(see [1, 2, 3, 7, 13, 9, 22, 23, 25]).

Finally, it’s worth noting that there is a significant amount of research ded-
icated to modeling and investigating various numeral systems and pathological
mathematical objects (for example, see surveys in [2, 3, 5, 12, 6, 8, 4, 10, 21, 5,
11, 15, 16, 20], etc.).

In the present research, certain results from the paper [22] are generalized, and
investigations of problems introduced in the last-mentioned paper are initiated.

An approach for modeling new representations of real numbers is based on uti-
lizing specific types of functions through various construction methods. Patholog-
ical functions can be employed for modeling expansions of real numbers and vice
versa. Additionally, another technique involves modeling Cantor series expan-
sions with non-integer (fractional) bases (see [22]), quasy-nega-representations,
etc. (see also [19]).
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The expansions introduced in this paper can be modeled using the singular
Salem function and a specific operator for changing digits in the representation.
Let’s start with the definitions.

Let q > 1 be a fixed positive integer. It is well known that any number x ∈ [0, 1]
can be represented by the following form

∞∑
k=1

ik
qk

:= ∆q
i1i2...ik...

= x,

where ik ∈ A ≡ {0, 1, . . . , q − 1}. The last-mentioned representation is called the
q-ary representation of x.

Let η be a random variable defined by a q-ary expansion

η =
ξ1
q

+
ξ2
q2

+
ξ3
q3

+ · · ·+ ξk
qk

+ · · · := ∆q
ξ1ξ2...ξk...

,

where digits ξk (k = 1, 2, 3, . . . ) are random and taking the values 0, 1, . . . , q − 1
with probabilities p0, p1, . . . , pq−1. That is, ξk are independent and P{ξk = ik} =
pik , ik ∈ A. Here 0 < pt < 1, Pq = {p0, p1, . . . , pq−1}, and

∑q
t=0 pt = 1.

From the definition of distribution function and the expressions

{η < x} = {ξ1 < i1} ∪ {ξ1 = i1, ξ2 < i2} ∪ · · ·

· · · ∪ {ξ1 = i1, ξ2 = i2, . . . , ξk−1 < ik−1}∪
∪{ξ1 = i1, ξ2 = i2, . . . , ξk−1 = ik−1, ξk < ik} ∪ . . . ,

P{ξ1 = i1, ξ2 = i2, . . . , ξk−1 = ik−1, ξk < εk} = βik

k−1∏
r=1

pir ,

it follows that the following is true: the distribution function Sη of the random
variable η can be represented in the following form for x = ∆q

i1i2...ik...
∈ [0, 1]:

Sη(x) = S(x) = βi1 +
∞∑
k=2

(
βik

k−1∏
r=1

pir

)
.

The last-mentioned function was introduced by Salem in [14] and is called the
Salem function. This function is an increasing singular function.

Let us consider an analytic representation of the Salem function as an expan-
sion of real numbers from [0, 1], since this function is a defined and continuous
on [0, 1]. That is,

S(x) = βi1 +
∞∑
k=2

(
βik

k−1∏
r=1

pir

)
= ∆

Pq

i1i2...ik...
= x ∈ [0, 1].

The notation ∆
Pq

i1i2...ik...
is called the singular Salem representation (or Pq-

representation) of x ∈ [0, 1].

Remark 1.1. It is well-known that for a q-ary expansions, numbers of the form

∆q
i1i2...im−1im00... = ∆q

i1i2...im−1im(0) = ∆q
i1i2...im−1[im−1][q−1][q−1]... = ∆q

i1i2...im−1[im−1](q−1)

are called q-rational. The rest of numbers are q-irrational and have the unique
q-representation.
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Since S is a distribution function, we get that numbers of the form

∆
Pq

i1i2...im−1im(0) = ∆
Pq

i1i2...im−1[im−1](q−1)

are Pq-rational. The rest of numbers are Pq-irrational and have the unique Pq-
representation.

Let us consider the case when q = 3. Let θ be an operator defined on digits
{0, 1, 2} by the following rule: θ(0) = 0, θ(1) = 2, and θ(2) = 1.

In this paper, the main attention is given to the Pθ-representation of real
numbers which related to the P3-representation by the following rule:

∆Pθ
γ1γ2..γk...

= ∆P3

θ(i1)θ(i2)...θ(ik)...
:= βθ(i1) +

∞∑
k=2

(
βθ(ik)

k−1∏
r=1

pθ(ir)

)
, (1.1)

where ik ∈ {0, 1, 2}.
Numbers of the form

∆Pθ

γ1γ2...γm−1γm(0) = ∆Pθ

γ1γ2...γm−1[γm−1](2)

are Pθ-rational. The rest of numbers are Pθ-irrational and have the unique Pθ-
representation.

The Pθ-representation of real numbers is a generalization of the 3
′
-representation

([22]) and coincides with the last representation under the condition p0 = p1 =
p2 =

1
3 .

To investigate relationships of certain generalized positive and alternating
(sign-variable) expansions of real numbers, let us consider an operator aproach
and model a simple example of numeral system, the geometry of which is a gen-
eralization of the geometries of some positive and alternating expansions.

2. The basis of the metric theory

Lemma 2.1. Each number x ∈ [0, 1] can be represented in terms of the Pθ-
representation (1.1). In addition, every Pθ-irrational number has the unique Pθ-
representation, and every Pθ-rational number has two different representations.

Proof. Let us consider the following function

f : x = ∆P3
i1i2...ik...

→ ∆P3

θ(i1)θ(i2)...θ(ik)...
= ∆Pθ

γ1γ2...γk...
= f(x) = y, (2.1)

where θ(0) = 0, θ(1) = 2, and θ(2) = 1.
The last function was investigated in [24], its partial cases are considered in

[18, 17]. Let us recall some its properties:

• “this function is continuous at P3-irrational points, and P3-rational points
are points of its discontinuity;

• the function is a singular nowhere monotone function;
• the graph is a fractal dust”.

The statement follows from the last-mentioned properties of f . □

Suppose c1, c2, . . . , cm is an ordered tuple of digits from {0, 1, 2}. Then a
cylinder ΛPθ

c1c2...cm of rank m with base c1c2 . . . cm is a set of the form:

ΛPθ
c1c2...cm ≡

{
x : x = ∆Pθ

c1c2...cmγm+1γm+2γm+3..., γt ∈ {0, 1, 2}, t > m
}
,
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Lemma 2.2. Cylinders ΛPθ
c1c2...cm have the following properties:

(1) Any cylinder ΛPθ
c1c2...cm is a closed interval, as well as

ΛPθ
c1c2...cm :=

[
∆Pθ

c1c2...cm(0),∆
Pθ

c1c2...cm(2)

]
.

(2) For the Lebesgue measure | · | of a set, the following holds:∣∣ΛPθ
c1c2...cm

∣∣ = m∏
r=1

pcr =

m∏
r=1

pθ(dr),

where θ(dr) = cr for all r = 1,m.
(3)

ΛPθ
c1c2...cmc ⊂ ΛPθ

c1c2...cm .

(4)

ΛPθ
c1c2...cm =

2⋃
c=0

ΛPθ
c1c2...cmc.

(5) Cylinders ΛPθ
c1c2...cm are left-to-right situated.

Proof. Choose a certain x0 ∈ ΛP3
d1d2...dm

such that θ(dr) = cr for all r = 1,m.
For proving, one can use properties of f . Then

f(x0) = f
(
∆P3

d1d2...dmim+1im+2...

)
= ∆P3

θ(d1)θ(d2)...θ(dm)θ(im+1)θ(im+2)...

= ∆Pθ
c1c2...cmγm+1γm+2... ∈ ΛPθ

c1c2...cm .

(2.2)

Also,

f
(
inf ΛP3

d1d2...dm

)
= f

(
∆P3

d1d2...dm(0)

)
= ∆Pθ

c1c2...cm(0) = inf ΛPθ
c1c2...cm ∈ ΛPθ

c1c2...cm ,

(2.3)

f
(
supΛP3

d1d2...dm

)
= f

(
∆P3

d1d2...dm(2)

)
= ∆Pθ

c1c2...cm(1) ∈ ΛPθ
c1c2...cm , (2.4)

and

supΛPθ
c1c2...cm = ∆Pθ

c1c2...cm(2) = f
(
∆P3

d1d2...dm(1)

)
. (2.5)

Let us prove that a cylinder is a segment. Suppose that x ∈ ΛPθ
c1c2...cm . That

is,

x = βc1 +
m∑
k=2

(
βck

k−1∏
r=1

pcr

)
+

(
k∏

r=1

pcr

)(
βγm+1 +

∞∑
t=m+2

(
βγt

t−1∏
s=m+1

pγs

))
,

where γt ∈ {0, 1, 2} for t = m+ 1,m+ 2,m+ 3, . . . . Whence,

x
′
= βc1 +

m∑
k=2

(
βck

k−1∏
r=1

pcr

)
≤ x ≤ βc1 +

m∑
k=2

(
βck

k−1∏
r=1

pcr

)
+

(
k∏

r=1

pcr

)
= x

′′
.

So x ∈
[
x

′
, x

′′
]
⊇ ΛPθ

c1c2...cm . Since

x
′
= βc1 +

m∑
k=2

(
βck

k−1∏
r=1

pcr

)
+

(
k∏

r=1

pcr

)
inf

(
βγm+1 +

∞∑
t=m+2

(
βγt

t−1∏
s=m+1

pγs

))
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and

x
′′
= βc1 +

m∑
k=2

(
βck

k−1∏
r=1

pcr

)
+

(
k∏

r=1

pcr

)
sup

(
βγm+1 +

∞∑
t=m+2

(
βγt

t−1∏
s=m+1

pγs

))
hold for any x ∈ ΛPθ

c1c2...cm , we obtain x, x
′
, x

′′ ∈ ΛPθ
c1c2...cm .

So, the first and second properties are proven.
Let us prove the third property. Suppose d1, d2 . . . , dm is a fixed tuple of digits

from {0, 1, 2} such that θ(dr) = cr for all r = 1,m. Then

f
(
inf ΛP3

d1d2...dmd

)
= inf ΛPθ

c1c2...cnc ∈ ΛPθ
c1c2...cnc,

where θ(d) = c, and

inf ΛPθ
c1c2...cnc < f

(
supΛP3

d1d2...dmd

)
< supΛPθ

c1c2...cnc.

Hence, using the first and second properties of cylinders, as well as relationships
(2.2)-(2.5), we have

inf ΛPθ
c1c2...cmc ≥ inf ΛPθ

c1c2...cm

and

supΛPθ
c1c2...cmc ≤ supΛPθ

c1c2...cm .

So,

ΛPθ
c1c2...cmc ⊂ ΛPθ

c1c2...cm =

2⋃
c=0

ΛPθ
c1c2...cmc.

Let us prove tha last property. Let us consider the differences:

inf ΛPθ
c1c2...cm−12

− supΛPθ
c1c2...cm−11

= ∆Pθ

c1c2...cm−12(0)
−∆Pθ

c1c2...cm−11(2)
= 0,

inf ΛPθ
c1c2...cm−11

− supΛPθ
c1c2...cm−10

= ∆Pθ

c1c2...cm−11(0)
−∆Pθ

c1c2...cm−10(2)
= 0.

Our Lemma is proven. □

Theorem 2.1. The map

f : x = ∆P3
i1i2...ik...

→ ∆P3

θ(i1)θ(i2)...θ(ik)...
= ∆Pθ

γ1γ2...γk...
= y

does not preserve a distance between points and the Lebesgue measure of an in-
terval (segment).

Proof. Let us prove that f does not preserve a distance. Let us choose x1, x2 ∈
[0, 1] such that the condition |f(x2) − f(x1)| ≠ |x2 − x1| holds. The statement
follows from the existence of jump discontinuities of f . Really, for example,
suppose that p0 = 1

2 , p1 = 1
3 , p2 = 1

6 , as well as x1 = ∆P3

22(0) and x2 = ∆P3

21(0).

Then

|x1 − x2| = β2 + β2p2 − β2 − β1p2 = p2(β2 − β1) = p2(p0 + p1 − p0) = p1p2 =
1

18

and

|f(x2)−f(x1)| =
∣∣∣∆Pθ

11(0) −∆Pθ

12(0)

∣∣∣ = |β1+β1p1−β1−β2p1| = |p1(β1−β2)| =
1

9
̸= |x1−x2|.

Let us prove that f does not preserve the Lebesgue measure. Suppose [x1, x2] ⊂
[0, 1] is a segment.
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If [x1, x2] ≡ ΛP3
d1d2...dm

, then considering the last lemma, we get∣∣∣ΛP3
d1d2...dm

∣∣∣ = m∏
t=1

pdt

and ∣∣∣f (ΛP3
d1d2...dm

)∣∣∣ = ∣∣ΛPθ
c1c2...cm

∣∣ = m∏
t=1

pct =
m∏
t=1

pθ(dt).

In a general case,
m∏
t=1

pdt ̸=
m∏
t=1

pθ(dt).

Really, suppose p0 =
1
4 , p1 =

1
2 , and p2 =

1
4 . For example, then∣∣∣ΛP3

11122

∣∣∣ = p31p
2
2 =

1

8
· 1

16
=

1

128

but ∣∣∣f (ΛPθ
22211

)∣∣∣ = p32p
2
1 =

1

64
· 1
4
=

1

256
.

Let [x1, x2] ⊂ [0, 1] be a segment that are not a certain cylinder ΛP3
d1d2...dm

; then
there exists ε-covering by cylinders of rank k and m such that⋃

m

ΛP3
d1d2...dm

⊆ [x1, x2] ⊆
⋃
k

ΛP3
d1d2...dk

and

lim
k→∞

∣∣∣∣∣⋃
k

ΛP3
d1d2...dk

∣∣∣∣∣ = lim
m→∞

∣∣∣∣∣⋃
m

ΛP3
d1d2...dm

∣∣∣∣∣ = |[x1, x2]|.

Whence, in this case, our results depends on the case when [x1, x2] is a certain
cylinder. □

Remark 2.1. It is useful the problem on geometry of a positive expansion of
real numbers and its corresponding alternating or sign-variable expansion. This
connection is useful for studying metric, dimensional and other properties of
mathematical objects defined by these representations of real numbers. The last
lemma give the answer on this problem.

Let ∆i1i2...ik..., ik ∈ Ak, be the representation of a number x from some in-
terval by a positive expansion. One can model the corresponding alternating
(sign-variable; here the case of alternating expansions is explained) representa-
tion ∆−

j1j2...jk...
by the following way (relationship):

∆−
j1j2...jk...

≡ ∆θ′ (i1)i2θ
′ (i3)i4...θ

′ (i2k−1).i2k...
,

where cylinders of even rank are left-to-right situated and cylinders of odd rank
are right-to-left situated, as well as

θ
′
(i2k−1) = max

i2k−1∈A2k−1

{i2k−1} − i2k−1,

or

∆−
j1j2...jk...

≡ ∆i1θ
′ (i2)i3θ

′ (i4)i5...i2k−1θ
′ (i2k)...
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and here cylinders of odd rank are left-to-right situated but cylinders of even
rank are right-to-left situated, as well as

θ
′
(i2k) = max

i2k∈A2k

{i2k} − i2k.

Let us consider an example. For the case of P3-representation, we obtain

∆−P3
j1j2...jk...

≡ ∆P3

i1[2−i2]i3[2−i4]i5...i2k−1[2−i2k]...

or
∆−P3

j1j2...jk...
≡ ∆P3

[2−i1]i2[2−i3]i4...i2k−2[2−i2k−1]...
.

Suppose even rank cylinders are left-to-right situated, as well as p0 = 1
2 , p1 = 1

3 ,

and p2 =
1
6 ; then ∣∣∣ΛP3

121200

∣∣∣ = p20p
2
1p

2
2 =

1

4 · 9 · 36
=

1

1296

and ∣∣∣Λ−P3
121220

∣∣∣ = p0p
2
1p

3
2 =

1

2 · 9 · 216
=

1

3888
.

Corollary 2.1. In a general case, the metric theories of the Pq- and quasi-nega-
Pq-representations can be different.
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