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NODAL SOLUTIONS OF SOME NONLINEAR FOURTH-ORDER

BOUNDARY VALUE PROBLEMS

YAGUT N. ALIYEVA

Abstract. In the present paper, we consider nonlinear boundary value
problems for fourth-order ordinary differential equations with a bound-
ary condition containing a parameter. Using previously obtained results
on the global bifurcation of solutions from zero and infinity to nonlin-
ear fourth-order eigenvalue problems with a spectral parameter in the
boundary condition, we establish the existence of nodal solutions to these
nonlinear boundary value problems.

1. Introduction

In this paper, we consider the existence of nodal solutions to the following
nonlinear boundary value problem for ordinary differential equations of fourth
order

ℓ(y) ≡ (p(x)y′′(x))′′ − (q(x)y′(x))′ = τr(x)f(y(x)), x ∈ (0, l), (1.1)

y′(0) cosα− (py′′)(0) sinα = 0, (1.2)

y(0) cosβ + Ty(0) sinβ = 0, (1.3)

y′(l) cos γ + (py′′)(l) sin γ = 0, (1.4)

(aλ+ b)y(l)− (cλ+ d)Ty(l) = 0, (1.5)

where Ty ≡ (py′′)′− qy′, p is a positive twice continuously differentiable function
on [0, l], q is a non-negative continuously differentiable function on [0, l], τ is a
positive number, r(x) is a positive continuous function on [0, l], α, β, γ, a, b, c, d
are real constants such that

α, β, γ ∈ [0, π/2]

and

σ = bc− ad > 0.

The nonlinear term f is real-valued continuous function on R which satisfy the
following conditions:

sf(s) > 0 for s ∈ R \{0}; (1.6)

f
0
, f0, f∞, f∞ ∈ (0,+∞) with f

0
̸= f0, f∞ ̸= f∞, (1.7)
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where

f
0
= lim inf

|s|→0

f(s)

s
, f0 = lim sup

|s|→0

f(s)

s
, (1.8)

f∞ = lim inf
|s|→+∞

f(s)

s
, f∞ = lim sup

|s|→+∞

f(s)

s
; (1.9)

The purpose of this article is to determine the interval for r in which there exist
solutions of problem (1.1)-(1.5) with a fixed number of simple nodal zeros. Just
as when studying nodal solutions of boundary value problems for second-order
ordinary and partial differential equations (see [11, 12, 14-18,], we will also use
the global bifurcation technique.

Note that the global bifurcation from zero and infinity of nonlinear eigenvalue
problems for second-order ordinary differential equations was intensively studied
in papers [9-11, 14, 16, 19-21]. The authors of these works established the exis-
tence of global continua of solutions in R × C1 bifurcating from the points and
intervals of the lines R× {0} and R× {∞}, and contained in classes of functions
with the usual nodal properties in the neighborhood of these bifurcation points
and intervals. Similar results for the eigenvalue problems for ordinary differential
equations of fourth order (both with a spectral parameter in boundary condition,
also without a spectral parameter in boundary conditions) was established in
[1-5, 7, 22].

The rest of this article is structured as follows. Section 2 considers a nonlin-
earizable in zero and infinity eigenvalue problems for fourth-order ordinary differ-
ential equations. Here we present the results obtained in [4, 5] on the structure
and behavior of global continua of solutions branching from bifurcation intervals.
In Section 3, we find the interval of the parameter τ in which there are solutions
to the problem (1.1)-(1.5) with a fixed number of simple nodal zeros. Here, to
prove our main theorem, which consists of 4 Steps, we consider an auxiliary non-
linear eigenvalue problem. In Step 1, the bifurcation of solutions from zero to
this auxiliary problem is studied. The bifurcation intervals are found, and the
existence of two families of unbounded components of the set of nontrivial solu-
tions branching from these intervals and contained in classes of functions with
a fixed number of nodes is proved. In Step 2, the bifurcation of solutions from
infinity to an auxiliary nonlinear eigenvalue problem is studied. Here we also find
bifurcation intervals and prove the existence of two families of global components
of the set of nontrivial solutions branching from these intervals and contained in
classes of functions with a fixed number of nodes in the neighborhood of these
intervals. In Step 3 it is proved that the global components of the set of non-
trivial solutions to the auxiliary problem branching from the intervals of the line
R× {∞} are also contained in classes with a fixed number of simple nodal zeros
and intersect the bifurcation intervals of the line of trivial solutions. It is also
established that the global components of nontrivial solutions branching from the
line of trivial solutions coincide with the corresponding components of nontrivial
solutions branching from intervals of the line R×{∞}. In step 4, using the results
of Steps 1-3, we find intervals for the parameter r in which there are solutions
to the boundary value problem (1.1)-(1.5) with a fixed number of simple nodal
zeros.
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2. Preliminary

We denote by BC0 and BCλ the sets of functions that satisfy the boundary
conditions (1.2)-(1.4) and (1.2)-(1.5), respectively.

Let E = C3[0, l] ∩ BC0 be a Banach space which is equipped with the usual

norm ||y||3 =
3∑

s=0
|| y(s)||∞, where ||y||∞ = max

x∈[0, l]
|y (x)|.

Note that in [1] (see also [2]), using the Prüfer type transformation, the author
constructed classes Sν

k , k ∈ N, ν ∈ {+ , −}, of functions y ∈ E, which a fixed

oscillation count. The sets S+
k , S−

k and Sk = S+
k ∩ S−

k are pairwise disjoint open
subsets of E. Moreover, it follows from [1, Lemma 2.2] that if y ∈ ∂Sν

k (∂Sk),
then y has at least one zero multiple four in the interval (0, l).

We consider the following linear spectral problem{
ℓ(y)(x) = λr(x)y(x), x ∈ (0, l),
y ∈ BCλ.

(2.1)

Problem (2.1) was studied in [13], where it was established that the eigenvalues
of this problem are real and simple, and form an infinitely increasing sequence
{λk}∞k=1 such that λk > 0 for k ≥ 3; in this case, each of the first two eigenvalues
can be either positive or non-positive. Moreover, by [8, Theorems 3.3, 4.2, 5.4]
and [13, Theorem 2.2] it follows from [1, Remark 2.1] and [2, § 3.1] that for each
k ∈ N the eigenfunction yk(x) corresponding to the eigenvalue λk > 0 lies in Sk.

Remark 2.1. Throughout what follows we will assume that the first eigenvalue of
problem (2.1) is positive.

From now on ν will denote an element of {+ , −} that is, either ν = + or
ν = − .

To study the existence of solutions to problem (1.1)-(1.5) with a fixed number
of nodes, consider the following nonlinear eigenvalue problem{

ℓ(y) = λr(x)y + h(x, y, y′, y′′, y′′′, λ), x ∈ (0, l),
y ∈ BCλ,

(2.2)

Here h is real-valued continuous functions on [0, l]×R5 that satisfy the following
conditions: there exist constants M0 > 0 and sufficiently small δ0 > 0 such that∣∣∣h(x, y, s, v, w, λ)

y

∣∣∣ ≤M0, (x, y, s, v, w) ∈ [0, l]× R4, |y|+ |s|+ |v|+ |w| ≤ δ0,

y ̸= 0, λ ∈ R;
(2.3)

there exist constants M1 > 0 and sufficiently large ∆1 > 0 such that∣∣∣h(x, y, s, v, w, λ)
y

∣∣∣ ≤M1, (x, y, s, v, w) ∈ [0, l]× R4, |y|+ |s|+ |v|+ |w| ≥ ∆1,

y ̸= 0, λ ∈ R;
(2.4)

We introduce the following notations:

r0 = min
x∈[0, l]

r(x),

Ik, 0 =

[
λk −

M0

r0
, λk +

M0

r0

]
, Ik, 1 =

[
λk −

M1

r0
, λk +

M1

r0

]
.
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Since conditions (2.3) and (2.4) are satisfied, we consider the bifurcation of
nontrivial solutions of problem (2.2) simultaneously both from the line of trivial
solutions R× {0} = {(λ, 0) : λ ∈ R} and also from the line R× {∞} = {(λ,∞) :
λ ∈ R} (should be noted that as in [7, 20, 21] we add the points of the line
R×{∞} to our space R×E and define an appropriate topology on the resulting
set). It follows from [4, 5] that the following results hold.
Lemma 2.1 [5, Lemmas 3 and 4]. For each k ∈ N and each ν the set of
bifurcation points of problem (2.2) with respect to R×Sν

k is nonempty. Moreover,
if (λ, 0) is a bifurcation point of problem (2.2) with respect to R×Sν

k , then λ ∈ Ik, 0.
Let D be the set of nontrivial solutions of the nonlinear eigenvalue problem

(2.2).
For each k ∈ N and each ν by Dν

k, 0 we denote the union of all the components

of the set D which meet the interval Ik, 0 × {0} with respect to the set R × Sν
k .

Let D̃ν
k, 0 = Dν

k, 0 ∪ (Ik, 0 × {0}). Note that the set Dν
k may not be connected in

R× E, but the set D̃ν
k is connected in R× E.

Theorem 2.1 [5, Theorem 3]. For each k ∈ N and each ν the set Dν
k is nonempty,

is unbounded in R× E and lies in R× Sν
k .

Lemma 2.2 [4, Theorem 3.1]. For each k ∈ N and each ν the set of bifurcation
points from R×{∞} of problem (2.2) with respect to the set R×Sν

k is nonempty.
Moreover, if (λ,∞) is a bifurcation point at R×{∞} of problem (2.2) with respect
to R× Sν

k , then λ ∈ Ik, 1.

For each k ∈ N and each ν let D̃ν
k,1 be the union of all the components of the

set D which meet the interval Ik,1 × {∞} with respect to the set R × Sν
k . Let

D̃ν
k, 1 = Dν

k, 1 ∪ (Ik, 1 ×{∞}). Note that Dν
k,1 may not be connected in R×E, but

D̃ν
k is connected R× E.

Theorem 2.2 [4, Theorem 4.1]. For each k ∈ N and each ν the set Dν
k,1 is

nonempty and either
(i) the set Dν

k,1 meets Ik′, 1 × {∞} with respect to R× Sν′
k′ for some (k′, ν ′) ̸=

(k, ν), or
(ii) the set Dν

k,1 meets R× {0} for some λ ∈ R, or
(iii) the natural projection of Dν

k,1 on R× {0} is unbounded.

In addition, if cases (ii) and (iii) are not satisfied for the union Dk,1 = D+
k,1∪D

−
k,1,

then case (i) is satisfied for it with k′ ̸= k.

3. Existence of solutions to problem (1.1)-(1.5) with fixed number
of nodal simple zeros

In this section we will determine the interval of τ , in which there exist nodal
solutions of problem (1.1)-(1.5).
Theorem 3.1. Suppose that for some k ∈ N one of the following conditions is
satisfied:

λk
f
0

< τ <
λk

f∞
;
λk
f∞

< τ <
λk

f0
.

Then problem (1.1)-(1.5) has two solutions y+k and y−k such that y+k ∈ S+
k and

y−k ∈ S−
k , and consequently, y+k has k − 1 or k − 2 simple zeros in (0, l) and is
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positive near x = 0, and y−k has either k− 1 or k− 2 simple zeros in (0, l) and is
negative near x = 0.
Proof. To prove the theorem, consider the following nonlinear eigenvalue problem{

ℓ(y)(x) = λτr(x)y(x) + τr(x)(f(y(x))− y(x)), x ∈ (0, l),
y ∈ (b.c.)λ.

(3.1)

The proof will be carried out in 4 steps.
Step 1. Let ϱ0 > 0 be an arbitrary fixed sufficiently small number. Then

according to (1.6)-(1.7) there is a sufficiently small κ0 ∈ (0, δ0) such that for any
s ∈ R satisfying the condition |s| ∈ (0,κ0) the following relation holds:

f
0
− ϱ0 <

f(s)

s
< f0 + ϱ0. (3.2)

Let

F (s) = f(s)− s, s ∈ R.
Then it follows from (3.2) that

f
0
− 1− ϱ0 <

F (s)

s
< f0 − 1 + ϱ0, |s| ∈ (0,κ0). (3.3)

Hence by (3.3) for any s ∈ R, |s| ∈ (0,κ0), we get∣∣∣∣F (s)s
∣∣∣∣ ≤M∗

0 , (3.4)

where

M∗
0 = max

{∣∣∣f
0
− 1− ϱ0

∣∣∣ , ∣∣f0 − 1 + ϱ0
∣∣} > 0.

Consequently, by relation (3.4) Lemma 2.1 implies that for each k ∈ N and
each ν the set of bifurcation points from the line of trivial solutions to nonlinear
eigenvalue problem (3.1) with respect to R×Sν

k is nonempty. Note that if (λ̃, 0)
is a bifurcation point to problem (3.1) with respect to the set R×Sν

k , then there

exists a sequence {(λ̃n, ỹn)}∞n=1 of solutions of problem (3.1) such that

(λ̃n, ỹn) ∈ R× Sν
k ,

and

(λ̃n, ỹn) → (λ̃, 0) as n→ ∞. (3.5)

We define the function ψ̃n(x), x ∈ [0, 1], as follows:

ψ̃n(x) =

{
−F (ỹn(x))

ỹn(x)
if ỹn(x) ̸= 0,

0 if ỹn(x) = 0.
(3.6)

It is clear that (λ̃n, ỹn) for each n ∈ N solves the linear spectral problem{
1

τr(x) ℓ(y)(x) + ψ̃n(x)y(x) = λy(x), x ∈ (0, l).

y ∈ (b.c.)λ.
(3.7)

By [6, Remark 4.2 and Theorem 4.3] for each fixed n ∈ N the eigenvalues of
the linear problem (3.7) are real and simple, and form an unboundedly increas-

ing sequence {λ̃k, n}∞k=1. In addition, for each k ∈ N the eigenfunction ỹk, n(x)
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corresponding to the eigenvalue λ̃k, n is contained in the set Sk. Therefore, for
each fixed k ∈ N, we have

λ̃n = λ̃k, n, ỹn = ỹk, n.

Then, by (3.3) and (3.6) it follows from [1, Lemma 4.2, formula (21)] that

λ̃k − f0 + 1− ϱ0 ≤ λ̃n ≤ λ̃k − f
0
+ 1 + ϱ0, (3.8)

where λ̃k, k ∈ N, is a kth eigenvalue of the linear spectral problem{
ℓ(y)(x) = λτr(x)y(x), x ∈ (0, l),
y ∈ (b.c.)λ.

(3.9)

From (2.1) and (3.9) we see that λk = τ λ̃k for each k ∈ N. Hence by (3.8) we
get

λk
τ

− f0 + 1− ϱ0 ≤ λ̃n ≤ λk
τ

− f
0
+ 1 + ϱ0,

which implies that

λk
τ

− f0 + 1− ϱ0 ≤ λ̃ ≤ λk
τ

− f
0
+ 1 + ϱ0. (3.10)

Since ϱ0 is sufficiently small, from (3.10) we can conclude that

λk
τ

− f0 + 1 ≤ λ̃ ≤ λk
τ

− f
0
+ 1. (3.11)

By (3.11) the bifurcation points of problem (3.1) with respect to the set R×Sν
k

are contained in the interval I0k × {0}, where

I0k =

[
λk
τ

− f0 + 1,
λk
τ

− f
0
+ 1

]
.

Let D be the set of nontrivial solutions of the nonlinear eigenvalue problem
(3.1).

For each k ∈ N and each ν by Dν
k, 0 we denote the union of all the components

of the set D which meet the interval I0k × {0} with respect to the set R × Sν
k .

Then, it follows from Theorem 2.1 that for each k ∈ N and each ν the set Dν
k, 0

is unbounded in R× E and is contained in (R× Sν
k ) ∪ (I0k × {0}).

Step 2. We assume that ϱ1 > 0 is an arbitrary fixed sufficiently small number.
Then by conditions (1.6), (1.7) and (1.9) there exists a sufficiently large κ1 ∈
(∆1,+∞) such that for any s ∈ R satisfying the condition |s| ∈ (κ1,+∞) we
have the following relation

f∞ − ϱ1 <
f(s)

s
< f∞ + ϱ1. (3.12)

Then (3.12) implies that

f∞ − 1− ϱ1 <
F (s)

s
< f∞ − 1 + ϱ1, |s| ∈ (κ1,+∞). (3.13)

Let

M∗
1 = max

{∣∣∣f∞ − 1− ϱ1

∣∣∣ , ∣∣f∞ − 1 + ϱ1
∣∣} > 0.
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Then by (3.13) we have ∣∣∣∣F (s)s
∣∣∣∣ ≤M∗

1 , |s| ∈ (κ1,+∞). (3.14)

In view of (3.14) it follows from Lemma 2.2 that for each k ∈ N and each ν the
set of bifurcation points from the line R× {∞} of nonlinear eigenvalue problem

(3.1) with respect to R × Sν
k is nonempty. Moreover, if (λ̂,∞) is a bifurcation

point of problem (3.1) with respect to the set R×Sν
k , then there exists a sequence

{(λ̂n, ŷn)}∞n=1 of solutions of problem (3.1) such that

(λ̂n, ŷn) ∈ R× Sν
k

and
λ̂n → λ̂, ||ŷn||3 → +∞ as n→ ∞. (3.15)

Let ψ̂n(x), x ∈ [0, 1], be the function defined by

ψ̂n(x) =

{
−F (ŷn(x))

ŷn(x)
if ŷn(x) ̸= 0,

0 if ŷn(x) = 0.
(3.16)

It is obvious that (λ̂n, ŷn), n ∈ N, solves the linear eigenvalue problem{
1

τr(x) ℓ(y)(x) + ψ̂n(x)y(x) = λy(x), x ∈ (0, l),

y ∈ (b.c.)λ,
(3.17)

the eigenvalues of which are real and simple, and form an unboundedly increasing
sequence {λ̂k, n}∞k=1; moreover, for each k ∈ N the eigenfunction ŷk, n(x) corre-

sponding to the eigenvalue λ̂k, n is contained in Sk (see [6]). Then for each fixed
k ∈ N, we have

λ̂n = λ̂k, n, ŷn = ŷk, n.

Hence, in view of (3.13) and (3.16) by Lemma 4.2 of [1] we get

λ̃k − f∞ + 1− ϱ1 ≤ λ̂n ≤ λ̃k − f∞ + 1 + ϱ1, (3.18)

and consequently,

λk
τ

− f∞ + 1− ϱ1 ≤ λ̂n ≤ λk
τ

− f∞ + 1 + ϱ1.

Next it follows from (3.18) that

λk
τ

− f∞ + 1− ϱ1 ≤ λ̂ ≤ λk
τ

− f∞ + 1 + ϱ1. (3.19)

As can be seen from (3.19), the arbitrariness of the number ϱ1 leads to the
conclusion that

λk
τ

− f∞ + 1 ≤ λ̂ ≤ λk
τ

− f∞ + 1. (3.20)

The relation (3.20) shows that the bifurcation points from R×{∞} of problem
(3.1) with respect to the set R× Sν

k lies in the interval I1k × {∞}, where

I1k =

[
λk
τ

− f∞ + 1,
λk
τ

− f∞ + 1

]
.

For each k ∈ N and each ν by Dν
k, 1 we denote the union of all the components

of the set D which meet the interval I1k × {∞} with respect to the set R × Sν
k .
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Then, it follows from Theorem 2.2 that for each k ∈ N and each ν the set Dν
k,1 is

nonempty and either
(i) the set Dν

k,1 meets Ik′, 1 × {∞} with respect to R× Sν′
k′ for some (k′, ν ′) ̸=

(k, ν), or
(ii) the set Dν

k,1 meets R× {0} for some λ ∈ R, or
(iii) the natural projection PR(D

ν
k,1) of D

ν
k,1 on R× {0} is unbounded.

In addition, if cases (ii) and (iii) are not satisfied for the union Dk,1 = D+
k,1∪D−

k,1,

then case (i) is satisfied for it with k′ ̸= k.
Step 3. It follows from [2, Lemma 1.1] (see also beginning of the proof of

Theorem 3.1 in p. 1818 of [1]) that if (λ, y) ∈ R×E is a solution of problem (3.1)
such that y ∈ ∂Sν

k , then y ≡ 0. Then we have the following relation

D ∩ (R× ∂Sν
k ) = ∅.

Consequently, the sets D ∩ (R× Sν
k ) and D\(R× Sν

k ) are mutually separated in
our space R×E (regarding the definition of mutually separable two sets see [23,
Definition 26.4]). Therefore, by [23, Corollary 26.6] any component of D must be
a subset either of the set D ∩ (R× Sν

k ) or D\(R× Sν
k ). Since the set Dν

k,1 is the
union of all components of D that intersect R × Sν

k , each of these components
must be a subset of R × Sν

k , which implies that Dν
k,1 ⊂ R × Sν

k . From this we

conclude that alternative (i) above for the set Dν
k,1 cannot be satisfied.

In other hand, since f(s) ∈ C(R) it follows that there exists positive constant
M2 such that ∣∣∣∣f(s)s

∣∣∣∣ ≤M2 for any s ∈ R such that κ0 ≤ |s| ≤ κ1,

whence implies that ∣∣∣∣F (s)s
∣∣∣∣ ≤M∗

2 , κ0 ≤ |s| ≤ κ1, (3.21)

where
M∗

2 =M2 + 1.

Let
M∗ = max {M∗

0 , M
∗
1 , M

∗
2 }.

Then by relations (3.4), (3.14) and (3.21) we get∣∣∣∣F (s)s
∣∣∣∣ ≤M∗, s ∈ R, s ̸= 0. (3.22)

Let (λ∗, y∗) ∈ R × E be a solution of problem (3.1) such that y∗ ∈ Sν
k . The

function ψ(x), x ∈ [0, 1], we defined by

ϕ∗(x) =

{
−F (y∗(x))

y∗(x) if ŷ∗(x) ̸= 0,

0 if y∗(x) = 0.
(3.23)

Then λ∗ is a kth eigenvalue of the linear eigenvalue problem{ 1
τr(x) ℓ(y)(x) + ϕ∗(x)y(x) = λy(x), x ∈ (0, l).

y ∈ (b.c.)λ.
(3.24)

Hence by (3.22) it follows from [1, formula (21)] that

λ̃k −M∗ ≤ λ∗ ≤ λ̃k +M∗, (3.25)



112 YAGUT N. ALIYEVA

which shows that alternative (iii) above for the set Dν
k,1 cannot be satisfied.

Consequently, the set Dν
k,1 meets R× {0} for some λ ∈ R.

Thus by arguments of Step 1 and Step 2, and the above arguments we conclude
that for each k ∈ N and each ν the relation holds:

Dν
k, 0 , D

ν
k, 1 ⊂ I∗k × Sν

k ,

where

I∗k =

[
λk
τ

−M∗,
λk
τ

+M∗
]
.

Consequently, by Step 2 the set Dν
k, 0 can only meet (λ,∞) for λ ∈ I1k and by

Step 1 the set Dν
k, 1 can only meet (λ, 0) for λ ∈ I0k . Therefore, for each k ∈ N

and each ν we have the following relation

Dν
k, 0 = Dν

k, 1. (3.26)

Step 4. Note that every solution of the nonlinear eigenvalue problem (3.1)
of the form (1, y) gives a solution y of the nonlinear problem (1.1)-(1.5). Hence,
according to (3.26), it is obvious that if on the real axis R the interval I0k , k ∈ N,
lies to the left of 1 and the interval I1k lies to the right of 1, or the interval I0k lies
to the right of 1, and the interval I1k lies to the left of 1, then for each ν problem
(1.1)-(1.5) has a solution yνk which is contained in Sν

k .
Let condition

f∞ <
λk
τ
< f

0

be satisfied. Then we have

λk
τ

− f
0
+ 1 < 1 and

λk
τ

− f∞ + 1 > 1,

i.e. the right end of the interval I0k is to the left of 1 and the left end of the
interval I1k is to the right of 1.

If the condition
λk
f∞

< τ <
λk

f0
is satisfied, then we get

λk
τ

− f∞ + 1 < 1 and <
λk
τ

− f0 + 1 > 1,

i.e. the right end of the interval I1k is to the left of 1 and the left end of the
interval I0k is to the right of 1 which completes the proof of this theorem.
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