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DETERMINATION OF A SPACEWISE DEPENDENT HEAT

SOURCE IN BIHARMONIC HEAT EQUATION FROM FINAL

TEMPERATURE MEASUREMENTS

MANSUR I. ISMAILOV

Abstract. The paper deals with the inverse problem associated with
the biharmonic heat equation, aiming to recover a space-dependent heat
source and the temperature distribution based on measurements of the
final temperature. The study establishes both the existence and unique-
ness of the classical solution, as well as the existence and uniqueness of
the generalized solution. These results are attained through the appli-
cation of the method of series expansion in terms of eigenfunctions for
the Dirichlet bi-Laplacian.

1. Introduction

Let Ω ⊂ Rd, d ≥ 1 be bounded open set with piecewise smooth boundary ∂Ω
in an d-dimensional Euclidean space Rd. A multi-index α = (α1, α2, · · · , αd) is
p- tuple of non-negative integer numbers. Its length is defined as |α|, namely

∂α
x = ∂α1

x1
∂α2
x2

· · · ∂αd
xd
, where ∂αi

xi
=

∂αi

∂αi
xj

.

Consider the following problem:

∂tu+∆2u = f(x)g(t), in ΩT , (1.1)

u(x, 0) = u0(x), x ∈ Ω, (1.2)

u = ∂νu = 0 on ∂Ω× (0, T ], (1.3)

where u0 and g are known functions, ν denotes the outward unit normal vector

field of the boundary ∂Ω and ΩT = Ω×(0, T ]. Here ∆ =
∑d

j=1 ∂
2
xj

be the Laplace

operator in Rd. The derivative ∂ν =
∑p

j=1 νj∂xj denotes the derivative at the

direction of the exterior unit normal vector ν = (ν1, ..., νd) to the surface ∂Ω. If
∂Ω ∈ C1 then the first order normal derivatives ∂ν are defined near ∂Ω.

We consider the inverse problem of finding the pair of function ⟨u, f⟩ from
(1.1)-(1.3) and from final time observation measurement
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u(x, T ) = uf (x), x ∈ Ω, (1.4)

where uf (x) is known function defined on R. The relevant literature on the
usual heat equation includes works on the one-dimensional case, such as those by
[5, 8, 9]. For the multidimensional case, studies by [2, 3, 4, 7, 6, 11] contribute to
the understanding of the inverse problem involving the identification of a space-
dependent source term.

The remaining chapters of the paper are organized as follows. The chapter on
existence and uniqueness consists of two sub-chapters. In the first sub-chapter,
we establish the admissible class of initial and final data by utilizing Weyl’s
asymptotic formula for the Dirichlet bi-Laplacian. The existence and uniqueness
of the classical solution are derived through the application of the Fourier method
to the orthonormal eigenfunctions of the Dirichlet bi-Laplacian. Moving on to
the second sub-chapter, we prove the existence and uniqueness of the generalized
solution for the minimal class of initial and final data. Finally, in the conclusion,
we delve into the future perspectives of the inverse coefficient problem for the
biharmonic heat equation.

2. Existence and Uniqueness of the Solution

2.1. Clamped plate problem. We consider the Dirichlet eigenvalue problem
of the biharmonic operator, the so-called clamped plate problem, which describes
vibrations of a clamped plate. The Dirichlet eigenvalues are found by solving the
following problem for an unknown function y ̸= 0 and eigenvalue λ:{

∆2y − λy = 0, in Ω,

y = ∂νy = 0 on ∂Ω,
(2.1)

where ∆2 is the biharmonic operator in Rd and ∂ν denotes the outward normal
derivative on boundary ∂Ω.

By using the spectral theorem for compact self-adjoint operators, it can be
shown that the eigenspaces are finite-dimensional and that the Dirichlet eigen-
values λ are real, positive, and have no limit point. Thus, they can be arranged
in increasing order:

0 < λ1 ≤ λ2 ≤ · · · ≤ λn → ∞,

where each eigenvalue is counted according to its geometric multiplicity. It follows
from [1, 10] that Weyl’s asymptotic formula for Dirichlet bi-Laplacian is

λn ∼ (2π)4
(

n

ωd |Ω|

) 4
d

, n → ∞, (2.2)

where ωd is volume of unite ball in Rd and |Ω| is the volume of a domain Ω ⊂ Rd.
The eigenspaces are orthogonal in the space of square-integrable functions, and

consist of smooth functions. In fact, the system of eigenfunctions yn, n = 1, 2, 3, ...
are complete orthonormal system in L2(Ω).
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Suppose that the domain Ω ⊂ Rd has a sufficiently smooth boundary ∂Ω,
and that corresponding orthonormal Dirichlet eigenvalues satisfy the following
condition:

|∂α
x yn(x)| = O

(
|λn|

|α|
4

)
, x ∈ Ω̄ (2.3)

for the multi-indices α = (α1, α2, · · · , αp) with |α| ≤ 4. It is easy to verify that
this is true for d = 1 and also for rectangular (piecewise smooth) domain in d ≥ 2
dimensions.

2.2. Existence and uniqueness of the classical solution. We define a clas-
sical solution to the problem (1.1)-(1.4) as a pair of functions u(x, t) ∈ C4,1(ΩT )∩
C1,0(Ω̃T ) ∩ C(Ω̄) and f(x) ∈ C(Ω̄) that, when applied, transform the problem

into an identity, where Ω̃T = Ω̄ × (0, T ]. The consistency conditions are u0(x),
uf (x) ∈ D(∆2) where D(∆2) ≡

{
φ ∈ C1(Ω̄) : φ = ∂νφ = 0 on ∂Ω

}
.

The following lemma is applicable for the classical solution of biharmonic heat
equation.

Lemma 2.1. Let k > d
8 +1 be an integer number. If φ ∈ C4k(Ω̄) and ∆2mφ = 0,

∂ν∆
2mφ = 0, m = 0, 1, ..., k − 1 on x ∈ ∂Ω , then we have

∞∑
n=1

λn |φn| ≤ c
∥∥∥∆2kφ

∥∥∥
L2

,

where c =
[∑∞

n=1
1

λ
2(k−1)
n

] 1
2
.

Proof. From the second Green’s identity for the Laplacian we get

φn =
1

λk
n

(
∆2kφ

)
n
,

where
(
∆2kφ

)
n
=

(
∆2kφ, yn

)
. We have the estimate

∑∞
n=1 λn |φn| =

∞∑
n=1

1

λk−1
n

∣∣∣(∆2kφ
)
n

∣∣∣ ≤ [ ∞∑
n=1

1

λ
2(k−1)
n

] 1
2
[ ∞∑
n=1

∣∣∣(∆2kφ
)
n

∣∣∣2] 1
2

≤

[ ∞∑
n=1

1

λ
2(k−1)
n

] 1
2 ∥∥∥∆2kφ

∥∥∥
L2

by the Cauchy-Schwartz and Bessel inequalities. The series c2 =
∑∞

n=1
1

λ
2(k−1)
n

is

convergent by Weyl’s asymptotic formula (2.2), since k > d
8 + 1. □

The formal solution of (1.1)-(1.4) is

u(x, t) =

∞∑
n=1

un(t)yn(x), f(x) =

∞∑
n=1

fnyn(x) (2.4)

with

u′n(t) + λnun(t) = fng(t),

un(0) = u0,n, un(T ) = uf,n,

where un,0 = (u0, yn), uf,n = (uf , yn).
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The solution of last problem is

un(t) = u0,ne
−λnt + fn

∫ t

0
g(τ)e−λn(t−τ)dτ.

where

fn =
uf,n − u0,ne

−λnT∫ T
0 g(τ)e−λn(T−τ)dτ

.

It is easy to show that∫ T

0
g(τ)e−λn(T−τ)dτ ≥ g0

λn
(1− e−λnT ),

if we suppose that g(t) ≥ g0 > 0, 0 ≤ t ≤ T .
The series

f(x) ∼
∞∑
n=1

fnyn(x), |fn| ≤ Cλn (|uf,n|+ |u0,n|)

u(x, t) ∼
∞∑
n=1

un(t)yn(x), |un| ≤ Cλn (|uf,n|+ |u0,n|) (2.5)

are uniformly convergent in Ω̄T and in Ω̄T , respectively, since the majorant series
M

∑∞
n=1 λn |u0,n| and M

∑∞
n=1 λn |uf,n| are convergent. By the estimate (2.3)

and Lemma 2.1, where |yn(x)| ≤ M . It means that f ∈ C(Ω̄) and u ∈ C(Ω̄T )
with u = 0 on ∂Ω× [0, T ] and u(x, 0) = u0(x) on Ω̄. The derivatives by time and
spatial variables

ut(x, t) ∼
∞∑
n=1

u′(t)yn(x),
∣∣u′n(t)∣∣ ≤ Cλn (|uf,n|+ |u0,n|) , (2.6)

∆2u ∼
∞∑
n=1

λnun(t)yn(x) (2.7)

is uniformly convergent in Ω̄T,ε ≡ {(x, t) : x ∈ Ω̄, ε ≤ t ≤ T} for ∀ε ∈ (0, T ),

since the majorant seriesM
∑∞

n=1 λ
1+

|α|
4

n e−λnε |u0,n| andM
∑∞

n=1 λ
1+

|α|
4

n e−λnε |uf,n|
are convergent. It means that u ∈ C4,1(ΩT ) and satisfies the equation (1.1).

In addition,

∂α
xu(x, t) =

∞∑
n=1

un(t)∂
α
x yn(x), |α| = 1

are continuous in Ω̄T,ε for ∀ε ∈ (0, T ) and satisfies ∂νu = 0 on ∂Ω × [ε, T ]. It is
clear to conclude that ∂νu = 0 on ∂Ω× (0, T ].

Each of the solution of the problem (1.1)-(1.4) can be represented in form of
(2.4) given that the system of eigenfunctions yn, n = 1, 2, 3, ... forms an orthonor-
mal basis in the space L2(Ω). The uniqueness of the solution to the inverse prob-
lem is guaranteed by the fact that the solution to problem (1.1)-(1.4) is uniquely
expressible in the form of (2.4).

Let us introduce the sets:
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Ck
0 (∆

2) =
{
φ ∈ C4k(Ω̄) : ∆2mφ = 0, ∂ν∆

2mφ = 0, m = 0, 1, ..., k − 1 on ∂Ω
}

for some integer k > d
8 + 1.

The following theorem establishes the existence and uniqueness of the classical
solution of inverse problem:

Theorem 2.1. Let the domain Ω ⊂ Rd has a sufficiently smooth boundary, and
that the corresponding orthonormal eigenvalues satisfies the condition (2.3), the
initial and final functions are u0, uf ∈ Ck

0 (∆
2) for some integer k > d

8 + 1 and
g(t) ∈ C[0, T ] with g(t) ≥ g0 > 0, ∀t ∈ (0, T ] (g0 is positive constant).Then there
exists an unique classical solution pair ⟨u, f⟩ for the inverse problem (1.1)- (1.4).

Remark: The classical solution to the problem (1.1)-(1.4), as a pair of funci-
tons ⟨u, f⟩ from a more convenient class where u(x, t) ∈ C4,1(ΩT )∩C1,0(Ω̄T ) and
f(x) ∈ C(Ω̄) can be obtained with the over-regularity of the initial and final data
as u0, uf ∈ Ck

0 (∆
2) for some integer k > d

8 + 2. This is because the majorant

series
∑∞

n=1 λ
1+ 1

4
n |u0,n| or

∑∞
n=1 λ

1+ 1
4

n |uf,n| must be convergent.

2.3. Existence and uniqueness of the generalized solution. The general-
ized solution for the problem (1.1)- (1.4) is comprehended as a pair of functions
u(x, t) ∈ H4,1(ΩT ) and f(x) ∈ L2(Ω) such that they render the problem identi-
cally satisfied almost everywhere.

Since the functions u0 and uf belongs to class H4
0 (Ω) then satisfy the boundary

condition (1.3) and they can be extended the Fourier series on eigenfunctions of
problem (2.1):

∆2u0(x) =
∞∑
n=1

λnu0,nyn(x), ∆2uf (x) =
∞∑
n=1

λnuf,nyn(x). (2.8)

The system of eigenfunctions yn, n = 1, 2, 3, ... forms a orthonormal system in
the space L2(Ω), the Bessel inequality holds:

∞∑
n=1

|λnu0,n|2 ≤
∥∥∆2u0

∥∥
L2

,
∞∑
n=1

|λnuf,n|2 ≤
∥∥∆2u0

∥∥
L2

.

Since the series (2.8) are absolute convergent and the inequalities (2.5)-(2.7)
implies the convergence of series (2.4) which are solutions of (1.1)- (1.4) from the
classes u(x, t) ∈ H4,1(ΩT ), f(x) ∈ L2(Ω).

Each of the solution of the problem (1.1)- (1.4) can be represented in form
of (2.4) given that the system of eigenfunctions yn, n = 1, 2, 3, ... forms an or-
thonormal basis in the space L2(Ω). The uniqueness of the solution to the inverse
problem is guaranteed by the fact that the solution to problem (1.1)- (1.4) is
uniquely expressible in the form of (2.4).

The following theorem establishes the existence and uniqueness of the gener-
alized solution of inverse problem:

Theorem 2.2. Let the domain Ω ⊂ Rd has a sufficiently smooth boundary, and
that the corresponding orthonormal eigenvalues satisfies the condition (2.3) the
initial and final functions are u0(x), uf (x) ∈ H4

0 (Ω) and g(t) ∈ L2(0, T ) with
g(t) ≥ g0 > 0 a.e., then there exists a unique generalized solution u(x, t) ∈
H4,1(ΩT ), f(x) ∈ L2(Ω) of the problem (1.1)- (1.4).
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3. Conclusion

The present paper addresses the existence and uniqueness of both classical
and generalized solutions for the inverse problem involving the determination of
a space-dependent source term, alongside the temperature distribution based
on final temperature measurements. The paper introduces a natural class of
functions pertaining to initial and final data, which is sufficient for the generalized
solution but falls short for the classical solution. The admissible class of initial
and final data is precisely determined using Weyl’s asymptotic formula for the
Dirichlet bi-Laplacian.

The obtained results for existence and uniqueness are achieved through the ap-
plication of the Fourier method to the orthonormal eigenfunctions of the Dirich-
let bi-Laplacian. There are two potential directions for future improvement of
the presented work. The first involves extending the problems to include time-
dependent diffusion, potential, or source coefficient identification for the bilhar-
monic heat equation. The second direction focuses on exploring inverse problems
associated with the poliharmonic heat equation.

Acknowledgements: The author thanks Professor Ali Huseynli for questions
and comments that helped to improve the present study.
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