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ON THE ERROR OF APPROXIMATION BY RBF NEURAL

NETWORKS WITH TWO HIDDEN NODES

AIDA KH. ASGAROVA AND IBRAHIM K. MAHAROV

Abstract. In the context of approximating a continuous multivariate
function using radial basis function (RBF) neural networks with two
hidden nodes, we focus on evaluating the approximation error in the
uniform norm. We derive a formula for this error by utilizing functionals
generated by closed paths.

1. Introduction

The pioneering work of Broomhead and Lowe [6] introduced Radial Basis Func-
tion (RBF) neural networks, which have gained a reputation as universal approxi-
mators due to their exceptional performance in function approximation problems.
Initially developed for data interpolation in higher-dimensional spaces, RBF net-
works have found applications across various engineering domains, serving as
a valuable tool for function approximation, prediction, estimation, and system
control (see, e.g., [9, 23, 17, 21, 22, 26, 27, 28, 29]).

One of the key advantages of RBF neural networks lies in the simplicity of com-
puting their network parameters. These networks possess the ability to handle
intricate nonlinear mappings and offer a swift and reliable learning mechanism, all
while maintaining computational efficiency. Consequently, they strike a balance
between complexity and computational cost. The set of RBF neural networks
considered in this paper consists of the following functions

m∑
i=1

wig

(
∥x− ci∥

σi
− θi

)
. (1.1)

Here m ∈ N is the number of nodes in the hidden layer, (w1, ..., wm) ∈ Rm is the
vector of weights, x ∈ Rd is an input vector, ci ∈ Rd and σi ∈ R are the centroids
and smoothing factor (or width) of the i-th node, 1 ≤ i ≤ m, respectively, θi ∈ R
are thresholds and g : R → R is the so-called activation function.

Radial basis functions (RBFs) are a type of multivariate functions that are
constant on spheres centered at a particular point. In other words, for a given
center point c and radius α, the RBF evaluates to a constant value on the sphere
defined by the equation ∥x − c∥ = α, α ∈ R, where x represents the input
variables.
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Let g(x) be a continuous activation function on R, consider the approximation
of the continuous function f(x) = f(x1, ..., xd) on a compact subset Q ⊂ Rd using
a set of radial basis function (RBF) neural networks:

G = G(g, c1, c2) =

{
m∑
i=1

wig

(
∥x− ci∥

σi
− θi

)
: wi, σi, θi ∈ R; ci = c1 or ci = c2

}
(1.2)

In equation (1.2), c1 and c2 are fixed center points of the radial basis functions
used in the RBF neural network. On the other hand, the numbers wi, σi, and θi
are variables that can vary and need to be determined during the process.

The approximation error is defined as follows:

E (f) = E(f,G) def
= inf

u∈G
∥f − u∥ ,

where

∥f − u∥ = max
x∈Q

|f(x)− u(x)|.

In this paper, we aim to derive a formula for computing the approximation
error in the context of the discussed RBF neural networks. We propose that
E(f) can be obtained by evaluating values of specially constructed functionals at
the function f .

2. Formula for the approximation error

Assume Q ⊂ Rd and c1, c2 ∈ Rd are fixed center points.

Definition 2.1. (see [4]) A finite or infinite ordered set p = (p1,p2, ...) ⊂ Q
with pi ̸= pi+1, and either ∥p1 − c1∥ = ∥p2 − c1∥ , ∥p2 − c2∥ = ∥p3 − c2∥,
∥p3 − c1∥ = ∥p4 − c1∥, ... or ∥p1 − c2∥ = ∥p2 − c2∥ , ∥p2 − c1∥ = ∥p3 − c1∥,
∥p3 − c2∥ = ∥p4 − c2∥, ...is called a path with respect to the centers c1 and c2.

In the given definition, the distances are alternated between two fixed points.
However, paths have many different variations. For example, instead of using
points, one can consider two hyperplanes for alternating distances. Specifically,
the two hyperplanes are defined as ai ·x = αi, i = 1, 2. The notation ”·” denotes
the standard scalar product in Rd, and the distances from these hyperplanes can
be alternated instead of distances from points. Certainly, in R2, hyperplanes
can be represented by straight lines. Consequently, one can consider distances
from straight lines in R2. Paths involving distances from two straight lines in R2

were initially explored by Braess and Pinkus in their work [5]. They investigated
these paths as a means of determining if a set of points

{
xi
}m

i=1
⊂ R2 possesses

the non-interpolation property for “ridge functions”. For detailed discussions
and analysis regarding these functions, their properties, and their applications
see [5, 11, 14, 25]. Ismailov and Pinkus [16] utilized paths with respect to two
directions a1 and a2 in Rd to address the problem of interpolation on straight
lines using ridge functions. Paths with respect to two directions in Rd were also
employed in other studies [3, 12, 13, 15]. In the context of R2, if two straight
lines are considered as the coordinate lines, then the set of points (p1,p2, ...)
can be visualized as “bolts of lightning” (see, e.g., [1, 10]). The introduction of
bolts of lightning under the name of “permissible lines” was initially attributed
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to Diliberto and Straus in their work [7] and they have been widely employed
in problems related to approximation using sums of univariate functions (see,
e.g., [7, 8, 10, 19, 20]). Note that the name “bolt of lightning” is attributed to
Arnold in his work [1]. Additionally, Ismailov [14] introduced paths with respect
to a finite set of functions. That is, he extended lightning bolts and paths with
respect to two directions to paths involving n arbitrarily fixed functions. These
last objects have proven to be highly valuable in problems of representation by
linear superpositions (see, e.g., [14]).

In the following discussion, we will simplify the terminology by using the term
“path” instead of the longer expression “path with respect to the centers c1 and
c2”. A finite path (p1,p2, ...,p2n) is said to be closed if (p1,p2, ...,p2n,p1) is also
a path.

Let’s consider also the following class of functions denoted as D.

D = {r1(∥x− c1∥) + r2(∥x− c2∥) : ri ∈ C(R), i = 1, 2} .

Note that, in the definition of G = G(g, c1, c2) each term wig
(
∥x−ci∥

σi
− θi

)
can be interpreted as a function h(x− ci) with ci = c1 or ci = c2. The function
h depends on the parameters wi, σi and θi. It is evident that an element v ∈
G = G(g, c1, c2) also belongs to the class D. In other words, G = G(g, c1, c2) is a
subset of the class D.

For each closed path p = (p1,p2, ...,p2n) let us consider the following func-
tional:

Gp(f) =
1

2n

2n∑
k=1

(−1)k+1f(pk).

This functional is associated with the closed path p and exhibits the following
obvious properties:

(a) If r ∈ D, then Gp(r) = 0.
(b) ∥Gp∥ ≤ 1 and if pi ̸= pj for all i ̸= j, 1 ≤ i, j ≤ 2n , then ∥Gp∥ = 1.
Let us consider the concept of extremal paths (see [13]).

Definition 2.2. A finite or infinite path (p1,p2, · · · ) is said to be extremal for
a function u ∈ C(Q) if u(pi) = (−1)i∥u∥, i = 1, 2, · · · , or u(pi) = (−1)i+1∥u∥, i =
1, 2, · · · .

The following lemma is valid.

Lemma 2.1. Let a compact set Q have closed paths. Then

sup
p⊂Q

|Gp(f)| ≤ inf
u∈G

∥f − u∥ , (2.1)

where the sup is taken over all closed paths.

Proof. Let p be a closed path of Q and r be any function from D. Based on the
linearity of the functional Gp and the properties (a) and (b) mentioned earlier,

|Gp(f)| = |Gp(f − r)| ≤ ∥f − r∥ . (2.2)
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Since the left-hand and the right-hand sides of (2.2) do not depend on the choice
of the function r and p respectively, it follows from (2.2) that

sup
p⊂Q

|Gp(f)| ≤ inf
r∈D

∥f − r∥ . (2.3)

Since G = G(g, c1, c2) is a subset of D, we have inf
r∈D

∥f − r∥ ≤ inf
u∈G

∥f − u∥.
Therefore sup

p⊂Q
|Gp(f)| ≤ inf

u∈G
∥f − u∥. This confirms that the lemma holds.

The images of the distance functions ∥x− c1∥ and ∥x− c2∥ on the compact set
Q are denoted by X1 and X2, respectively. For any function h ∈ C(Q), consider
the real functions

s1(a) = max
x∈Q

∥x−c1∥=a

h(x), s2(a) = min
x∈Q

∥x−c1∥=a

h(x), a ∈ X1,

g1(b) = max
x∈Q

∥x−c2∥=b

h(x), g2(b) = min
x∈Q

∥x−c2∥=b

h(x), b ∈ X2.

When are these functions continuous on the appropriate sets X1 and X2? The
following lemma, which is essential for proving our main result, Theorem 2.1,
answers this question.

Lemma 2.2. (see [2]). Let Q ⊂ Rd be a compact set. Then the functions s1
and s2 are continuous on X1 (g1 and g2 are continuous on X2) for any h ∈ C(Q)
if the following condition, which we call the condition A, holds:

(A) for any two points x and y in Q with ∥x− c1∥ = ∥y − c1∥ (∥x− c2∥ =
∥y − c2∥) and any sequence {xn}∞n=1 tending to x, there exists a sequence {yn}∞n=1

tending to y such that ∥xn − c1∥ = ∥yn − c1∥ (∥xn − c2∥ = ∥yn − c2∥) for all
n = 1, 2, ...

The following theorem is true.

Theorem 2.1. Let Q ⊂ Rd be a compact set and f ∈ C(Q). Suppose the
following conditions hold.

1) f has a best approximation in D;
2) The above condition (A) holds;
3) there exists a positive integer N0 such that any path (p1, ...,pn) ⊂ Q, n >

N0, or a subpath of it can be made closed by adding not more than N0 points of
Q.

Then for any continuous nonpolynomial activation function g : R → R the ap-
proximation error by RBF neural networks with two hidden nodes G = G(g, c1, c2)
can be computed by the formula

E (f,G) = sup
p⊂Q

|Gp(f)| ,

where the sup is taken over all closed paths.

Proof. By assumption, the function f has a best approximation within the
class D, which we denote as r0(x) = r10(∥x− c1∥) + r20(∥x− c2∥), where ri0 ∈
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C(R) for i = 1, 2. Now, let’s focus on extremal paths specifically for the function
f1 = f − r0. When considering such paths, we can distinguish between two
possible cases.

Case 1. There exists a closed path p0 = (p1, . . . ,pn) extremal for the function
f1. In this case, according to Definition 2.2, we can express this as follows:

|Gp0(f)| = |Gp0(f − r0)| = ∥f − r0∥ . (2.4)

Based on the condition imposed on g, we can conclude that the class of func-
tions

∑m
i=1 cig(wit− θi) is dense in C(R) in the topology of uniform convergence

on compact sets (as discussed in [18]). It is important to note that the values of
wi can vary on any subset of the real line that contains a sequence converging
to a finite limit point (as stated in Proposition 3.11 in [24]). Therefore, for any
ε > 0, there exist natural numbers m1 and m2, and real numbers cij , wij , and
θij , where i = 1, 2 and j = 1, . . . ,mi, satisfying the following inequalities:∣∣∣∣∣∣r10(t)−

m1∑
j=1

c1jg(w1jt− θ1j)

∣∣∣∣∣∣ < ε

2
(2.5)

and ∣∣∣∣∣∣r20(t)−
m2∑
j=1

c2jg(w2jt− θ2j)

∣∣∣∣∣∣ < ε

2
(2.6)

for all t ∈ [a, b]. Here [a, b] is a sufficiently large interval which contains both the
sets {||x− c1|| : x ∈ Q} and {||x− c2|| : x ∈ Q}.

By substituting t = ∥x − c1∥ into (2.5) and t = ∥x − c2∥ into (2.6), we can
deduce that∣∣∣∣∣r10(∥x− c1∥) + r20(∥x− c2∥)−

m∑
i=1

wig

(
∥x− ci∥

σi
− θi

)∣∣∣∣∣ < ε (2.7)

holds for all x ∈ Q, and some wi, σi, θi ∈ R and ci = c1 or ci = c2. Obviously,∥∥∥∥∥f −
m∑
i=1

wig

(
∥x− ci∥

σi
− θi

)∥∥∥∥∥ ≤

≤ ∥f − r10 − r20∥+

∥∥∥∥∥r10 + r20 −
m∑
i=1

wig

(
∥x− ci∥

σi
− θi

)∥∥∥∥∥ . (2.8)

It follows from (2.8) that

E(f,G(g)) ≤ ∥f − r10 − r20∥+

∥∥∥∥∥r10 + r20 −
m∑
i=1

wig

(
∥x− ci∥

σi
− θi

)∥∥∥∥∥ . (2.9)

The last inequality together with (2.4) and (2.7) yield

E(f,G) ≤ |Gp0(f)|+ ε.

Since ε can be arbitrarily small, we can write that

E(f,G) ≤ |Gp0(f)|.
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By using Lemma 2.1, we can conclude that

E (f,G) = sup
p⊂Q

|Gp(f)| ,

where the sup is taken over all closed paths.

Case 2. In the second option, we encounter the situation where there is no
closed path extremal for the function f1 = f − r0. To address this case, we aim
to demonstrate that for any given natural number n, there exists an extremal
path for f1 comprising precisely n points. Assuming the opposite, let’s suppose
that there exists a positive integer N such that the length of any extremal path
for f1 does not exceed N . Here, the length of a path denotes the count of points
it encompasses. We define the following functions:

fn = fn−1 − u1,n−1 − u2,n−1, n = 2, 3, ...,

where

u1,n−1 = u1,n−1 (∥x− c1∥) =
1

2

 max
y∈Q

∥y−c1∥=∥x−c1∥

fn−1(y) + min
y∈Q

∥y−c1∥=∥x−c1∥

fn−1(y)


u2,n−1 = u2,n−1(∥x− c2∥) =

1

2

 max
y∈Q

∥y−c2∥=∥x−c2∥

(fn−1(y)− u1,n−1(∥y − c1∥))+

+ min
y∈Q

∥y−c2∥=∥x−c2∥

(fn−1(y)− u1,n−1(∥y − c1∥))

 .

By Lemma 2.2, all the functions fn(x), n = 2, 3, ..., are continuous on Q. Since
r0 is an extremal element for f , we have ∥f1∥ = E (f). We now aim to show that
∥f2∥ = E (f). Indeed, for any x ∈ Q we have

f1(x)− u1,1(∥x− c1∥) ≤

≤ 1

2

 max
y∈Q

∥y−c1∥=∥x−c1∥

f1(y)− min
y∈Q

∥y−c1∥=∥x−c1∥

f1(y)

 ≤ E(f) (2.10)

and

f1(x)− u1,1(∥x− c1∥) ≥

≥ 1

2

 min
y∈Q

∥y−c1∥=∥x−c1∥

f1(y)− max
y∈Q

∥y−c1∥=∥x−c1∥

f1(y)

 ≥ −E(f). (2.11)

Considering the definition of u2,1(∥x− c2∥), for any x ∈ Q we can write the
following inequality:

f1(x)− u1,1(∥x− c1∥)− u2,1(∥x− c2∥) ≤

≤ 1

2

 max
y∈Q

∥y−c2∥=∥x−c2∥

(f1(y)− u1,1(∥y − c1∥))− min
y∈Q

∥y−c2∥=∥x−c2∥

(f1(y)− u1,1(∥y − c1∥))


and

f1(x)− u1,1(∥x− c1∥)− u2,1(∥x− c2∥) ≥
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≥ 1

2

 min
y∈Q

∥y−c2∥=∥x−c2∥

(f1(y)− u1,1(∥y − c1∥))− max
y∈Q

∥y−c2∥=∥x−c2∥

(f1(y)− u1,1(∥y − c1∥))

 .

Using (2.10) and (2.11) in the last two inequalities, we obtain that for any x ∈ Q
the following inequality holds:

−E(f) ≤ f2(x) = f1(x)− u1,1(∥x− c1∥)− u2,1(∥x− c2∥) ≤ E(f).

Thus,
∥f2∥ ≤ E(f). (2.12)

Since f2 − f ∈ D, it follows from (2.12) that ∥f2∥ = E(f).
Similarly, it can be shown that ∥f3∥ = E(f), ∥f4∥ = E(f), and so on. There-

fore, ∥fn∥ = E(f) for all n = 1, 2, ...
We will now demonstrate the following implications

f1(p0) < E(f) ⇒ f2(p0) < E(f) (2.13)

and
f1(p0) > −E(f) ⇒ f2(p0) > −E(f), (2.14)

where p0 ∈ Q. First, we are going to prove the implication

f1(p0) < E(f) ⇒ f1(p0)− u1,1(∥p0 − c1∥) < E(f). (2.15)

There are two distinct situations that we need to consider.
1) max

y∈Q
∥y−c1∥=∥p0−c1∥

f1(y) = E(f) and min
y∈Q

∥y−c1∥=∥p0−c1∥

f1(y) = −E(f).

In this case, u1,1(∥p0 − c1∥) = 0. Thus,

f1(p0)− u1,1(∥p0 − c1∥) < E(f).

2) max
y∈Q

∥y−c1∥=∥p0−c1∥

f1(y) = E(f)− ε1 and min
y∈Q

∥y−c1∥=∥p0−c1∥

f1(y) = −E(f) + ε2,

where ε1, ε2 ≥ 0 and ε1 + ε2 ̸= 0.
In this case,

f1(p0)− u1,1(∥p0 − c1∥) ≤ max
y∈Q

∥y−c1∥=∥p0−c1∥

f1(y)− u1,1(∥p0 − c1∥) =

=
1

2

 max
y∈Q

∥y−c1∥=∥p0−c1∥

f1(y)− min
y∈Q

∥y−c1∥=∥p0−c1∥

f1(y)


= E(f)− ε1 + ε2

2
< E(f).

Therefore, we have successfully demonstrated the validity of equation (2.15). By
employing a similar approach, we can also establish the proof for that

f1(p0)− r1,1(∥p0 − c1∥) < E(f) ⇒ f1(p0)−
−r1,1(∥p0 − c1∥)− r2,1(∥p0 − c2∥) < E(f). (2.16)

Implications (2.15) and (2.16) lead to the conclusion stated in equation (2.13).
Likewise, using similar reasoning, we can also establish the validity of the equation
(2.14). Consequently, based on the implications (2.13) and (2.14) we can deduce
that if f2(p0) = E(f), then f1(p0) = E(f) and if f2(p0) = −E(f), then f1(p0) =
−E(f). This implies that any path extremal for f2 is also an extremal for f1.
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We assumed earlier that any path extremal for f1 has a length of no more
than N . Now we will demonstrate that, in this case, any path extremal for f2
must have a length of no more than N − 1. Let’s suppose the opposite, assuming
the existence of a path extremal for f2 with a length of N . We denote this
path as q = (q1,q2, ...,qN ). Without loss of generality, we can assume that
∥qN−1 − c2∥ = ∥qN − c2∥. As we have previously shown, path q is an extremal
for f1. Let’s assume f1(qN ) = E(f). In that case, there does not exist a point
q0 ∈ Q such that q0 ̸= qN , ∥q0 − c1∥ = ∥qN − c1∥ and f1(q0) = −E(f). To
clarify, if such a point q0 and q0 ̸∈ q, then the path (q1,q2, ...,qN ,q0) would be
extremal for f1. However, this contradicts our assumption that any path extremal
for f1 has a length of no more than N . On the other hand, if there were such
a point q0 and q0 ∈ q, then we could form a closed extremal path for f1 using
points from q. This would also contradict our assumption that there is no closed
extremal path for f1. Hence, we can conclude that

max
y∈Q

∥y−c1∥=∥qN−c1∥

f1(y) = E(f), min
y∈Q

∥y−c1∥=∥qN−c1∥

f1(y) > −E(f).

Therefore,

|f1(qN )− u1,1(∥qN − c1∥)| < E(f).

Using a similar approach as described earlier, we can obtain from the last in-
equality that

|f2(qN )| < E(f).

This means that the path (q1,q2, ...,qN ) can not be extremal for f2. Therefore,
we can conclude that any path extremal for f2 has a length that is not more than
N − 1.

Using the same reasoning, we can extend this result to show that any path
extremal for f3 has a length not more than N − 2, any path extremal for f4 has
a length not more than N − 3 and so on. Ultimately, we reach the conclusion
that there is no path extremal for fN+1. Consequently, there is no point p0 ∈ Q
such that |fN+1(p0)| = ∥fN+1∥. However, since all the functions f2, f3, ..., fN+1

are continuous on the compact set Q (as per Lemma 2.2), the norm ∥fN+1∥ must
be attained. This contradiction demonstrates that for any n there exists a path
(p1,p2, ...,pn) extremal for f1.

Consider the sequence of extremal paths pn = (pn
1 ,p

n
2 , ...,p

n
n), n = 1, 2, ....

According to condition (3) of the theorem, for each path pn there exists a closed
path pmn

n = (pn
1 ,p

n
2 , ...,p

n
n,q

n
n+1, ...,q

n
n+mn

), with mn ≤ N0. We observe that the
functional Gpmn

n
satisfies the following inequalities:∣∣Gpmn

n
(f)

∣∣ = ∣∣Gpmn
n

(f − r0)
∣∣ ≤ n ∥f − r0∥+mn ∥f − r0∥

n+mn
= ∥f − r0∥ (2.17)

and ∣∣Gpmn
n

(f)
∣∣ ≥ n ∥f − r0∥ −mn ∥f − r0∥

n+mn
=
n−mn

n+mn
∥f − r0∥ . (2.18)

From equations (2.17) and (2.18), we can deduce the following:

sup
pmn
n

∣∣Gpmn
n

(f)
∣∣ = ∥f − r0∥ .
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By employing the approach involving the function f − r0 = f − r10 − r20 in
Case 1, we can derive the following inequality:

E (f,G) ≤ sup
pmn
n

∣∣Gpmn
n

(f)
∣∣ ≤ sup

p⊂Q
|Gp(f)| . (2.19)

From equation (2.19) and Lemma 2.1, we conclude that:

E (f,G) = sup
p⊂Q

|Gp(f)| ,

where the sup is taken over all closed paths of Q. The theorem has been proved.
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